
Intel386™ EX

Embedded Microprocessor

User’�s Manual

Intel386™ EXTB

Embedded

Microprocessor

Intel386™ EXTC

Embedded

Microprocessor

Intel386 EX
Embedded

Microprocessor
User’s Manual

1996 Order Number 272485-002

™

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including in-
fringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcontroller products may have
minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-548-4725

COPYRIGHT © INTEL CORPORATION, 1996

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1

1.2 NOTATIONAL CONVENTIONS... 1-3

1.3 SPECIAL TERMINOLOGY .. 1-4

1.4 RELATED DOCUMENTS .. 1-5

1.5 ELECTRONIC SUPPORT SYSTEMS ... 1-6
1.5.1 FaxBack Service ...1-6
1.5.2 Bulletin Board System (BBS) ..1-7
1.5.3 CompuServe Forums ..1-7
1.5.4 World Wide Web ...1-7

1.6 TECHNICAL SUPPORT .. 1-7

1.7 PRODUCT LITERATURE.. 1-8

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 Intel386 EX EMBEDDED PROCESSOR CORE.. 2-1

2.2 INTEGRATED PERIPHERALS.. 2-3

CHAPTER 3
CORE OVERVIEW

3.1 Intel386 CX PROCESSOR ENHANCEMENTS... 3-1
3.1.1 System Management Mode ..3-1
3.1.2 Additional Address Lines ..3-1

3.2 Intel386 CX PROCESSOR INTERNAL ARCHITECTURE .. 3-2
3.2.1 Core Bus Unit ..3-4
3.2.2 Instruction Prefetch Unit ..3-4
3.2.3 Instruction Decode Unit ...3-4
3.2.4 Execution Unit ...3-5
3.2.5 Segmentation Unit ..3-5
3.2.6 Paging Unit ...3-5

3.3 CORE Intel386 EX PROCESSOR INTERFACE.. 3-6

CHAPTER 4
SYSTEM REGISTER ORGANIZATION

4.1 OVERVIEW ... 4-1
4.1.1 Intel386 Processor Core Architecture Registers ...4-2
4.1.2 Intel386 EX Processor Peripheral Registers ...4-2

4.2 I/O ADDRESS SPACE FOR PC/AT SYSTEMS .. 4-2

4.3 EXPANDED I/O ADDRESS SPACE.. 4-3

4.4 ORGANIZATION OF PERIPHERAL REGISTERS.. 4-5

4.5 I/O ADDRESS DECODING TECHNIQUES... 4-6
4.5.1 Address Configuration Register ..4-6
iii

Intel386™ EX MICROPROCESSOR USER’S MANUAL
4.5.2 Enabling and Disabling the Expanded I/O Space ...4-8
4.5.2.1 Programming REMAPCFG Example ...4-8

4.6 ADDRESSING MODES... 4-9
4.6.1 DOS-compatible Mode ..4-9
4.6.2 Nonintrusive DOS Mode ...4-11
4.6.3 Enhanced DOS Mode ...4-11
4.6.4 Non-DOS Mode ..4-11

4.7 PERIPHERAL REGISTER ADDRESSES.. 4-15

CHAPTER 5
DEVICE CONFIGURATION

5.1 INTRODUCTION ... 5-1

5.2 PERIPHERAL CONFIGURATION... 5-3
5.2.1 DMA Controller, Bus Arbiter, and Refresh Unit Configuration5-3

5.2.1.1 Using The DMA Unit with External Devices ...5-3
5.2.1.2 DMA Service to an SIO or SSIO Peripheral ...5-3
5.2.1.3 Using The Timer To Initiate DMA Transfers ...5-4
5.2.1.4 Limitations Due To Pin Signal Multiplexing ..5-4

5.2.2 Interrupt Control Unit Configuration ..5-7
5.2.3 Timer/counter Unit Configuration ..5-11
5.2.4 Asynchronous Serial I/O Configuration ...5-14
5.2.5 Synchronous Serial I/O Configuration ..5-18
5.2.6 Chip-select Unit and Clock and Power Management Unit Configuration5-19
5.2.7 Core Configuration ..5-21

5.3 PIN CONFIGURATION.. 5-23

5.4 DEVICE CONFIGURATION PROCEDURE .. 5-28

5.5 CONFIGURATION EXAMPLE... 5-28
5.5.1 Example Design Requirements ...5-28
5.5.2 Example Design Solution ..5-29

CHAPTER 6
BUS INTERFACE UNIT

6.1 OVERVIEW ... 6-1
6.1.1 Bus Signal Descriptions ..6-3

6.2 BUS OPERATION ... 6-5
6.2.1 Bus States ...6-7
6.2.2 Pipelining ..6-8
6.2.3 Data Bus Transfers and Operand Alignment ..6-9
6.2.4 Ready Logic ..6-10

6.3 BUS CYCLES .. 6-13
6.3.1 Read Cycle ...6-13
6.3.2 Write Cycle ..6-16
6.3.3 Pipelined Cycle ...6-19
iv

CONTENTS
6.3.4 Interrupt Acknowledge Cycle ..6-23
6.3.5 Halt/Shutdown Cycle ...6-26
6.3.6 Refresh Cycle ...6-28
6.3.7 BS8 Cycle ...6-31

6.3.7.1 Write Cycles ...6-31
6.3.7.2 Read Cycles ...6-31

6.4 BUS LOCK... 6-34
6.4.1 Locked Cycle Activators ..6-34
6.4.2 Locked Cycle Timing ...6-34
6.4.3 LOCK# Signal Duration ...6-35

6.5 EXTERNAL BUS MASTER SUPPORT (USING HOLD, HLDA).................................. 6-35
6.5.1 HOLD/HLDA Timing ..6-36
6.5.2 HOLD Signal Latency ...6-37

6.6 DESIGN CONSIDERATIONS.. 6-38
6.6.1 Interface To Intel387™ SX Math Coprocessor ...6-38

6.6.1.1 System Configuration ...6-39
6.6.1.2 Software Considerations ..6-40

6.6.2 SRAM/FLASH Interface ..6-41
6.6.3 PSRAM Interface ..6-42
6.6.4 Paged DRAM Interface ...6-43
6.6.5 Non-Paged DRAM Interface ...6-44

CHAPTER 7
SYSTEM MANAGEMENT MODE

7.1 SYSTEM MANAGEMENT MODE OVERVIEW ... 7-1

7.2 SMM HARDWARE INTERFACE ... 7-1
7.2.1 System Management Interrupt Input (SMI#) ...7-1
7.2.2 SMM Active Output (SMIACT#) ..7-2
7.2.3 System Management RAM (SMRAM) ..7-2

7.3 SYSTEM MANAGEMENT MODE PROGRAMMING AND CONFIGURATION............. 7-3
7.3.1 Register Status During SMM ...7-3
7.3.2 System Management Interrupt ..7-4

7.3.2.1 SMI# Priority ...7-7
7.3.2.2 System Management Interrupt During HALT Cycle ...7-8
7.3.2.3 HALT Restart ...7-9
7.3.2.4 System Management Interrupt During I/O Instruction ..7-9
7.3.2.5 I/O Restart ..7-10

7.3.3 SMM Handler Interruption ...7-10
7.3.3.1 Interrupt During SMM Handler ...7-10
7.3.3.2 HALT During SMM Handler ..7-11
7.3.3.3 Idle Mode and Powerdown Mode During SMM ..7-12
7.3.3.4 SMI# During SMM Operation ...7-12

7.3.4 SMRAM Programming ..7-12
7.3.4.1 Chip-select Unit Support for SMRAM ...7-12
v

Intel386™ EX MICROPROCESSOR USER’S MANUAL
7.3.4.2 SMRAM State Dump Area ...7-14
7.3.5 Resume Instruction (RSM) ..7-15

7.4 THE Intel386 EX PROCESSOR IDENTIFIER REGISTERS 7-15

7.5 PROGRAMMING CONSIDERATIONS.. 7-16
7.5.1 System Management Mode Code Example ..7-16

CHAPTER 8
CLOCK AND POWER MANAGEMENT UNIT

8.1 OVERVIEW ... 8-1
8.1.1 Clock Generation Logic ...8-1
8.1.2 Power Management Logic ..8-3

8.1.2.1 SMM Interaction with Power Management Modes ...8-4
8.1.2.2 Bus Interface Unit Operation During Idle Mode ..8-5
8.1.2.3 Watchdog Timer Unit Operation During Idle Mode ..8-5

8.1.3 Clock and Power Management Registers and Signals ...8-6

8.2 CONTROLLING THE PSCLK FREQUENCY .. 8-7

8.3 CONTROLLING POWER MANAGEMENT MODES ... 8-8
8.3.1 Idle Mode ..8-9
8.3.2 Powerdown Mode ...8-10
8.3.3 Ready Generation During HALT ...8-10

8.4 DESIGN CONSIDERATIONS.. 8-11
8.4.1 Reset Considerations ..8-11
8.4.2 Power-up Considerations ..8-12

8.4.2.1 Built-in Self Test ...8-12
8.4.2.2 JTAG Reset ..8-12

8.4.3 Powerdown Mode and Idle Mode Considerations ...8-13

8.5 PROGRAMMING CONSIDERATIONS.. 8-13
8.5.1 Clock and Power Management Unit Code Example ...8-13

CHAPTER 9
INTERRUPT CONTROL UNIT

9.1 OVERVIEW ... 9-1

9.2 ICU OPERATION... 9-4
9.2.1 Interrupt Sources ..9-4
9.2.2 Interrupt Priority ..9-6

9.2.2.1 Assigning an Interrupt Level ...9-6
9.2.2.2 Determining Priority ..9-7

9.2.3 Interrupt Vectors ...9-8
9.2.4 Interrupt Process ...9-9
9.2.5 Poll Mode ..9-14

9.3 REGISTER DEFINITIONS... 9-15
9.3.1 Port 3 Configuration Register (P3CFG) ..9-18
9.3.2 Interrupt Configuration Register (INTCFG) ...9-19
vi

CONTENTS
9.3.3 Initialization Command Word 1 (ICW1) ...9-20
9.3.4 Initialization Command Word 2 (ICW2) ...9-21
9.3.5 Initialization Command Word 3 (ICW3) ...9-22
9.3.6 Initialization Command Word 4 (ICW4) ...9-24
9.3.7 Operation Command Word 1 (OCW1) ..9-25
9.3.8 Operation Command Word 2 (OCW2) ..9-26
9.3.9 Operation Command Word 3 (OCW3) ..9-27
9.3.10 Interrupt Request Register (IRR) ..9-28
9.3.11 In-Service Register (ISR) ..9-28
9.3.12 Poll Status Byte (POLL) ..9-28

9.4 DESIGN CONSIDERATIONS.. 9-29
9.4.1 Interrupt Acknowledge Cycle ..9-29
9.4.2 Interrupt Detection ..9-29
9.4.3 Spurious Interrupts ..9-30
9.4.4 Cascading Interrupt Controllers ..9-30

9.5 PROGRAMMING CONSIDERATIONS.. 9-32
9.5.1 Interrupt Control Unit Code Examples ..9-32

CHAPTER 10
TIMER/COUNTER UNIT

10.1 OVERVIEW ... 10-1
10.1.1 TCU Signals and Registers ...10-3

10.2 TCU OPERATION ... 10-5
10.2.1 Mode 0 – Interrupt on Terminal Count ..10-6
10.2.2 Mode 1 – Hardware Retriggerable One-shot ..10-8
10.2.3 Mode 2 – Rate Generator ...10-10
10.2.4 Mode 3 – Square Wave ..10-12
10.2.5 Mode 4 – Software-triggered Strobe ...10-16
10.2.6 Mode 5 – Hardware-triggered Strobe ..10-18

10.3 REGISTER DEFINITIONS... 10-20
10.3.1 Configuring the Input and Output Signals ...10-20

10.3.1.1 Hardware Control of GATEn ..10-20
10.3.1.2 Software Control of GATEn ..10-20

10.3.2 Initializing the Counters ...10-24
10.3.3 Writing the Counters ...10-26
10.3.4 Reading the Counter ...10-27

10.3.4.1 Simple Read ...10-27
10.3.4.2 Counter-latch Command ..10-27
10.3.4.3 Read-back Command ..10-30

10.4 PROGRAMMING CONSIDERATIONS.. 10-33
10.4.1 Timer/Counter Unit Code Examples ...10-34
vii

Intel386™ EX MICROPROCESSOR USER’S MANUAL
CHAPTER 11
ASYNCHRONOUS SERIAL I/O UNIT

11.1 OVERVIEW ... 11-1
11.1.1 SIO Signals ...11-3

11.2 SIO OPERATION .. 11-4
11.2.1 Baud-rate Generator ...11-4
11.2.2 SIOn Transmitter ...11-6
11.2.3 SIOn Receiver ...11-9
11.2.4 Modem Control ...11-12
11.2.5 Diagnostic Mode ...11-12
11.2.6 SIO Interrupt and DMA Sources ...11-13

11.2.6.1 SIO Interrupt Sources ..11-13
11.2.6.2 SIO DMA sources ..11-13

11.2.7 External UART Support ..11-14

11.3 REGISTER DEFINITIONS... 11-15
11.3.1 Pin and Port Configuration Registers (PINCFG and PnCFG [n = 1–3])11-17
11.3.2 SIO and SSIO Configuration Register (SIOCFG) ...11-21
11.3.3 Divisor Latch Registers (DLLn and DLHn) ..11-22
11.3.4 Transmit Buffer Register (TBRn) ...11-23
11.3.5 Receive Buffer Register (RBRn) ...11-24
11.3.6 Serial Line Control Register (LCRn) ..11-25
11.3.7 Serial Line Status Register (LSRn) ...11-26
11.3.8 Interrupt Enable Register (IERn) ...11-27
11.3.9 Interrupt ID Register (IIRn) ..11-28
11.3.10 Modem Control Register (MCRn) ..11-29
11.3.11 Modem Status Register (MSRn) ...11-31
11.3.12 Scratch Pad Register (SCRn) ...11-32

11.4 PROGRAMMING CONSIDERATIONS.. 11-32
11.4.1 Asynchronous Serial I/O Unit Code Examples ..11-33

CHAPTER 12
DMA CONTROLLER

12.1 OVERVIEW ... 12-1
12.1.1 DMA Terminology ...12-3
12.1.2 DMA Signals ...12-4

12.2 DMA OPERATION... 12-5
12.2.1 DMA Transfers ..12-5
12.2.2 Bus Cycle Options for Data Transfers ...12-5

12.2.2.1 Fly-By Mode ...12-5
12.2.2.2 Two-Cycle Mode ..12-6
12.2.2.3 Programmable DMA Transfer Direction ...12-6
12.2.2.4 Ready Generation For DMA Cycles ...12-7
12.2.2.5 DMA Usage of the 4-Byte Temporary Register ..12-7

12.2.3 Starting DMA Transfers ..12-9
viii

CONTENTS
12.2.4 Bus Control Arbitration ..12-9
12.2.5 Ending DMA Transfers ..12-10
12.2.6 Buffer-transfer Modes ...12-12

12.2.6.1 Single Buffer-Transfer Mode ..12-12
12.2.6.2 Autoinitialize Buffer-Transfer Mode ..12-12
12.2.6.3 Chaining Buffer-Transfer Mode ..12-12

12.2.7 Data-transfer Modes ...12-13
12.2.7.1 Single Data-transfer Mode ...12-14
12.2.7.2 Block Data-transfer Mode ..12-18
12.2.7.3 Demand Data-transfer Mode ..12-21

12.2.8 Cascade Mode ..12-25
12.2.9 DMA Interrupts ..12-26
12.2.10 8237A Compatibility ..12-27

12.3 REGISTER DEFINITIONS... 12-28
12.3.1 Pin Configuration Register (PINCFG) ...12-31
12.3.2 DMA Configuration Register (DMACFG) ..12-32
12.3.3 Channel Registers ..12-33
12.3.4 Overflow Enable Register (DMAOVFE) ..12-34
12.3.5 Command 1 Register (DMACMD1) ...12-35
12.3.6 Status Register (DMASTS) ...12-36
12.3.7 Command 2 Register (DMACMD2) ...12-37
12.3.8 Mode 1 Register (DMAMOD1) ..12-38
12.3.9 Mode 2 Register (DMAMOD2) ..12-40
12.3.10 Software Request Register (DMASRR) ..12-42
12.3.11 Channel Mask and Group Mask Registers (DMAMSK and DMAGRPMSK)12-44
12.3.12 Bus Size Register (DMABSR) ...12-46
12.3.13 Chaining Register (DMACHR) ..12-47
12.3.14 Interrupt Enable Register (DMAIEN) ...12-48
12.3.15 Interrupt Status Register (DMAIS) ..12-49
12.3.16 Software Commands ..12-50

12.4 DESIGN CONSIDERATIONS.. 12-50

12.5 PROGRAMMING CONSIDERATIONS.. 12-50
12.5.1 DMA Controller Code Examples ...12-51

CHAPTER 13
SYNCHRONOUS SERIAL I/O UNIT

13.1 OVERVIEW ... 13-1
13.1.1 SSIO Signals ...13-4

13.2 SSIO OPERATION .. 13-5
13.2.1 Baud-rate Generator ...13-5
13.2.2 Transmitter ..13-6

13.2.2.1 Transmit Mode using Enable Bit ..13-7
13.2.2.2 Autotransmit Mode ...13-12
13.2.2.3 Slave Mode ..13-12
ix

Intel386™ EX MICROPROCESSOR USER’S MANUAL
13.2.3 Receiver ..13-12

13.3 REGISTER DEFINITIONS... 13-16
13.3.1 Pin Configuration Register (PINCFG) ...13-17
13.3.2 SIO and SSIO Configuration Register (SIOCFG) ...13-18
13.3.3 Prescale Clock Register (CLKPRS) ..13-19
13.3.4 SSIO Baud-rate Control Register (SSIOBAUD) ..13-20
13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR) ..13-21
13.3.6 SSIO Control 1 Register (SSIOCON1) ..13-21
13.3.7 SSIO Control 2 Register (SSIOCON2) ..13-23
13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF) ...13-24
13.3.9 SSIO Receive Holding Buffer (SSIORBUF) ..13-25

13.4 DESIGN CONSIDERATIONS.. 13-25

13.5 PROGRAMMING CONSIDERATIONS.. 13-26
13.5.1 SSIO Example Code ...13-26

CHAPTER 14
CHIP-SELECT UNIT

14.1 OVERVIEW ... 14-1

14.2 CSU UPON RESET... 14-2

14.3 CSU OPERATION ... 14-2
14.3.1 Defining a Channel’s Address Block ...14-2
14.3.2 System Management Mode Support ..14-10
14.3.3 Bus Cycle Length Control ...14-11
14.3.4 Bus Size Control ...14-11
14.3.5 Overlapping Regions ..14-11

14.4 REGISTER DEFINITIONS... 14-13
14.4.1 Pin Configuration Register (PINCFG) ...14-15
14.4.2 Port 2 Configuration Register (P2CFG) ..14-16
14.4.3 Chip-select Address Registers ..14-17
14.4.4 Chip-select Mask Registers ..14-19

14.5 DESIGN CONSIDERATIONS.. 14-21

14.6 PROGRAMMING CONSIDERATIONS.. 14-22
14.6.1 Chip-Select Unit Code Example ..14-22

CHAPTER 15
REFRESH CONTROL UNIT

15.1 DYNAMIC MEMORY CONTROL... 15-1
15.1.1 Refresh Methods ...15-1

15.2 REFRESH CONTROL UNIT OVERVIEW ... 15-2
15.2.1 RCU Signals ...15-4
15.2.2 Refresh Intervals ...15-4
x

CONTENTS
15.2.3 Refresh Addresses ...15-4
15.2.4 Bus Arbitration ..15-5

15.3 RCU OPERATION... 15-5

15.4 REGISTER DEFINITIONS... 15-6
15.4.1 Refresh Clock Interval Register (RFSCIR) ..15-7
15.4.2 Refresh Control Register (RFSCON) ..15-8
15.4.3 Refresh Base Address Register (RFSBAD) ..15-9
15.4.4 Refresh Address Register (RFSADD) ...15-10

15.5 DESIGN CONSIDERATIONS.. 15-11

15.6 PROGRAMMING CONSIDERATIONS.. 15-14
15.6.1 Refresh Control Unit Example Code ...15-14

CHAPTER 16
INPUT/OUTPUT PORTS

16.1 OVERVIEW ... 16-1
16.1.1 Port Functionality ..16-2

16.2 REGISTER DEFINITIONS... 16-6
16.2.1 Pin Configuration ..16-7
16.2.2 Initialization Sequence ..16-10

16.3 DESIGN CONSIDERATIONS.. 16-10
16.3.1 Pin Status During and After Reset ..16-10

16.4 PROGRAMMING CONSIDERATIONS.. 16-11
16.4.1 I/O Ports Code Example ...16-11

CHAPTER 17
WATCHDOG TIMER UNIT

17.1 OVERVIEW ... 17-1
17.1.1 WDT Signals ...17-3

17.2 WATCHDOG TIMER UNIT OPERATION.. 17-3
17.2.1 Idle and Powerdown modes ..17-4
17.2.2 General-purpose Timer Mode ...17-4
17.2.3 Software Watchdog Mode ...17-5
17.2.4 Bus Monitor Mode ...17-5

17.3 DISABLING THE WDT .. 17-6

17.4 REGISTER DEFINITIONS... 17-7

17.5 DESIGN CONSIDERATIONS.. 17-12

17.6 PROGRAMMING CONSIDERATIONS.. 17-12
17.6.1 Writing to the WDT Reload Registers (WDTRLDH and WDTRLDL)17-12
17.6.2 Minimum Counter Reload Value ...17-12
17.6.3 Watchdog Timer Unit Code Examples ..17-12
xi

Intel386™ EX MICROPROCESSOR USER’S MANUAL
CHAPTER 18
JTAG TEST-LO GIC UNIT

18.1 OVERVIEW ... 18-1

18.2 TEST-LOGIC UNIT OPERATION.. 18-3
18.2.1 Test Access Port (TAP) ..18-3
18.2.2 Test Access Port (TAP) Controller ..18-4
18.2.3 Instruction Register (IR) ..18-7
18.2.4 Data Registers ..18-8

18.3 TESTING ... 18-10
18.3.1 Identifying the Device ..18-10
18.3.2 Bypassing Devices on a Board ...18-10
18.3.3 Sampling Device Operation and Preloading Data ...18-10
18.3.4 Testing the Interconnections (EXTEST) ..18-10
18.3.5 Disabling the Output Drivers ...18-11

18.4 TIMING INFORMATION .. 18-12

18.5 DESIGN CONSIDERATIONS.. 18-14

APPENDIX A
SIGNAL DESCRIPTIONS

APPENDIX B
COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

B.1 HARDWARE DEPARTURES FROM PC/AT SYSTEM ARCHITECTURE B-1
B.1.1 DMA Unit .. B-1
B.1.2 Industry Standard Bus (ISA) Signals .. B-2
B.1.3 Interrupt Control Unit .. B-4
B.1.4 SIO Units .. B-4
B.1.5 CPU-only Reset .. B-4
B.1.6 HOLD, HLDA Pins .. B-4
B.1.7 Port B .. B-5

B.2 SOFTWARE CONSIDERATIONS FOR A PC/AT SYSTEM ARCHITECTURE............ B-5
B.2.1 Embedded Basic Input Output System (BIOS) ... B-5
B.2.2 Embedded Disk Operating System (DOS) .. B-5
B.2.3 Microsoft* Windows* ... B-5

APPENDIX C
EXAMPLE CODE HEADER FILES

C.1 REGISTER DEFINITIONS FOR CODE EXAMPLES ... C-1

C.2 EXAMPLE CODE DEFINES... C-6
xii

CONTENTS
APPENDIX D
SYSTEM REGISTER QUICK REFERENCE

D.1 PERIPHERAL REGISTER ADDRESSES... D-1

D.2 CLKPRS ... D-7

D.3 CSnADH (UCSADH)... D-8

D.4 CSnADL (UCSADL) .. D-9

D.5 CSnMSKH (UCSMSKH) ... D-10

D.6 CSnMSKL (UCSMSKL) .. D-11

D.7 DLLn AND DLHn .. D-12

D.8 DMABSR .. D-13

D.9 DMACFG .. D-14

D.10 DMACHR .. D-15

D.11 DMACMD1.. D-16

D.12 DMACMD2.. D-17

D.13 DMAGRPMSK .. D-18

D.14 DMAIEN.. D-19

D.15 DMAIS .. D-20

D.16 DMAMOD1 ... D-21

D.17 DMAMOD2 ... D-22

D.18 DMAMSK .. D-23

D.19 DMAnBYCn, DMAnREQn AND DMAnTARn.. D-24

D.20 DMAOVFE .. D-25

D.21 DMASRR .. D-26

D.22 DMASTS... D-27

D.23 ICW1 (MASTER AND SLAVE) ... D-28

D.24 ICW2 (MASTER AND SLAVE) ... D-29

D.25 ICW3 (MASTER)... D-29

D.26 ICW3 (SLAVE) .. D-30

D.27 ICW4 (MASTER AND SLAVE) ... D-30

D.28 IDCODE.. D-31

D.29 IERn.. D-32

D.30 IIRn ... D-33

D.31 INTCFG .. D-34

D.32 IR .. D-35

D.33 LCRn... D-36

D.34 LSRn... D-37

D.35 MCRn.. D-38

D.36 MSRn.. D-39
xiii

Intel386™ EX MICROPROCESSOR USER’S MANUAL
D.37 OCW1 (MASTER AND SLAVE).. D-40

D.38 OCW2 (MASTER AND SLAVE).. D-41

D.39 OCW3 (MASTER AND SLAVE).. D-42

D.40 P1CFG .. D-43

D.41 P2CFG .. D-44

D.42 P3CFG .. D-45

D.43 PINCFG .. D-46

D.44 PnDIR ... D-47

D.45 PnLTC... D-48

D.46 PnPIN ... D-48

D.47 POLL (MASTER AND SLAVE) ... D-49

D.48 PORT92.. D-50

D.49 PWRCON ... D-51

D.50 RBRn .. D-52

D.51 REMAPCFG ... D-53

D.52 RFSADD ... D-54

D.53 RFSBAD ... D-54

D.54 RFSCIR .. D-55

D.55 RFSCON... D-55

D.56 SCRn .. D-56

D.57 SIOCFG .. D-57

D.58 SSIOBAUD ... D-58

D.59 SSIOCON1 ... D-59

D.60 SSIOCON2 ... D-60

D.61 SSIOCTR.. D-61

D.62 SSIORBUF ... D-61

D.63 SSIOTBUF.. D-62

D.64 TBRn... D-62

D.65 TMRCFG .. D-63

D.66 TMRCON .. D-64

D.67 TMRn .. D-65

D.68 UCSADH... D-67

D.69 UCSADL ... D-67

D.70 UCSMSKH.. D-67

D.71 UCSMSKL .. D-67

D.72 WDTCNTH AND WDTCNTL... D-68

D.73 WDTRLDH AND WDTRLDL... D-69

D.74 WDTSTATUS.. D-70
xiv

CONTENTS
APPENDIX E
INSTRUCTION SET SUMMARY

E.1 INSTRUCTION ENCODING AND CLOCK COUNT SUMMARY.................................. E-1

E.2 INSTRUCTION ENCODING... E-22
E.2.1 32-bit Extensions of the Instruction Set .. E-23
E.2.2 Encoding of Instruction Fields ... E-24

E.2.2.1 Encoding of Operand Length (w) Field ... E-24
E.2.2.2 Encoding of the General Register (reg) Field ... E-24
E.2.2.3 Encoding of the Segment Register (sreg) Field .. E-25
E.2.2.4 Encoding of Address Mode .. E-26
E.2.2.5 Encoding of Operation Direction (d) Field .. E-30
E.2.2.6 Encoding of Sign-Extend (s) Field .. E-30
E.2.2.7 Encoding of Conditional Test (tttn) Field .. E-30
E.2.2.8 Encoding of Control or Debug or Test Register (eee) Field E-31

GLOSSARY

INDEX
xv

Intel386™ EX MICROPROCESSOR USER’S MANUAL

FIGURES
Figure Page
2-1 Intel386™ EX Embedded Processor Block Diagram ...2-2
3-1 Instruction Pipelining ..3-2
3-2 The Intel386™ CX Processor Internal Block Diagram ...3-3
4-1 PC/AT I/O Address Space (10-bit Decode) ..4-3
4-2 Expanded I/O Address Space (16-bit Decode) ..4-4
4-3 Address Configuration Register (REMAPCFG)..4-7
4-4 Setting the ESE Bit Code Example ..4-8
4-5 DOS-Compatible Mode ..4-10
4-6 Example of Nonintrusive DOS-Compatible Mode ..4-12
4-7 Enhanced DOS Mode ..4-13
4-8 NonDOS Mode ...4-14
5-1 Peripheral and Pin Connections...5-2
5-2 Configuration of DMA, Bus Arbiter, and Refresh Unit ..5-5
5-3 DMA Configuration Register (DMACFG)..5-6
5-4 Interrupt Control Unit Configuration..5-9
5-5 Interrupt Configuration Register (INTCFG)...5-10
5-6 Timer/Counter Unit Configuration...5-12
5-7 Timer Configuration Register (TMRCFG)...5-13
5-8 Serial I/O Unit 0 Configuration..5-15
5-9 Serial I/O Unit 1 Configuration..5-16
5-10 SIO and SSIO Configuration Register (SIOCFG)...5-17
5-11 SSIO Unit Configuration ...5-18
5-12 Configuration of Chip-select Unit and Clock and Power Management Unit5-20
5-13 Core Configuration ...5-21
5-14 Port 92 Configuration Register (PORT92)..5-22
5-15 Pin Configuration Register (PINCFG)...5-24
5-16 Port 1 Configuration Register (P1CFG)..5-25
5-17 Port 2 Configuration Register (P2CFG)..5-26
5-18 Port 3 Configuration Register (P3CFG)..5-27
6-1 Basic External Bus Cycles..6-6
6-2 Simplified Bus State Diagram (Does Not Include Address Pipelining or Hold states)..6-8
6-3 Ready Logic ...6-11
6-4 Basic Internal and External Bus Cycles..6-12
6-5 Nonpipelined Address Read Cycles...6-15
6-6 Nonpipelined Address Write Cycles ...6-18
6-7 Complete Bus States (Including Pipelined Address) ..6-20
6-8 Pipelined Address Cycles...6-21
6-9 Interrupt Acknowledge Cycles ..6-25
6-10 Halt Cycle ...6-27
6-11 Basic Refresh Cycle ...6-29
6-12 Refresh Cycle During HOLD/HLDA..6-30
6-13 16-bit Cycles to 8-bit Devices (Using BS8#)...6-33
6-14 LOCK# Signal During Address Pipelining ..6-35
6-15 Intel386 EX Processor to Intel387 SX Math Coprocessor Interface...........................6-39
xvi

CONTENTS

FIGURES
Figure Page
6-16 Intel386 EX Processor to SRAM/FLASH Interface...6-41
6-17 Intel386 EX Processor to PSRAM Interface...6-42
6-18 Intel386 EX Processor to Paged DRAM Interface..6-43
6-19 Intel386 EX Processor and Non-Paged DRAM Interface...6-44
7-1 Standard SMI# ...7-5
7-2 SMIACT# Latency ...7-6
7-3 SMI# During HALT ..7-8
7-4 SMI# During I/O Instruction ..7-9
7-5 SMI# Timing ...7-10
7-6 Interrupted SMI# Service..7-11
7-7 HALT During SMM Handler..7-12
8-1 Clock and Power Management Unit Connections..8-2
8-2 Clock Synchronization ..8-3
8-3 SMM Interaction with Idle and Powerdown Modes...8-5
8-4 Clock Prescale Register (CLKPRS) ...8-7
8-5 Power Control Register (PWRCON)...8-8
8-6 Timing Diagram, Entering and Leaving Idle Mode ...8-9
8-7 Timing Diagram, Entering and Leaving Powerdown Mode ..8-11
8-8 Reset Synchronization Circuit ..8-12
9-1 Interrupt Control Unit Configuration..9-3
9-2 Methods for Changing the Default Interrupt Structure..9-7
9-3 Interrupt Process – Master Request from Non-slave Source9-11
9-4 Interrupt Process – Slave Request...9-12
9-5 Interrupt Process – Master Request from Slave Source ..9-13
9-6 Port 3 Configuration Register (P3CFG)..9-18
9-7 Interrupt Configuration Register (INTCFG)...9-19
9-8 Initialization Command Word 1 Register (ICW1)..9-20
9-9 Initialization Command Word 2 Register (ICW2)..9-21
9-10 Initialization Command Word 3 Register (ICW3 – Master)...9-22
9-11 Initialization Command Word 3 Register (ICW3 – Slave)...9-23
9-12 Initialization Command Word 4 Register (ICW4)..9-24
9-13 Operation Command Word 1 (OCW1) ...9-25
9-14 Operation Command Word 2 (OCW2) ...9-26
9-15 Operation Command Word 3 (OCW3) ...9-27
9-16 Poll Status Byte (POLL) ...9-28
9-17 Interrupt Acknowledge Cycle..9-29
9-18 Spurious Interrupts ...9-30
9-19 Cascading External 82C59A Interrupt Controllers..9-31
10-1 Timer/Counter Unit Signal Connections ...10-2
10-2 Mode 0 – Basic Operation..10-7
10-3 Mode 0 – Disabling the Count ..10-7
10-4 Mode 0 – Writing a New Count...10-8
10-5 Mode 1 – Basic Operation..10-9
10-6 Mode 1 – Retriggering the One-shot ..10-9
xvii

Intel386™ EX MICROPROCESSOR USER’S MANUAL

FIGURES
Figure Page
10-7 Mode 1 – Writing a New Count...10-10
10-8 Mode 2 – Basic Operation..10-11
10-9 Mode 2 – Disabling the Count ..10-11
10-10 Mode 2 – Writing a New Count...10-12
10-11 Mode 3 – Basic Operation (Even Count)..10-13
10-12 Mode 3 – Basic Operation (Odd Count) ...10-14
10-13 Mode 3 – Disabling the Count ..10-14
10-14 Mode 3 – Writing a New Count (With a Trigger)...10-15
10-15 Mode 3 – Writing a New Count (Without a Trigger)..10-15
10-16 Mode 4 – Basic Operation..10-16
10-17 Mode 4 – Disabling the Count ..10-17
10-18 Mode 4 – Writing a New Count...10-17
10-19 Mode 5 – Basic Operation..10-18
10-20 Mode 5 – Retriggering the Strobe ..10-19
10-21 Mode 5 – Writing a New Count Value ..10-19
10-22 Timer Configuration Register (TMRCFG)...10-21
10-23 Port 3 Configuration Register (P3CFG)..10-22
10-24 Pin Configuration Register (PINCFG)...10-23
10-25 Timer Control Register (TMRCON – Control Word Format).....................................10-25
10-26 Timer n Register (TMRn – Write Format) ...10-26
10-27 Timer Control Register (TMRCON – Counter-latch Format)10-28
10-28 Timer n Register (TMRn – Read Format)...10-29
10-29 Timer Control Register (TMRCON – Read-back Format) ..10-30
10-30 Timer n Register (TMRn – Status Format) ...10-32
11-1 Serial I/O Unit 1 Configuration..11-2
11-2 SIOn Baud-rate Generator Clock Sources ...11-4
11-3 SIOn Transmitter ..11-7
11-4 SIOn Data Transmission Process Flow..11-8
11-5 SIOn Receiver ..11-9
11-6 SIOn Data Reception Process Flow...11-11
11-7 Pin Configuration Register (PINCFG)...11-17
11-8 Port 1 Configuration Register (P1CFG)..11-18
11-9 Port 2 Configuration Register (P2CFG)..11-19
11-10 Port 3 Configuration Register (P3CFG)..11-20
11-11 SIO and SSIO Configuration Register (SIOCFG)...11-21
11-12 Divisor Latch Registers (DLLn and DLHn) ...11-22
11-13 Transmit Buffer Register (TBRn) ..11-23
11-14 Receive Buffer Register (RBRn)...11-24
11-15 Serial Line Control Register (LCRn) ...11-25
11-16 Serial Line Status Register (LSRn)...11-26
11-17 Interrupt Enable Register (IERn) ..11-27
11-18 Interrupt ID Register (IIRn) ...11-28
11-19 Modem Control Signals – Diagnostic Mode Connections ..11-29
11-20 Modem Control Signals – Internal Connections ...11-29
xviii

CONTENTS

FIGURES
Figure Page
11-21 Modem Control Register (MCRn) ...11-30
11-22 Modem Status Register (MSRn)...11-31
11-23 Scratch Pad Register (SCRn)...11-32
12-1 DMA Unit Block Diagram..12-2
12-2 DMA Temporary Buffer Operation for a Read Transfer..12-8
12-3 DMA Temporary Buffer Operation for A Write Transfer ...12-8
12-4 Start of a Two-cycle DMA Transfer Initiated by DRQn...12-9
12-5 Changing the Priority of the DMA Channel and External Bus Requests12-10
12-6 Buffer Transfer Ended by an Expired Byte Count ..12-11
12-7 Buffer Transfer Ended by the EOP# Input..12-11
12-8 Single Data-transfer Mode with Single Buffer-transfer Mode12-15
12-9 Single Data-transfer Mode with Autoinitialize Buffer-transfer Mode12-16
12-10 Single Data-transfer Mode with Chaining Buffer-transfer Mode...............................12-17
12-11 Block Data-transfer Mode with Single Buffer-transfer Mode12-19
12-12 Block Data-transfer Mode with Autoinitialize Buffer-transfer Mode12-20
12-13 Buffer Transfer Suspended by the Deactivation of DRQn..12-21
12-14 Demand Data-transfer Mode with Single Buffer-transfer Mode................................12-22
12-15 Demand Data-transfer Mode with Autoinitialize Buffer-transfer Mode12-23
12-16 Demand Data-transfer Mode with Chaining Buffer-transfer Mode12-24
12-17 Cascade Mode ...12-26
12-18 Pin Configuration Register (PINCFG)...12-31
12-19 DMA Configuration Register (DMACFG)..12-32
12-20 DMA Channel Address and Byte Count Registers

(DMAnREQn, DMAnTARn, DMAnBYCn)...12-33
12-21 DMA Overflow Enable Register (DMAOVFE)...12-34
12-22 DMA Command 1 Register (DMACMD1) ...12-35
12-23 DMA Status Register (DMASTS)..12-36
12-24 DMA Command 2 Register (DMACMD2) ...12-37
12-25 DMA Mode 1 Register (DMAMOD1) ..12-39
12-26 DMA Mode 2 Register (DMAMOD2) ..12-41
12-27 DMA Software Request Register (DMASRR – write format)....................................12-42
12-28 DMA Software Request Register (DMASRR – read format)12-43
12-29 DMA Channel Mask Register (DMAMSK) ..12-44
12-30 DMA Group Channel Mask Register (DMAGRPMSK) ...12-45
12-31 DMA Bus Size Register (DMABSR) ...12-46
12-32 DMA Chaining Register (DMACHR)...12-47
12-33 DMA Interrupt Enable Register (DMAIEN) ...12-48
12-34 DMA Interrupt Status Register (DMAIS)...12-49
13-1 Transmitter and Receiver in Master Mode ...13-2
13-2 Transmitter in Master Mode, Receiver in Slave Mode..13-2
13-3 Transmitter in Slave Mode, Receiver in Master Mode..13-3
13-4 Transmitter and Receiver in Slave Mode ...13-3
13-5 Clock Sources for the Baud-rate Generator ...13-5
13-6 SSIO Transmitter with Autotransmit Mode Enabled...13-7
xix

Intel386™ EX MICROPROCESSOR USER’S MANUAL

FIGURES
Figure Page
13-7 SSIO Transmitter with Autotransmit Mode Disabled ..13-8
13-8 Transmit Data by Polling ..13-9
13-9 Interrupt Service Routine for Transmitting Data Using Interrupts.............................13-10
13-10 Transmitter Master Mode, Single Word Transfer (Enabled when Clock is High)13-11
13-11 Transmitter Master Mode, Single Word Transfer (Enabled when Clock is Low)13-11
13-12 Receive Data by Polling ...13-13
13-13 Interrupt Service Routine for Receiving Data Using Interrupts.................................13-14
13-14 Receiver Master Mode, Single Word Transfer ...13-15
13-15 Pin Configuration Register (PINCFG)...13-17
13-16 SIO and SSIO Configuration Register (SIOCFG)...13-18
13-17 Clock Prescale Register (CLKPRS) ...13-19
13-18 SSIO Baud-rate Control Register (SSIOBAUD) ...13-20
13-19 SSIO Baud-rate Count Down Register (SSIOCTR)..13-21
13-20 SSIO Control 1 Register (SSIOCON1) ...13-22
13-21 SSIO Control 2 Register (SSIOCON2) ...13-23
13-22 SSIO Transmit Holding Buffer (SSIOTBUF)...13-24
13-23 SSIO Receive Holding Buffer (SSIORBUF) ...13-25
14-1 Channel Address Comparison Logic ..14-3
14-2 Determining a Channel’s Address Block Size ..14-4
14-3 Bus Cycle Length Adjustments for Overlapping Regions...14-12
14-4 Pin Configuration Register (PINCFG)...14-15
14-5 Port 2 Configuration Register (P2CFG)..14-16
14-6 Chip-select High Address Register (CSnADH, UCSADH)14-17
14-7 Chip-select Low Address Register (CSnADL, UCSADL) ...14-18
14-8 Chip-select High Mask Registers (CSnMSKH, UCSMSKH).....................................14-19
14-9 Chip-select Low Mask Registers (CSnMSKL, UCSMSKL).......................................14-20
15-1 Refresh Control Unit Connections..15-3
15-2 Refresh Clock Interval Register (RFSCIR) ...15-7
15-3 Refresh Control Register (RFSCON) ...15-8
15-4 Refresh Base Address Register (RFSBAD) ...15-9
15-5 Refresh Address Register (RFSADD) ..15-10
15-6 Connections to Ensure Refresh of All Rows in an 8-Bit Wide PSRAM Device15-11
15-7 RAS# Only Refresh Logic: Paged Mode ..15-13
15-8 RAS# Only Refresh Logic: Non-Paged Mode ..15-14
16-1 I/O Port Block Diagram...16-2
16-2 Logic Diagram of a Bi-directional Port ..16-3
16-3 Port n Configuration Register (PnCFG)..16-7
16-4 Port Direction Register (PnDIR) ...16-8
16-5 Port Data Latch Register (PnLTC)..16-8
16-6 Port Pin State Register (PnPIN) ...16-9
17-1 Watchdog Timer Unit Connections...17-2
17-2 WDT Counter Value Registers (WDTCNTH and WDTCNTL)17-8
17-3 WDT Status Register (WDTSTATUS) ..17-9
xx

CONTENTS

FIGURES
Figure Page
17-4 WDT Reload Value Registers (WDTRLDH and WDTRLDL)....................................17-10
17-5 Power Control Register (PWRCON)...17-11
18-1 Test Logic Unit Connections ..18-2
18-2 TAP Controller (Finite-State Machine)..18-6
18-3 Instruction Register (IR)..18-7
18-4 Identification Code Register (IDCODE) ..18-8
18-5 Internal and External Timing for Loading the Instruction Register............................18-12
18-6 Internal and External Timing for Loading a Data Register..18-13
B-1 Derivation of AEN Signal in a Typical PC/AT System ... B-3
B-2 Derivation of AEN Signal for Intel386™ EX processor-based Systems...................... B-3
E-1 General Instruction Format.. E-22
xxi

Intel386™ EX MICROPROCESSOR USER’S MANUAL

TABLES
Table Page
2-1 PC-compatible Peripherals...2-3
2-2 Embedded Application-specific Peripherals ...2-4
4-1 Peripheral Register I/O Address Map in Slot 15...4-5
4-2 Peripheral Register Addresses...4-15
5-1 Master’s IR3 Connections ..5-8
5-2 Master’s IR4 Connections ..5-8
5-3 Signal Pairs on Pins without a Multiplexer..5-23
5-4 Example Pin Configuration Registers...5-30
5-5 Example DMACFG Configuration Register ..5-31
5-6 Example TMRCFG Configuration Register ..5-32
5-7 Example INTCFG Configuration Register ..5-33
5-8 Example SIOCFG Configuration Register ..5-33
5-9 Pin Configuration Register Design Woksheet ..5-34
5-10 DMACFG Register Design Worksheet ...5-35
5-11 TMRCFG Register Design Worksheet ...5-36
5-12 INTCFG Register Design Worksheet ...5-37
5-13 SIOCFG Register Design Worksheet ...5-37
6-1 Bus Interface Unit Signals ..6-3
6-2 Bus Status Definitions ..6-5
6-3 Sequence of Nonaligned Bus Transfers...6-10
7-1 CR0 Bits Cleared Upon Entering SMM ..7-3
7-2 SMM Processor State Initialization Values...7-4
7-3 Relative Priority of Exceptions and Interrupts...7-7
8-1 Clock and Power Management Registers ..8-6
8-2 Clock and Power Management Signals..8-6
9-1 82C59A Master and Slave Interrupt Sources...9-5
9-2 ICU Registers ...9-16
10-1 TCU Signals ...10-3
10-2 TCU Associated Registers ...10-4
10-3 Operations Caused by GATEn...10-6
10-4 GATEn Connection Options ...10-20
10-5 Minimum and Maximum Initial Counts..10-26
10-6 Results of Multiple Read-back Commands Without Reads......................................10-33
11-1 SIO Signals ..11-3
11-2 Maximum and Minimum Output Bit Rates..11-5
11-3 Divisor Values for Common Bit Rates ..11-5
11-4 Status Signal Priorities and Sources ..11-13
11-5 SIO Registers ...11-15
11-6 Access to Multiplexed Registers...11-16
12-1 DMA Signals...12-4
12-2 Operations Performed During Transfer ..12-6
12-3 DMA Registers ...12-28
12-4 DMA Software Commands...12-50
13-1 SSIO Signals ..13-4
xxii

CONTENTS

TABLES
Table Page
13-2 Maximum and Minimum Baud-rate Output Frequencies..13-6
13-3 SSIO Registers...13-16
14-1 CSU Signals ...14-13
14-2 CSU Registers..14-14
15-1 RCU Signals ...15-4
15-2 RCU Registers ...15-6
16-1 Pin Multiplexing ..16-5
16-2 I/O Port Registers...16-6
16-3 Control Register Values for I/O Port Pin Configurations...16-7
17-1 WDT Signals ..17-3
17-2 WDT Registers ...17-7
18-1 Test Access Port Dedicated Pins ...18-3
18-2 TAP Controller State Descriptions..18-4
18-3 Example TAP Controller State Selections..18-5
18-4 Test-logic Unit Instructions ...18-7
18-5 Boundary-scan Register Bit Assignments ..18-9
A-1 Signal Description Abbreviations... A-1
A-2 Description of Signals Available at the Device Pins .. A-2
A-3 Pin State Abbreviations ... A-8
A-4 Pin States After Reset and During Idle, Powerdown, and Hold................................... A-9
D-1 Peripheral Register Addresses..D-1
E-1 Instruction Set Summary ... E-2
E-2 Fields Within Instructions... E-23
E-3 Encoding of Operand Length (w) Field.. E-24
E-4 Encoding of reg Field When w Field is not Present in Instruction E-24
E-5 Encoding of reg Field When w Field is Present in Instruction E-25
E-6 Encoding of the Segment Register (sreg) Field... E-25
E-7 Encoding of 16-bit Address Mode with “mod r/m” Byte ... E-27
E-8 Encoding of 32-bit Address Mode with “mod r/m” Byte (No s-i-b Byte Present)........ E-28
E-9 Encoding of 32-bit Address Mode (“mod r/m” Byte and s-i-b Byte Present).............. E-29
E-10 Encoding of Operation Direction (d) Field ... E-30
E-11 Encoding of Sign-Extend (s) Field ... E-30
E-12 Encoding of Conditional Test (tttn) Field ... E-30
E-13 When Interpreted as Control Register Field .. E-31
E-14 When Interpreted as Debug Register Field ... E-31
E-15 When Interpreted as Test Register Field... E-31
xxiii

1
GUIDE TO THIS
MANUAL

rdware
archi-

n sum-
pter de-

 ap-

86

is-

li-

 and

e

,

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the Intel386™ EX Embedded Processor. It is intended for use by ha
designers familiar with the principles of microprocessors and with the Intel386 processor
tecture.

This chapter is organized as follows:

• Manual Contents (see below)

• Notational Conventions (page 1-3)

• Special Terminology (page 1-4)

• Related Documents (page 1-5)

• Electronic Support Systems (page 1-6)

• Technical Support (page 1-7)

• Product Literature (page 1-8)

1.1 MANUAL CONTENTS

This manual contains 18 chapters and 5 appendixes, a glossary, and an index. This sectio
marizes the contents of the remaining chapters and appendixes. The remainder of this cha
scribes notational conventions and special terminology used throughout the manual and provides
references to related documentation.

Chapter 2 — Architectural Overview — describes the device features and some potential
plications.

Chapter 3 — Core Overview — describes the differences between this device and the Intel3™

SX processor core.

Chapter 4 — System Register Organization — describes the organization of the system reg
ters, the I/O address space, address decoding, and addressing modes.

Chapter 5 — Device Configuration — explains how to configure the device for various app
cations.

Chapter 6 — Bus Interface Unit — describes the bus interface logic, bus states, bus cycles,
instruction pipelining.

Chapter 7 — System Management Mode — describes Intel’s System Management Mod
(SMM).

Chapter 8 — Clock and Power Management Unit — describes the clock generation circuitry
power management modes, and system reset logic.
1-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

nd

unt

-

plains

e

ari-

eri-
evices.

ow
heral.

ft-

ins

ates

 from

x-

s.
Chapter 9 — Interrupt Control Unit — describes the interrupt sources and priority options a
explains how to program the interrupt control unit.

Chapter 10 — Timer/Counter Unit — describes the timer/counters and their available co
formats and operating modes.

Chapter 11 — Asynchronous Serial I/O (SIO) Unit — explains how to use the universal asyn
chronous receiver/transmitters (UARTs) to transmit and receive serial data.

Chapter 12 — DMA Controller — describes how the enhanced direct memory access controller
allows internal and external devices to transfer data directly to and from the system and ex
how bus control is arbitrated.

Chapter 13 — Synchronous Serial I/O (SSIO) Unit — explains how to transmit and receiv
data synchronously.

Chapter 14 — Chip-select Unit — explains how to use the chip-select channels to access v
ous external memory and I/O devices.

Chapter 15 — Refresh Control Unit — describes how the refresh control unit generates p
odic refresh requests and refresh addresses to simplify the interface to dynamic memory d

Chapter 16 — Input/Output Ports — describes the general-purpose I/O ports and explains h
to configure each pin to serve either as an I/O pin or as a pin controlled by an internal perip

Chapter 17 — Watchdog Timer Unit — explains how to use the watchdog timer unit as a so
ware watchdog, bus monitor, or general-purpose timer.

Chapter 18 — JTAG Test-logic Unit — describes the independent test-logic unit and expla
how to test the device logic and board-level connections.

Appendix A — Signal Descriptions — describes the device pins and signals and lists pin st
after a system reset and during powerdown, idle, and hold.

Appendix B — Compatibility with PC/AT* Architecture — describes the ways in which the
device is compatible with the standard PC/AT architecture and the ways in which it departs
the standard.

Appendix C — Example Code Header Files — contains the header files called by the code e
amples that are included in several chapters of this manual.

Appendix D — System Register Quick Reference — contains an alphabetical list of register

Appendix E — Instruction Set Summary — lists all instructions and their clock counts.

Glossary — defines terms with special meaning used throughout this manual.

Index — lists key topics with page number references.
1-2

GUIDE TO THIS MANUAL

ignal

t

 of

er

igits
in

t is,
ases,
1.2 NOTATIONAL CONVENTIONS

The following notations are used throughout this manual.

The pound symbol (#) appended to a signal name indicates that the s
is active low.

Variables Variables are shown in italics. Variables must be replaced with correc
values.

New Terms New terms are shown in italics. See the Glossary for a brief definition
commonly used terms.

Instructions Instruction mnemonics are shown in upper case. When you are
programming, instructions are not case sensitive. You may use eith
upper or lower case.

Numbers Hexadecimal numbers are represented by a string of hexadecimal d
followed by the character H. A zero prefix is added to numbers that beg
with A through F. (For example, FF is shown as 0FFH.) Decimal and
binary numbers are represented by their customary notations. (Tha
255 is a decimal number and 1111 1111 is a binary number. In some c
the letter B is added for clarity.)

Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

Gbyte gigabytes

Kbyte kilobytes

KΩ kilo-ohms

mA milliamps, milliamperes

Mbyte megabytes

MHz megahertz

ms milliseconds

mW milliwatts

ns nanoseconds

pF picofarads

W watts

V volts

µA microamps, microamperes

µF microfarads

µs microseconds

µW microwatts
1-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 two

 bit

ins a
 For
FG.

e a
ame
ame
re
S

 and

 a

rt

.

Register Bits When the text refers to more that one bit, the range may appear as
numbers separated by a colon (example: 7:0 or 15:0). The first bit shown
(7 or 15 in the example) is the most-significant bit and the second
shown (0) is the least-significant bit.

Register Names Register names are shown in upper case. If a register name conta
lowercase, italic character, it represents more than one register.
example, PnCFG represents three registers: P1CFG, P2CFG, and P3C

Signal Names Signal names are shown in upper case. When several signals shar
common name, an individual signal is represented by the signal n
followed by a number, while the group is represented by the signal n
followed by a variable (n). For example, the lower chip-select signals a
named CS0#, CS1#, CS2#, and so on; they are collectively called Cn#.
A pound symbol (#) appended to a signal name identifies an active-low
signal. Port pins are represented by the port abbreviation, a period,
the pin number (e.g., P1.0, P1.1).

1.3 SPECIAL TERMINOLOGY

The following terms have special meanings in this manual.

Assert and Deassert The terms assert and deassert refer to the act of making a signal
active and inactive, respectively. The active polarity (high/low) is
defined by the signal name. Active-low signals are designated by
pound symbol (#) suffix; active-high signals have no suffix. To assert
RD# is to drive it low; to assert HOLD is to drive it high; to deasse
RD# is to drive it high; to deassert HOLD is to drive it low.

DOS I/O Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into DOS (or PC/AT) addresses 0H–
03FFH. In this manual, the terms DOS address and PC/AT address
are synonymous.

Expanded I/O Address All peripheral registers reside at I/O addresses 0F000H–0FFFFH
PC/AT-compatible integrated peripherals can also be mapped into
DOS (or PC/AT) address space (0H–03FFH).

PC/AT Address Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses 0H–
03FFH. In this manual, the terms DOS address and PC/AT address
are synonymous.

Processor and CPU Processor refers to the Intel386 EX processor including the
integrated peripherals. CPU refers to the processor core, which is
based on the static Intel386 SX processor.
1-4

GUIDE TO THIS MANUAL

n

 that

rt and
Reserved Bits Reserved bits are not used in this device, but they may be used i
future implementations. Follow these guidelines to ensure
compatibility with future devices:

• Avoid any software dependence on the state of undefined
register bits.

• Use a read-modify-write sequence to load registers.

• Mask undefined bits when testing the values of defined bits.

• Do not depend on the state of undefined bits when storing
undefined bits to memory or to another register.

• Do not depend on the ability to retain information written to
undefined bits.

Set and Clear The terms set and clear refer to the value of a bit or the act of giving
it a value. If a bit is set, its value is “1”; setting a bit gives it a “1”
value. If a bit is clear, its value is “0”; clearing a bit gives it a “0”
value.

1.4 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems
incorporate the Intel386 EX processor. To order documents, please call Intel Literature Fulfill-
ment (1-800-548-4725 in the U.S. and Canada; +44(0) 1793-431155 in Europe).

You may also want to refer to Standard 1149.1—1990, IEEE Standard Test Access Po
Boundary-Scan Architecture and its supplement, Standard 1149.1a—1993.

Document Name Order Number

Intel386™ EX Embedded Microprocessor datasheet 272420

Intel386™ SX Microprocessor datasheet 240187

Intel386™ SX Microprocessor Programmer’s Reference Manual 240331

Intel386™ SX Microprocessor Hardware Reference Manual 240332

Development Tools 272326

Buyer’s Guide for the Intel386™ Embedded Processor Family 272520

 Intel386™ EX Microprocessor Pin Multiplexing Map 272587

Packaging 240800
1-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 also
 Wide
mation

ay, 7

h
t a doc-

se Fax-
rder
e, sta-
the past

 docu-
ument
1.5 ELECTRONIC SUPPORT SYSTEMS

Intel’s FaxBack* service and application BBS provide up-to-date technical information. Intel
maintains several forums on CompuServe and offers a variety of information on the World
Web. These systems are available 24 hours a day, 7 days a week, providing technical infor
whenever you need it.

1.5.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. You can
get product announcements, change notifications, product literature, device characteristics, de-
sign recommendations, and quality and reliability information from FaxBack 24 hours a d
days a week.

1-800-525-3019 (US or Canada)

+44-1793-432509 (Europe)

+65-256-5350 (Singapore)

+852-2-844-4448 (Hong Kong)

+886-2-514-0815 (Taiwan)

+822-767-2594 (Korea)

+61-2-975-3922 (Australia)

1-503-264-6835 (Worldwide)

Think of the FaxBack service as a library of technical documents that you can access wityour
phone. Just dial the telephone number and respond to the system prompts. After you selec
ument, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time you u
Back, you should order the appropriate subject catalogs to get a complete list of document o
numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list the titl
tus, and order number of each document that has been added, revised, or deleted during
eight weeks. To receive the update for a subject catalog, enter the subject catalog number fol-
lowed by a zero. For example, for the complete microcontroller and flash catalog, request
ment number 2; for the daily update to the microcontroller and flash catalog, request doc
number 20.

The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® software catalog and BBS file listings
1-6

GUIDE TO THIS MANUAL

 BBS
irm-
ata.

At that

s, and
service

lect

estions
r voice
ide the
7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog

1.5.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application
has the latest ApBUILDER software, hypertext manuals and datasheets, software drivers, f
ware upgrades, code examples, application notes and utilities, and quality and reliability d

The system supports 1200- through 19200-baud modems. Typical modem settings are 14400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, use a terminal program to dial the telephone number given below for your
area; once you are connected, respond to the system prompts. During your first session, enter your
name and location. The system operator will set up your access account within 24 hours.
time, you can access the files on the BBS.

503-264-7999 U.S., Canada, Japan, Asia Pacific (up to 19.2 Kbaud)

44(0)1793-432955 Europe

NOTE
If you have problems accessing the BBS, use these settings for your modem:
2400, N, 8, 1. Refer to your terminal software documentation for instructions
on changing these settings.

1.5.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoverie
debate issues. Type “go intel” for access. For information about CompuServe access and
fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1.5.4 World Wide Web

We offer a variety of information through the World Wide Web (http://www.intel.com/). Se
“Embedded Design Products” from the Intel home page.

1.6 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your qu
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include you
telephone number and indicate whether you prefer a response by phone or by fax). Outs
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada
1-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
1.7 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.
1-800-548-4725 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)
1-8

2
ARCHITECTURAL
OVERVIEW

essor.
mbed-
s. The

 opti-
ptions

esktop
 em-

latform.

ggers,
s,

 unit
ion of

s
 closely

 core

ma-
 set.
CHAPTER 2
ARCHITECTURAL OVERVIEW

The Intel386™ EX embedded processor (Figure 2-1) is based on the static Intel386 SX proc
This highly integrated device retains those personal computer functions that are useful in e
ded applications and integrates peripherals that are typically needed in embedded system
Intel386 EX processor provides a PC-compatible development platform in a device that is
mized for embedded applications. Its integrated peripherals and power management o
make the Intel386 EX processor ideal for portable systems.

The integrated peripherals of the Intel386 EX processor are compatible with the standard d
PC. This allows existing PC software, including most of the industry’s leading desktop and
bedded operating systems, to be easily implemented on an Intel386 EX processor-based p
Using PC-compatible peripherals also allows for the development and debugging of application
software on a standard PC platform.

Typical applications using the Intel386 EX processor include automated manufacturing equip-
ment, cellular telephones, telecommunications equipment, fax machines, hand-held data lo
high-precision industrial flow controllers, interactive television, medical equipment, modem
and smart copiers.

This chapter is organized as follows:

• Intel386 EX Embedded Processor Core (see below)

• Integrated Peripherals (page 2-3)

2.1 Intel386 EX EMBEDDED PROCESSOR CORE

The Intel386 EX processor contains a modular, fully static Intel386 CX central processing
(CPU). The Intel386 CX processor is an enhanced Intel386 SX processor with the addit
System Management Mode (SMM) and two additional address lines. The Intel386 EX processor
has a 16-bit data bus and a 26-bit address bus, supporting up to 64 Mbytes of memory addres
space and 64 Kbytes of I/O address space. The performance of the Intel386 EX processor
reflects the Intel386 SX CPU performance at the same speeds.

Chapter 3, “CORE OVERVIEW” describes differences between the Intel386 EX processor
and the Intel386 SX processor. Please refer to the Intel386™ SX Microprocessor Programmer’s
Reference Manual (order number 240331) for applications and system programming infor
tion; descriptions of protected, real, and virtual-8086 modes; and details on the instruction
2-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 2-1. Intel386™ EX Embedded Pr ocessor Block D iagram

A2849-02

JTAG Unit

Clock and Power

Management Unit

DRAM Refresh

Control Unit

Watchdog Timer Unit

Bus Monitor

Asynchronous Serial I/O

2 channels

(16450 compatible)

Synchronous Serial I/O

1 channel, full duplex

Timer/counter Unit

3 channels

(82C54 compatible)

I/O Ports

D
at

a

A
dd

re
ss

Bus Interface

Unit

Intel386™ CX Core

Core Enhancements
- A20 Gate

- CPU Reset

- SMM

Chip-select

Unit

Interrupt Control Unit

DMA Controller

2 channels

(8237A compatible)

and Bus Arbiter Unit

INTR

Address

Data
2-2

ARCHITECTURAL OVERVIEW

herals
2.2 INTEGRATED PERIPHERALS

The Intel386 EX processor integrates both PC-compatible peripherals (Table 2-1) and perip
that are specific to embedded applications (Table 2-2).

Table 2-1. PC-compatible Peripherals

Name Description

Interrupt
Control Unit
(ICU)

Consists of two 82C59A programmable interrupt controllers (PICs) configured as master
and slave. You may cascade up to six external 82C59A PICs to expand the external
interrupt lines to 52. Refer to Chapter 9, “INTERRUPT CONTROL UNIT.”

Timer/counter
Unit (TCU)

Provides three independent 16-bit down counters. The programmable TCU is
functionally equivalent to three 82C54 counter/timers with enhancements to allow
remapping of peripheral addresses and interrupt assignments. Refer to Chapter 10,
“TIMER/COUNTER UNIT.”

Asynchronous
Serial I/O
(SIO) Unit

Features two independent universal asynchronous receiver and transmitter (UART)
units which are functionally equivalent to National Semiconductor’s NS16450. Each
channel contains a baud-rate generator, transmitter, receiver, and modem control unit.
Receive and transmit interrupt signals can be connected to the ICU controller and DMA
controller. Refer to Chapter 11, “ASYNCHRONOUS SERIAL I/O UNIT.”

Direct Memory
Access
(DMA)
Controller

Transfers internal or external data between any combination of memory and I/O devices
for the entire 26-bit address bus. The two independent channels operate in 16- or 8-bit
bus mode. Buffer chaining allows data to be transferred into noncontiguous memory
buffers. The DMA channels can be tied to any of the serial devices to support high data
rates, minimizing processor interruptions. Provides a special two-cycle mode that uses
only one channel for memory-to-memory transfers. Bus arbitration logic resolves priority
conflicts between the DMA channels, the refresh control unit, and an external bus
master. SIO and SSIO interrupts can be connected to DMA for high-speed transfers.
Backward compatible with 8237A. Refer to Chapter 12, “DMA CONTROLLER.”
2-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 2-2. Embedded Application-specific Peripherals

Name Description

System
Management
Mode (SMM)

The Intel386 EX processor provides a mechanism for system management with a
combination of hardware and CPU microcode enhancements. An externally generated
system management interrupt (SMI#) allows the execution of system-wide routines that are
independent and transparent to the operating system. The system management mode
(SMM) architectural extensions to the Intel386 CPU are described in Chapter 7, “SYSTEM
MANAGEMENT MODE.”

Clock and
Power
Management
Unit

An external clock source provides the input frequency. The clock and power management
unit generates separate internal clock signals for core and peripherals (half the input
frequency), divides the internal clock by two for baud clock inputs to the SIO and SSIO, and
divides the internal clock by a programmable divisor to provide a prescaled clock signal
(various frequencies) for the TCU and SSIO.

Power management provides idle and powerdown modes (idle stops the CPU clock but
leaves the peripheral clocks running; powerdown stops both CPU and peripheral clocks).
An external clockout signal is also provided. Refer to Chapter 8, “CLOCK AND POWER
MANAGEMENT UNIT.”

Synchronous
Serial I/O
(SSIO) unit

Provides simultaneous, bidirectional high speed serial I/O. Consists of a transmit channel, a
receive channel, and a baud rate generator. Built-in protocols are not included, because
these can be emulated using the CPU. SSIO interrupts can be connected to the DMA unit
for high-speed transfers. Refer to Chapter 13, “SYNCHRONOUS SERIAL I/O UNIT.”

Chip-select
Unit (CSU)

Programmable, eight-channel CSU allows direct access to up to eight devices. Each
channel can operate in 16- or 8-bit bus mode and can generate up to 31 wait states. The
CSU can interface with the fastest memory or the slowest peripheral device. The minimum
address block for memory address-configured channels is 2 Kbytes. The size of these
address blocks can be increased by powers of 2 Kbytes for memory addresses and by
multiples of 2 bytes for I/O addresses. Supports SMM memory addressing and provides
ready generation and programmable wait states. Refer to Chapter 14, “CHIP-SELECT
UNIT.”

Refresh
Control Unit
(RCU)

Provides a means to generate periodic refresh requests and refresh addresses. Consists of
a programmable interval timer unit, a control unit, and an address generation unit. Bus
arbitration logic ensures that refresh requests have the highest priority. The refresh control
unit (RCU) is provided for applications that use DRAMs with a simple EPLD-based DRAM
controller or PSRAMs that do not need a separate controller. Refer to Chapter 15,
“REFRESH CONTROL UNIT.”

Parallel I/O
Ports

Three I/O ports facilitate data transfer between the processor and surrounding system
circuitry. The Intel386 EX processor is unique in that several functions are multiplexed with
each other or with I/O ports. This ensures maximum use of available pins and maintains a
small package. Each multiplexed pin is individually programmable for peripheral or I/O
function. Refer to Chapter 16, “INPUT/OUTPUT PORTS.”

Watchdog
Timer (WDT)
Unit

When enabled, the WDT functions as a general purpose 32-bit timer, a software timer, or a
bus monitor. Refer to Chapter 17, “WATCHDOG TIMER UNIT.”

JTAG Test-
logic Unit

The test-logic unit simplifies board-level testing. Consists of a test access port and a
boundary-scan register. Fully compliant with Standard 1149.1–1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture and its supplement, Standard 1149.1a–1993.
Refer to Chapter 18, “JTAG TEST-LOGIC UNIT.”
2-4

3
CORE OVERVIEW

hance-
nd the

nt mode

mbina-
anage-
nd

 exten-

P

ode

386

. This
CHAPTER 3
CORE OVERVIEW

The Intel386™ EX processor core is based upon the Intel386 CX processor, which is an enhanced
version of the Intel386 SX processor. This chapter describes the Intel386 CX processor en
ments over the Intel386 SX processor, internal architecture of the Intel386 CX processor, a
core interface on the Intel386 EX processor.

This chapter is organized as follows:

• Intel386 CX Processor Enhancements (see below)

• Intel386 CX Processor Internal Architecture (page 3-2)

• Core Intel386 EX Processor Interface (page 3-6)

3.1 Intel386 CX PROCESSOR ENHANCEMENTS

The Intel386 CX processor, based on the Intel386 SX processor, adds system manageme
and two additional address lines for a total of 26 address lines.

3.1.1 System Management Mode

The Intel386 CX processor core provides a mechanism for system management with a co
tion of hardware and CPU microcode enhancements. An externally generated System M
ment Interrupt (SMI#) allows the execution of system wide routines which are independent a
transparent to the operating system. The System Management Mode (SMM) architecture
sions to the Intel386 SX processor consist of the following elements:

• Interrupt input pin (SMI#) to invoke SMM

• One output pin to identify execution state (SMIACT#)

• One new instruction (RSM, executable only from SMM) to exit SMM

• SMM also added one to four execution clocks to the following instructions: IN, INS, RE
INS, OUT, REP OUT, POPA, HALT, MOV CR0, and SRC. INTR and NMI also need an
additional two clocks for interrupt latency. These cycles were added due to the microc
modification for the SMM implementation. Refer to Appendix E for the exact execution
times. Otherwise, 100% of the Intel386 SX processor instructions execute on the Intel
CX processor core.

Please refer to Chapter 7 for more details on System Management Mode.

3.1.2 Additional Address Lines

Two additional address lines were added to the Intel386 CX processor core for a total of 26
expands the physical address space from 16 Mbytes to 64 Mbytes.
3-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ate in
eral in-

everal
sing of
3.2 Intel386 CX PROCESSOR INTERNAL ARCHITECTURE

The internal architecture of the Intel386 CX processor consists of functional units that oper
parallel. Fetching, decoding, execution, memory management and bus accesses for sev
structions are performed simultaneously. This parallel operation is called pipelined instruction
processing. With pipelining, each instruction is performed in stages, and the processing of s
instructions at different stages may overlap, as shown in Figure 3-1. The pipelined proces
the Intel386 CX processor results in higher performance and enhanced throughput rate over non-
pipelined processors.

Figure 3-1. Instruction Pipelining

Elapsed Time

Typical

Processor

386™ SX CPU/376™ CPU

Fetch 1 Decode 1 Execute 1 Fetch 2 Decode 2 Execute 2

Bus Unit Fetch 1 Fetch 4Fetch 2 Fetch 3 Store

Result 1 Fetch 5 Fetch 6

Decode 1 Decode 2 Decode 3 Decode 4 Decode 5
Decode

Unit

Execute 2 Execute 3 Execute 4
Execution

Unit Execute 1

Addr &

MMU

Addr &

MMU

A2850-01

MMU

Intel386™ SX CPU/Intel376™ CPU
3-2

CORE OVERVIEW
Figure 3-2 shows the internal architecture of the Intel386 CX processor.

Figure 3-2. The Intel386™ CX Processor Internal Block Diagram

A2851-02

3-Input

Adder

Descriptor

Register

Limit and

Attribute

PLA

Instruction

Decoder

3 Decoded

Instruction

Queue

Prefetcher

Limit

Checker

16 Byte

Code

Queue

Code

Stream

Barrel

Shifter,

Adder

Multiply/

Divide

Register

File

ALU

Decode

and

Sequencing

Control

ROM

ALU

Control

Protection

Test

Unit

32Dedicated ALU Bus

32

32

32

Control Instruction

Predecode

Instruction

Prefetch

Li
ne

ar
 A

dd
re

ss
 B

us

D
is

pl
ac

em
en

t
B

us

Adder

Page

Cache

Control and

Attribute

PLA

MUX/

Transceivers

Pipeline/

Bus Size

Control

Address

Driver

Request

Prioritizer

Internal Control Bus

32

32

Paging Unit
Core Plus

UnitSegmentation Unit

Effective Address Bus

Effective Address Bus

32

32

P
hy

si
ca

l A
dd

re
ss

 B
us

32

HOLD, INTR, NMI,

ERROR#,BUSY#,

RESET, HLDA,

SMI#, SMIACT#,

PEREQ

BE0#, BE1#,

A25:1

M/IO#, D/C#,

W/R#, LOCK#,

ADS#, NA#,

READY#

D15:0C
od

e
fe

tc
h

/ P
ag

e
T

ab
le

 F
et

ch

C
on

tr
ol

Status

Flags
3-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ccepts
sfers

cesses
ontrol
ace to

n the
h Unit
etched
ecode

t state
 no data

 trans-
ruction
ets are

 queue.
e decod-
The six functional units of the Intel386 CX processor are:

• Core Bus Unit

• Instruction Prefetch Unit

• Instruction Decode Unit

• Execution Unit

• Segmentation Unit

• Paging Unit

3.2.1 Core Bus Unit

The Core Bus Unit provides the interface between the processor and its environment. It a
internal requests for instruction fetches (from the Instruction Prefetch Unit) and data tran
(from the Execution Unit), and prioritizes the requests. At the same time, it generates or pro
the signals to perform the current bus cycle. These signals include the address, data, and c
outputs for accessing external memory and I/O. The Core Bus Unit also controls the interf
external bus masters and coprocessors.

3.2.2 Instruction Prefetch Unit

The Instruction Prefetch Unit performs the program look ahead function of the CPU. Whe
Core Bus Unit is not performing bus cycles to execute an instruction, the Instruction Prefetc
uses the Core Bus Unit to fetch sequentially along the instruction byte stream. These pref
instructions are stored in the Instruction Queue to await processing by the Instruction D
Unit.

Instruction prefetches are given a lower priority than data transfers; assuming zero wai
memory access, prefetch activity never delays execution. On the other hand, when there is
transfer requested, prefetching uses bus cycles that would otherwise be idle.

3.2.3 Instruction Decode Unit

The Instruction Decode Unit takes instruction stream bytes from the Prefetch Queue and
lates them into microcode. The decoded instructions are then stored in a three-deep Inst
Queue (FIFO) to await processing by the Execution Unit. Immediate data and opcode offs
also taken from the Prefetch Queue. The decode unit works in parallel with the other units and
begins decoding when there is a free slot in the FIFO and there are bytes in the prefetch
Opcodes can be decoded at a rate of one byte per clock. Immediate data and offsets can b
ed in one clock regardless of their length.
3-4

CORE OVERVIEW

mmu-

ly,

rlaps

 the Ex-
escrip-
n Unit
egmen-
ess is

 linear
cal ad-
ress, and
tory and
aging
es.
3.2.4 Execution Unit

The Execution Unit executes the instructions from the Instruction Queue and therefore co
nicates with all other units required to complete the instruction. The functions of its three subunits
are given below.

• The Control Unit contains microcode and special parallel hardware that speeds multip
divide, and effective address calculation.

• The Data Unit contains the (Arithmetic Logic Unit) ALU, a file of eight 32-bit general-
purpose registers, and a 64-bit barrel shifter (which performs multiple bit shifts in one
clock). The Data Unit performs data operations requested by the Control Unit.

• The Protection Test Unit checks for segmentation violations under the control of the
microcode.

To speed the execution of memory reference instructions, the Execution Unit partially ove
the execution of any memory reference instruction with the previous instruction.

3.2.5 Segmentation Unit

The Segmentation Unit translates logical addresses into linear addresses at the request of
ecution Unit. The on-chip Segment Descriptor Cache stores the currently used segment d
tors to speed this translation. At the same time it performs the translation, the Segmentatio
checks for bus-cycle segmentation violations. (These checks are separate from the static s
tation violation checks performed by the Protection Test Unit.) The translated linear addr
truncated to a 24-bit physical address.

3.2.6 Paging Unit

When the Intel386 CX processor paging mechanism is enabled, the Paging Unit translates
addresses generated by the Segmentation Unit or the Instruction Prefetch Unit into physi
dresses. (When paging is not enabled, the physical address is the same as the linear add
no translation is necessary.) The Page Descriptor Cache stores recently used Page Direc
Page Table entries in its Translation Lookaside Buffer (TLB) to speed this translation. The P
Unit forwards physical addresses to the Core Bus Unit to perform memory and I/O access
3-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

hr
ternal
ore and
te

re used
igh for
8 for
3.3 CORE Intel386 EX PROCESSOR INTERFACE

The Intel386 EX processor peripherals are connected to the Intel386 CX processor core tough
an internal Bus Interface Unit (BIU). The BIU controls internal peripheral accesses and ex
memory and I/O accesses. Because it has the BIU between the Intel386 CX processor c
the external bus, the Intel386 EX processor bus timings are not identical to those of the Inl386
CX processor or Intel386 SX processor.

The Intel386 CX processor numeric coprocessor interface is maintained and brought out to the
Intel386 EX processor pins. The same I/O addresses used on the Intel386 SX processor a
on the Intel386 EX processor, even though there are more address lines. The A23 line is h
coprocessor cycles. Refer to “Interface To Intel387™ SX Math Coprocessor” on page 6-3
more details.
3-6

4
SYSTEM
REGISTER
ORGANIZATION

X
apters
CHAPTER 4
SYSTEM REGISTER ORGANIZATION

This chapter provides an overview of the system registers incorporated in the Intel386™ Epro-
cessor, focusing on register organization from an address architecture viewpoint. The ch
that cover the individual peripherals describe the registers in detail.

This chapter is organized as follows:

• Overview (see below)

• I/O Address Space for PC/AT Systems (page 4-2)

• Expanded I/O Address Space (page 4-3)

• Organization of Peripheral Registers (page 4-5)

• I/O Address Decoding Techniques (page 4-6)

• Addressing Modes (page 4-9)

• Peripheral Register Addresses (page 4-15)

4.1 OVERVIEW

The Intel386 EX processor has register resources in the following categories:

• Intel386 processor core architecture registers:

— General purpose registers

— Segment registers

— Instruction pointer and flags

— Control registers

— System address registers (protected mode)

— Debug registers

— Test registers

• Intel386 EX processor peripheral registers:

— Configuration space control registers

— Interrupt control unit registers

— Timer/counter unit registers

— DMA unit registers (8237A-compatible and enhanced function registers)

— Asynchronous serial I/O (SIO) registers

— Clock generation selector registers
4-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ith the
ipheral
sources

apped
 for

ed I/O

S op-
 space
board)
resses
te of
wer 10

re-
— Power management control registers

— Chip-select unit control registers

— Refresh control unit registers

— Watchdog timer control registers

— Synchronous serial I/O control registers

— Parallel I/O port control registers

4.1.1 Intel386 Processor Core Architecture Registers

These registers are a superset of the 8086 and 80286 processor registers. All 16-bit 8086 and
80286 registers are contained within the 32-bit Intel386 processor core registers. A detailed de-
scription of the Intel386 processor architecture base registers can be found in the Intel386™ SX
Microprocessor Programmer’s Reference Manual (order number 240331).

4.1.2 Intel386 EX Processor Periphe ral Registers

The Intel386 EX processor contains some peripherals that are common and compatible w
PC/AT* system architecture and others that are useful for embedded applications. The per
registers control access to these peripherals and enable you to configure on-chip system re
such as timer/counters, power management, chip selects, and watchdog timer.

All peripheral registers reside physically in the expanded I/O address space (addresses 0F000H–
0FFFFH). Peripherals that are compatible with PC/AT system architecture can also be m
into DOS I/O address space (addresses 0H–03FFH, 10-bit decode). The following rules apply
accessing peripheral registers after a system reset:

• Registers within the DOS I/O address space are accessible.

• Registers within the expanded I/O address space are accessible only after the expand
address space is enabled.

4.2 I/O ADDRESS SPACE FOR PC/AT SYSTEMS

The Intel386 EX processor’s I/O address space is 64 Kbytes. On PC/AT platforms, the DO
erating system and applications assume that only 1 Kbyte of the total 64-Kbyte I/O address
is used. The first 256 bytes (addresses 00000H–00FFH) are reserved for platform (mother
I/O resources such as the interrupt and DMA controllers, and the remaining 768 bytes (add
0100H–03FFH) are available for “general” I/O peripheral card resources. Since only 1 Kby
the address space is supported, add-on I/O peripheral cards typically decode only the lo
address lines. Because the upper address lines are not decoded, the 256 platform address locations
and the 768 bus address locations are repeated 64 times (on 1-Kbyte boundaries), covering the
entire 64-Kbyte address space. (See Figure 4-1.)

Generally, add-on I/O peripheral cards do not use the I/O addresses reserved for the platform
sources. Software running on the platform can use any of the 64 repetitions of the 256 address
locations reserved for accessing platform resources.
4-2

SYSTEM REGISTER ORGANIZATION

 Stan-
 bus.
 ISA

ut the
titions
h slot

er slot.
Figure 4-1. PC/AT I/O Address Space (10-bit Decode)

4.3 EXPANDED I/O ADDRESS SPACE

The Intel386 EX processor’s I/O address scheme is similar to that of the Extended Industry
dard Architecture (EISA) bus and the Enhanced - Industry Standard Architecture (E-ISA)
Both standards maintain backward software compatibility with the ISA architecture. The
Platform I/O (0-100H) is accessed with a 16-bit address decode and is located in the first 256 I/O
locations. The General Slot I/O that is typically used by add-in boards is repeated througho
64 Kbyte I/O address range due to their 10-bit only decode. This allows 63 of the 64 repe
of the first 256 address locations of every 1 Kbyte block to be allocated to specific slots. Eac
is 4 Kbyte in size, allowing for a total of 16 slots. The partitioning is such that four groups of 256
address locations are assigned to each slot, for a total of 1024 specific address locations p

General Slot I/O

Platform I/O (Reserved)

FC00H (63K)

FD00H

FFFFH (64K)

General Slot I/O

Platform I/O (Reserved)

0800H (2K)

0900H

0C00H (3K)

General Slot I/O

Platform I/O (Reserved)
0500H

General Slot I/O

Platform I/O (Reserved)
0100H (256)

0000H (0)

0400H (1K)

A2498-01
4-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 can po-
(See Figure 4-2.) Thus, each slot has 1 Kbyte addresses (in four 256-byte segments) that
tentially contain extended peripheral registers.

Figure 4-2. Expanded I/O Address Space (16-bit Decode)

General Slot I/O

Slot 15

FFFFH (64K)

FC00H (63K)
General Slot I/O

Slot 15
F800H (62K)

General Slot I/O

Slot 15
F400H (61K)

General Slot I/O

Slot 15
F000H (60K)

1FFFH (8K)
General Slot I/O

Slot 1
1C00H (7K)

General Slot I/O

Slot 1
1800H (6K)

General Slot I/O

Slot 1
1400H (5K)

General Slot I/O

Slot 1
1000H (4K)

General Slot I/O

Slot 0
0C00H (3K)

General Slot I/O

Slot 0
0800H (2K)

General Slot I/O

Slot 0
0400H (1K)

General Slot I/O

Slot 0

0000H (0K)

A2499-02

ISA Platform I/O
4-4

SYSTEM REGISTER ORGANIZATION

. Using
lly do

the I/O
slot 15
 slot
H, and
The Intel386 EX processor uses slot 15 for the registers needed for integrated peripherals
this slot avoids conflicts with other devices in an EISA system, since EISA systems typica
not use slot 15.

4.4 ORGANIZATION OF PERIPHERAL REGISTERS

The registers associated with the integrated peripherals are physically located in slot 15 of
space. There are sixteen 4 Kbyte address slots in I/O space. Slot 0 refers to 0H–0FFFH;
refers to 0F000H–0FFFFH. Table 4-1 shows the address map for the peripheral registers in
15. Note that the I/O addresses fall in address ranges 0F000H–0F0FFH, 0F400H–0F4FF
0F800H–0F8FFH; utilizing the unique sets of 256 I/O addresses in Slot 15.

Table 4-1. Peripheral Register I/O Address Map in Slot 15

Register Description I/O Address Range

DMA Controller 1 0F000H – 0F01FH

Master Interrupt Controller 0F020H – 0F03FH

Programmable Interval Timer 0F040H – 0F05FH

DMA Page Registers 0F080H – 0F09FH

Slave Interrupt Controller 0F0A0H – 0F0BFH

Math Coprocessor 0F0F0H – 0F0FFH

Chip Select Unit 0F400H – 0F47FH

Synchronous Serial I/O Unit 0F480H – 0F49FH

DRAM Refresh Control Unit 0F4A0H – 0F4BFH

Watchdog Timer Unit 0F4C0H – 0F4CFH

Asynchronous Serial I/O Channel 0 (COM1) 0F4F8H – 0F4FFH

Clock Generation and Power Management Unit 0F800H – 0F80FH

External/Internal Bus Interface Unit 0F810H – 0F81FH

Chip Configuration Registers 0F820H – 0F83FH

Parallel I/O Ports 0F860H – 0F87FH

Asynchronous Serial I/O Channel 1 (COM2) 0F8F8H – 0F8FFH
4-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

cated
patible
m and

re

er
s

cations
proces-
r config-
cations

ce can

ternal

apped
xpand-
 space

ping in-
4.5 I/O ADDRESS DECODING TECHNIQUES

One of the key features of the Intel386 EX processor is that it is configurable for compatibility
with the standard PC/AT architecture. In a PC/AT system, the platform I/O resources are lo
in the slot 0 I/O address space. For the Intel386 EX processor, this means that PC/AT-com
internal peripherals should be reflected in slot 0 of the I/O space for DOS operating syste
application software to access and manipulate them properly.

This discussion leads to the concepts of DOS I/O space and expanded I/O space.

DOS I/O Space DOS I/O space refers to the lower 1 Kbyte of I/O addresses, whe
only PC/AT-compatible peripherals can be mapped.

Expanded I/O Space Expanded I/O space refers to the top 4 Kbytes of I/O addresses,
where all peripheral registers are physically located. The remaind
of this section explains how special I/O address decoding scheme
manipulate register addresses within these two I/O spaces.

4.5.1 Address Configuration Register

I/O address locations 22H and 23H in DOS I/O space offer a special case. These address lo
are not used to access any peripheral registers in a PC/AT system. The Intel386 SL micro
sor and other integrated PC solutions use them to enable extra address space required fo
uration registers specific to these products. On the Intel386 EX processor, these address lo
are used to hide the peripheral registers in the expanded I/O space. The expanded I/O spa
be enabled (registers visible) or disabled (registers hidden).

The 16-bit register at I/O location 22H can also be used to control mapping of various in
peripherals in I/O address space. This register, REMAPCFG, is defined in Figure 4-3.

The remap bits of this register control whether the internal PC compatible peripherals are m
into the DOS I/O space. Setting the peripheral bit makes the peripheral accessible only in e
ed I/O space. Clearing the peripheral bit makes the peripheral accessible in both DOS I/O
and expanded I/O space. To access the REMAPCFG register, you must first enable the expanded
I/O address space as described in the next section. At reset, this register is cleared, map
ternal PC/AT-compatible peripherals into DOS I/O space.
4-6

SYSTEM REGISTER ORGANIZATION
Figure 4-3. Address Configuration Register (REMAPCFG)

Address Configuration Register
REMAPCFG

Expanded Addr:
PC/AT Address:
Reset State:

0022H
0022H
0000H

15 8

ESE — — — — — — —

7 0

— S1R S0R ISR IMR DR — TR

Bit
Number

Bit
Mnemonic Function

15 ESE 0 = Disables expanded I/O space
1 = Enables expanded I/O space

14–7 — Reserved.

6 S1R 0 = Makes serial channel 1 (COM2) accessible in both DOS I/O space
and expanded I/O space

1 = Remaps serial channel 1 (COM2) address into expanded I/O space

5 S0R 0 = Makes serial channel 0 (COM1) accessible in both DOS I/O space
and expanded I/O space

1 = Remaps serial channel 0 (COM1) address into expanded I/O space

4 ISR 0 = Makes the slave 82C59A interrupt controller accessible in both DOS
I/O space and expanded I/O space

1 = Remaps slave 82C59A interrupt controller address into expanded
I/O space

3 IMR 0 = Makes the master 82C59A interrupt controller accessible in both
DOS I/O space and expanded I/O space

1 = Remaps master 82C59A interrupt controller address into expanded
I/O space

2 DR 0 = Makes the DMA address accessible in both DOS I/O space and
expanded I/O space

1 = Remaps DMA address into expanded I/O space

1 — Reserved.

0 TR 0 = Makes the timer control unit accessible in both DOS I/O space and
expanded I/O space

1 = Remaps timer control unit address into expanded I/O space
4-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 to I/O
eri
d out
ternal
access-

 three
ce ESE

SE bit

en the
e
 the ex-
. This
4.5.2 Enabling and Disabling the Expanded I/O Space

The Intel386 EX processor’s expanded I/O space is enabled by a specific write sequence
addresses 22H and 23H (Figure 4-4). Once the expanded I/O space is enabled, internal ppher-
als (timers, DMA, interrupt controllers and serial communication channels) can be mappe
of DOS I/O space (using the REMAPCFG register) and registers associated with other in
peripherals (such as the chip-select unit, power management unit, watchdog timer) can be
ed.

4.5.2.1 Programming REMAPCFG Example

The expanded I/O space enable (ESE) bit in the REMAPCFG register can be set only by
sequential write operations to I/O addresses 22H and 23H as described in Figure 4-4. On
is set, REMAPCFG and all the on-chip registers in the expanded I/O address range 0F000H–
0FFFFH can be accessed. The remap bits in REMAPCFG are still in effect even after the E
is cleared.

Figure 4-4. Setting the ESE Bit Code Example

The REMAPCFG register is write-protected until the expanded I/O space is enabled. Wh
enabling write sequence is executed, it sets the ESE bit. A program can check this bit to se
whether it has access to the expanded I/O space registers. Clearing the ESE bit disables
panded I/O space. This can be done by a byte write with a value of 0 to I/O address 23H
again locks the REMAPCFG register and makes it read-only.

;;disable interrupts
CLI

; Enable expanded I/O space of Intel386(tm) EX processor
; for peripheral initialization.

MOV AX, 08000H ; Enable expanded I/O space
OUT 23H, AL ; and unlock the re-map bits
XCHG AL, AH
OUT 22H, AL
OUT 22H, AX

;; at this point PC/AT peripherals can be mapped out
;; For example,
;; Map out the on-chip DMA channels from the DOS I/O space (slot 0)

MOV AL, 04H
OUT 22H, AL

; Disables expanded I/O space
MOV AL, 00H
OUT 23H, AL

;; Re-enable Interrupts
STI
4-8

SYSTEM REGISTER ORGANIZATION

ister

is
s lines
d,

MA
4.6 ADDRESSING MODES

Combinations of the value of ESE bit and the individual remap bits in the REMAPCFG reg
yield four different peripheral addressing modes for I/O address decoding.

4.6.1 DOS-compatible Mode

DOS-compatible mode is achieved by clearing ESE and all the peripheral remap bits. In th
mode, all PC/AT-compatible peripherals are mapped into the DOS I/O space. Only addres
A9:0 are decoded for internal peripherals. Accesses to PC/AT-compatible peripherals are vali
while all other internal peripherals are inaccessible (see Figure 4-5).

This mode is useful for accessing the internal timer, interrupt controller, serial I/O ports, or D
controller in a DOS-compatible environment.
4-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 4-5. DOS-Compatible Mode

3FFH

23H

22H

On-chip UART-0

On-chip UART-1

On-chip 8259A-2

On-chip Timer

0

On-chip 8259A-1

On-chip DMA

0

0H

REMAPCFG

Register

Expanded I/O Space

DOS I/O Space

0 0 0 0 0 00 0

Note:

Shaded area indicates that

expanded I/O space peripherals

are not accessible

A2495-02

F000H

FFFFH
4-10

SYSTEM REGISTER ORGANIZATION

ng the
p bits

s A9:0
f using
r than

ciated

pace is

erals’
led and
anded
ls, but
 most

s lines
 be ac-

S com-

 space
f their
/O ad-
re
4.6.2 Nonintrusive DOS Mode

This mode is achieved by first setting the ESE bit (using the three sequential writes), setti
individual peripherals’ remap bits, and then clearing the ESE bit. Peripherals whose rema
are set are mapped out of DOS I/O space. Like DOS-compatible mode, only address line
are decoded internally. This mode is useful for connecting an external peripheral instead o
the integrated peripheral. For example, a system might use an external 8237A DMA rathe
using the internal DMA unit. For this configuration, set the ESE bit, set the remap bit asso
with the DMA unit and then clear the ESE bit. In this case, the external 8237A is accessible in
the DOS I/O space, while the internal DMA can be accessed only after the expanded I/O s
enabled. (See Figure 4-6.)

4.6.3 Enhanced DOS Mode

This mode is achieved by setting the ESE bit and clearing all PC/AT-compatible periph
remap bits. Address lines A15:0 are decoded internally. The expanded I/O space is enab
the PC/AT-compatible internal peripherals are accessible in either DOS I/O space or exp
I/O space. (See Figure 4-7.) If an application frequently requires the additional periphera
at the same time wants to maintain DOS compatibility for ease of development, this is the
useful mode.

4.6.4 Non-DOS Mode

This mode is achieved by setting the ESE bit and setting all peripherals’ remap bits. Addres
A15:0 are decoded internally. The expanded I/O space is enabled and all peripherals can
cessed only in expanded I/O space. This mode is useful for systems that don’t require DO
patibility and have other custom peripherals in slot 0 of the I/O space. (See Figure 4-8.)

For all DOS peripherals, the lower 10 bits in the DOS I/O space and in the expanded I/O
are identical (except the UARTs, whose lower 8 bits are identical). This makes correlation o
respective offsets in DOS and expanded I/O spaces easier. Also, the UARTs have fixed I
dresses. This differs from standard PC/AT configurations, in which these address ranges apro-
grammable.
4-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 4-6. Example of Nonintrusive DOS-Compatible Mode

3FFH

0

Internal DMA
0H

On-chip 8259A-1

On-chip UART-0

On-chip UART-1

On-chip 8259A-2

On-chip Timer

0

0 0 0 0 0 01 0

A2496-02

23H

22H

REMAPCFG

Register

DOS I/O Space

Note:

Shaded area indicates that the on-chip

DMA and expanded I/O space

peripherals are not accessible

Expanded I/O Space

F000H

FFFFH
4-12

SYSTEM REGISTER ORGANIZATION
Figure 4-7. Enhanced DOS Mode

3FFH

0

On-chip DMA
0H

On-chip 8259A-1

On-chip UART-2

On-chip UART-1

On-chip 8259A-2

On-chip Timer

1

0 0 0 0 0 00 0

A2501-02

23H

22H

REMAPCFG

Register

DOS I/O Space

F000H

8259A-1

8259A-2

Timer

UART-1

UART-0

On-chip DMA

Other Peripherals

FFFFH

Expanded I/O Space
4-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 4-8. NonDOS Mode

3FFH

0H

01

0 1 1 1 1 01 1

8259A-1

8259A-2

Timer

UART-1

UART-0

On-chip DMA

Other Peripherals

A2502-02

23H

22H

REMAPCFG

Register

F000H

FFFFH

DOS I/O Space

Expanded I/O Space
4-14

SYSTEM REGISTER ORGANIZATION

egisters
tial 8-bit

 access
4.7 PERIPHERAL REGISTER ADDRESSES

Table 4-2 lists the addresses and names of all user-accessible peripheral registers. I/O R
can be accessed as bytes or words. Word accesses to byte registers result in two sequen
I/O transfers. The default (reset) value of each register is shown in the Reset Value column. An X
in this column signifies that the register bits are undefined. Some address values do not
registers, but are decoded to provide a logic control signal. These addresses are listed as Not a
register in the Reset column.

Table 4-2. Peripheral Register Addresses (Sheet 1 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

DMA Controller and Bus Arbiter

F000H 0000H Byte DMA0TAR0/1 (Note 1) XX

F001H 0001H Byte DMA0BYC0/1 (Note 1) XX

F002H 0002H Byte DMA1TAR0/1 (Note 1) XX

F003H 0003H Byte DMA1BYC0/1 (Note 1) XX

F004H 0004H Reserved

F005H 0005H Reserved

F006H 0006H Reserved

F007H 0007H Reserved

F008H 0008H Byte DMACMD1/DMASTS 00H

F009H 0009H Byte DMASRR 00H

F00AH 000AH Byte DMAMSK 04H

F00BH 000BH Byte DMAMOD1 00H

F00CH 000CH Byte DMACLRBP Not a register

F00DH 000DH Byte DMACLR Not a register

F00EH 000EH Byte DMACLRMSK Not a register

F00FH 000FH Byte DMAGRPMSK 03H

F010H Byte DMA0REQ0/1 XX

F011H Byte DMA0REQ2/3 XX

F012H Byte DMA1REQ0/1 XX

F013H Byte DMA1REQ2/3 XX

F014H Reserved

F015H Reserved

F016H Reserved

F017H Reserved

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
F018H Byte DMABSR X1X10000B

F019H Byte DMACHR/DMAIS 00H

F01AH Byte DMACMD2 08H

F01BH Byte DMAMOD2 00H

F01CH Byte DMAIEN 00H

F01DH Byte DMAOVFE 0AH

F01EH Byte DMACLRTC Not a register

Master Interrupt Controller

F020H 0020H Byte ICW1m/IRRm/ISRm/
OCW2m/OCW3m

XX

F021H 0021H Byte ICW2m/ICW3m/ICW4m/
OCW1m/POLLm

XX

Address Configuration Register

0022H 0022H Word REMAPCFG 0000H

Timer/counter Unit

F040H 0040H Byte TMR0 XX

F041H 0041H Byte TMR1 XX

F042H 0042H Byte TMR2 XX

F043H 0043H Byte TMRCON XX

DMA Page Registers

F080H Reserved

F081H 0081H Reserved

F082H 0082H Reserved

F083H 0083H Byte DMA1TAR2 XX

F084H Reserved

F085H Byte DMA1TAR3 XX

F086H Byte DMA0TAR3 XX

F087H 0087H Byte DMA0TAR2 XX

F088H Reserved

F089H 0089H Reserved

F08AH 008AH Reserved

F08BH 008BH Reserved

F08CH Reserved

Table 4-2. Peripheral Register Addresses (Sheet 2 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-16

SYSTEM REGISTER ORGANIZATION
F08DH Reserved

F08EH Reserved

F08FH Reserved

F098H Byte DMA0BYC2 XX

F099H Byte DMA1BYC2 XX

F09AH Reserved

F09BH Reserved

A20GATE and Fast CPU Reset

F092H 0092H Byte PORT92 XXXXXX10B

Slave Interrupt Controller

F0A0H 00A0H Byte ICW1s/IRRs/ISRs/
OCW2s/OCW3s

XX

F0A1H 00A1H Byte ICW2s/ICW3s/ICW4s/
OCW1s/POLLs

XX

Chip-select Unit

F400H Word CS0ADL 0000H

F402H Word CS0ADH 0000H

F404H Word CS0MSKL 0000H

F406H Word CS0MSKH 0000H

F408H Word CS1ADL 0000H

F40AH Word CS1ADH 0000H

F40CH Word CS1MSKL 0000H

F40EH Word CS1MSKH 0000H

F410H Word CS2ADL 0000H

F412H Word CS2ADH 0000H

F414H Word CS2MSKL 0000H

F416H Word CS2MSKH 0000H

F418H Word CS3ADL 0000H

F41AH Word CS3ADH 0000H

F41CH Word CS3MSKL 0000H

F41EH Word CS3MSKH 0000H

F420H Word CS4ADL 0000H

F422H Word CS4ADH 0000H

Table 4-2. Peripheral Register Addresses (Sheet 3 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
F424H Word CS4MSKL 0000H

F426H Word CS4MSKH 0000H

F428H Word CS5ADL 0000H

F42AH Word CS5ADH 0000H

F42CH Word CS5MSKL 0000H

F42EH Word CS5MSKH 0000H

F430H Word CS6ADL 0000H

F432H Word CS6ADH 0000H

F434H Word CS6MSKL 0000H

F436H Word CS6MSKH 0000H

F438H Word UCSADL FF6FH

F43AH Word UCSADH FFFFH

F43CH Word UCSMSKL FFFFH

F43EH Word UCSMSKH FFFFH

Synchronous Serial I/O Unit

F480H Word SSIOTBUF 0000H

F482H Word SSIORBUF 0000H

F484H Byte SSIOBAUD 00H

F486H Byte SSIOCON1 C0H

F488H Byte SSIOCON2 00H

F48AH Byte SSIOCTR 00H

Refresh Control Unit

F4A0H Word RFSBAD 0000H

F4A2H Word RFSCIR 0000H

F4A4H Word RFSCON 0000H

F4A6H Word RFSADD 00FFH

Watchdog Timer Unit

F4C0H Word WDTRLDH 003FH

F4C2H Word WDTRLDL FFFFH

F4C4H Word WDTCNTH 003FH

F4C6H Word WDTCNTL FFFFH

F4C8H Word WDTCLR Not a register

Table 4-2. Peripheral Register Addresses (Sheet 4 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-18

SYSTEM REGISTER ORGANIZATION
F4CAH Byte WDTSTATUS 00H

Asynchronous Serial I/O Channel 0 (COM1)

F4F8H 03F8H Byte RBR0/TBR0/DLL0 XX/XX/02H

F4F9H 03F9H Byte IER0/DLH0 00H/00H

F4FAH 03FAH Byte IIR0 01H

F4FBH 03FBH Byte LCR0 00H

F4FCH 03FCH Byte MCR0 00H

F4FDH 03FDH Byte LSR0 60H

F4FEH 03FEH Byte MSR0 X0H

F4FFH 03FFH Byte SCR0 XX

Clock Generation and Power Management

F800H Byte PWRCON 00H

F804H Word CLKPRS 0000H

Device Configuration Registers

F820H Byte P1CFG 00H

F822H Byte P2CFG 00H

F824H Byte P3CFG 00H

F826H Byte PINCFG 00H

F830H Byte DMACFG 00H

F832H Byte INTCFG 00H

F834H Byte TMRCFG 00H

F836H Byte SIOCFG 00H

Parallel I/O Ports

F860H Byte P1PIN XX

F862H Byte P1LTC FFH

F864H Byte P1DIR FFH

F868H Byte P2PIN XX

F86AH Byte P2LTC FFH

F86CH Byte P2DIR FFH

F870H Byte P3PIN XX

F872H Byte P3LTC FFH

F874H Byte P3DIR FFH

Table 4-2. Peripheral Register Addresses (Sheet 5 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Asynchronous Serial I/O Channel 1 (COM2)

F8F8H 02F8H Byte RBR1/TBR1/DLL1 XX/XX/02H

F8F9H 02F9H Byte IER1/DLH1 00H/00H

F8FAH 02FAH Byte IIR1 01H

F8FBH 02FBH Byte LCR1 00H

F8FCH 02FCH Byte MCR1 00H

F8FDH 02FDH Byte LSR1 60H

F8FEH 02FEH Byte MSR1 X0H

F8FFH 02FFH Byte SCR1 XX

Table 4-2. Peripheral Register Addresses (Sheet 6 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
4-20

5
DEVICE
CONFIGURATION

eriph-
ow to

pherals

 core
CHAPTER 5
DEVICE CONFIGURATION

The Intel386™ EX processor provides many possible signal to pin connections as well as p
eral to peripheral connections. This chapter describes the available configurations and h
configure them.

This chapter is organized as follows:

• Introduction (see below)

• Peripheral Configuration (page 5-3)

• Pin Configuration (page 5-23)

• Device Configuration Procedure (page 5-28)

• Configuration Example (page 5-28)

5.1 INTRODUCTION

Device configuration is the process of setting up the microprocessor’s on-chip peripherals† for a
particular system design. Specifically, device configuration consists of programming registers to
connect peripheral signals to the package pins and interconnect the peripherals. The peri
include the following:

• DMA Controller (DMA)

• Interrupt Control Unit (ICU)

• Timer/counter Unit (TCU)

• Asynchronous Serial I/O Units (SIO0, SIO1)

• Synchronous Serial I/O Unit (SSIO)

• Refresh Control Unit (RCU)

• Chip-select Unit (CSU)

• Watchdog Timer Unit (WDT)

In addition, the pin configuration registers control connections from the coprocessor to the
and pin connections to the bus arbiter.

† In this chapter, the terms “peripheral” and “on-chip peripheral” are used interchangeably. An “off-chip peripheral” is
external to the Intel386 EX processor.
5-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ns. The

riph-
al. The
hout

heral.

ou to
ring se-
Figure 5-1 shows Peripheral A and its connections to other peripherals and the package pi
“Internal Connection Logic” provides three kinds of connections:

• Connections between peripherals

• Connections to package pins via multiplexers

• Direct connections to package pins without multiplexers

The internal connection logic is controlled by the Peripheral A configuration register.

Each pin multiplexer (“Pin Mux”) connects one of two internal signals to a pin. One is a pe
eral signal. The second signal can be an I/O port signal or a signal from/to another peripher
pin multiplexers are controlled by the pin configuration registers. Some input-only pins wit
multiplexers (“Shared Pins w/o Muxes”) are routed to two different peripherals. Your design
should use only one of the inputs and disable or ignore the input going to the second perip

Together, the peripheral configuration registers and the pin configuration registers allow y
select the peripherals to be used, to interconnect them as your design requires, and to b
lected signals to the package pins.

Figure 5-1. Peripheral and Pin Connections

A2535-01

Microprocessor

Peripheral A

Peripheral A

Configuration

Register

Pin

Muxes

Internal

Connection

Logic

Peripherals B, C, D, ...

Pins

with

Muxes

Shared Pins

w/o Muxes

Pin Configuration Registers

Control

Control
5-2

DEVICE CONFIGURATION

orma-

l
 signal
. When
e

 for a

e ex-
bles or

ipher-

xternal
ransfer
saction

e. At

rrupt
 have
e the

. This
rate. If
within
5.2 PERIPHERAL CONFIGURATION

This section describes the configuration of each on-chip peripheral. For more detailed inf
tion on the peripheral itself, see the chapter describing that peripheral.

The symbology used for signals that share a device pin is shown in Figure 5-2. Of the two signa
names by a pin, the upper signal is associated with the peripheral in the figure. The lower
in parentheses is the alternate signal, which connects to a different peripheral or the core
a pin has a multiplexer, it is shown as a switch, and the register bit that controls it is noted abov
the switch.

5.2.1 DMA Controller, Bus Arbiter, and Refresh Unit Configuration

Figure 5-2 shows the DMA controller, bus arbiter, and refresh unit configuration. Requests
DMA data transfer are shown as inputs to the multiplexer:

• A serial I/O transmitter (TXEDMA0, TXEDMA1) or receiver (RBFDMA0, RBFDMA1)

• A synchronous serial I/O transmitter (SSTBE) or receiver (SSRBF)

• A timer (OUT1, OUT2)

• An external source (DRQ0, DRQ1)

The inputs are selected by the DMA configuration register (see Figure 5-3).

5.2.1.1 Using The DMA Unit with External Devices

For each DMA channel, three bits in the DMA configuration register (Figure 5-3) select th
ternal request input or one of seven request inputs from the peripherals. Another bit ena
disables that channel’s DMA acknowledge signal (DACKn#) at the device pin. Enable the
DACKn# signal only when you are using the external request signal (DRQn) and need DACKn#.
The acknowledge signals are not routed to the on-chip peripherals, and therefore, these per
als cannot initiate single-cycle (fly-by) DMA transfers.

An external bus master cannot talk directly to internal peripheral modules because the e
address lines are outputs only. However, an external device could use a DMA channel to t
data to or from an internal peripheral because the DMA generates the addresses. This tran
would be a two-cycle DMA bus transaction.

5.2.1.2 DMA Service to an SIO or SSIO Peripheral

A DMA unit is useful for servicing an SIO or SSIO peripheral operating at a high baud rat
high baud rates, the interrupt response time of the core may be too long to allow theserial
channels to use an interrupt to service the receive-buffer-full condition. By the time the inte
service routine (ISR) is ready to transfer the receive-buffer data to memory, new data would
been loaded into the buffer. The issue is the interrupt latency which is the amount of tim
processor takes from recognizing the interrupt to executing the first line of code in the ISR
interrupt latency needs to be calculated to determine if an ISR can handle the high baud
the Interrupt Latency is too high, data transfers to and from the serial channels can occur
a few bus cycles of the time that a serial unit is ready to move data by using an appropriately
5-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

figu-

nel
useful
 and

R

e
th an
l pairs
configured DMA channel. SIO and SSIO inputs to the DMA are selected by the DMA con
ration register (Figure 5-3).

5.2.1.3 Using The Timer To Initiate DMA Transfers

A timer output (OUT1, OUT2) can initiate periodic data transfers by the DMA. A DMA chan
is programmed for the transfer, then a timer output pulse triggers the transfer. The most
DMA and timer combinations for this type of transfer are the periodic timer modes (mode 2
mode 3) with the DMA block-transfer mode programmed. See Chapter 10, “TIMER/COUNTE
UNIT,” and Chapter 12, “DMA CONTROLLER,” for more information on how to program the
peripherals.

5.2.1.4 Limitations Due To Pin Signal M ulti plexing

Pin signal multiplexing can preclude the simultaneous use of a DMA channel and another priph-
eral or specific peripheral signal (see Figure 5-2). For example, using DMA channel 1 wi
external requester device precludes using SIO channel 1 due to the multiplexed signa
DRQ1/RXD1 and DACK1#/TXD1. Please refer to the Intel386™ EX Microprocessor Pin Mul-
tiplexing Map (Order Number 272587) for a complete diagram of multiplexed signals.
5-4

DEVICE CONFIGURATION
Figure 5-2. Configuration of DMA, Bus Arbiter, and Refresh Unit

A2516-02

DREQ0

DMAACK0#

DREQ1

DMAACK1#

DMAINT

DMA

Bus Arbiter

Refresh Unit

HOLD

HLDA

REFRESH#

RBFDMA1 (SIO1)
TXEDMA0 (SIO0)
SSRBF (SSIO)

DRQ0

(DCD1#)†

To SIO1

DRQ1

(RXD1)To SIO1

DACK0#

(CS5#)

DMACFG.3

From CSU

DACK1#

(TXD1)

DMACFG.7

From SIO1

DMACFG.6:4

3

DMACFG.2:0

PINCFG.4

PINCFG.2

EOP#

(CTS1#)From SIO1

PINCFG.3

HOLD

(P1.6)To/From I/O Port 1

P1CFG.6

HLDA

(P1.7)To/From I/O Port 1

P1CFG.7

REFRESH#

(CS6#)From CSU

PINCFG.6

3

† Alternate pin signals are in parentheses.

End of Process

OUT2 (TCU)
RBFDMA0 (SIO0)
TXEDMA1 (SIO1)
SSTBE (SSIO)

0

1

2

3

4

5

6

7

RBFDMA0 (SIO0)
TXEDMA1 (SIO1)
SSTBE (SSIO)
OUT1 (TCU)
RBFDMA1 (SIO1)
TXEDMA0 (SIO0)
SSRBF (SSIO)

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

0

1

0

1

To ICU

To

Core

HOLD

From

Core

HLDA
5-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-3. DMA Configuration Register (DMACFG)

DMA Configuration
DMACFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F830H
—
00H

7 0

D1MSK D1REQ2 D1REQ1 D1REQ0 D0MSK D0REQ2 D0REQ1 D0REQ0

Bit
Number

Bit
Mnemonic Function

7 D1MSK DMA Acknowledge 1 Mask:

0 = DMA channel 1’s acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1’s acknowledge (DMAACK1#) signal. Useful

when channel 1’s request (DREQ1) input is connected to an internal
peripheral.

6–4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1’s
request input (DREQ1).

000 = DRQ1 pin (external peripheral)
001 = SIO channel 1’s receive buffer full signal (RBFDMA1)
010 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
011 = SSIO receive holding buffer full signal (SSRBF)
100 = TCU counter 2’s output signal (OUT2)
101 = SIO channel 0’s receive buffer full signal (RBFDMA0)
110 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 D0MSK DMA Acknowledge 0 Mask:

0 = DMA channel 0’s acknowledge (DMAACK0#) signal is not masked.
1 = Masks DMA channel 0’s acknowledge (DMAACK0#) signal. Useful

when channel 0’s request (DREQ0) input is connected to an internal
peripheral.

2–0 D0REQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0’s
request input (DREQ0).

000 = DRQ0 pin (external peripheral)
001 = SIO channel 0’s receive buffer full signal (RBFDMA0)
010 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
011 = SSIO transmit holding buffer empty signal (SSTBE)
100 = TCU counter 1’s output signal (OUT1)
101 = SIO channel 1’s receive buffer full signal (RBFDMA1)
110 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
111 = SSIO receive holding buffer full signal (SSRBF)
5-6

DEVICE CONFIGURATION

cas-
 in-

G

 is con-
s lines

, and
5.2.2 Interrupt Control Unit Configuration

The interrupt control unit (ICU) comprises two 82C59A interrupt controllers connected in
cade, as shown in Figure 5-4. (See Chapter 9 for more information.) Figure 5-5 describes the
terrupt configuration register (INTCFG).

The ICU receives requests from eight internal sources:

• Three outputs from the timer/counter unit (OUT2:0)

• An output from each of the serial I/O units (SIOINT1:0)

• An output from the synchronous serial I/O unit (SSIOINT)

• An output from the DMA unit (DMAINT)

• An output from the WDT unit (WDTOUT#)

In addition, the ICU controls the interrupt sources on ten external pins:

• INT3:0 (multiplexed with I/O port signals P3.5:2) are enabled or disabled by the P3CF
register (see Figure 5-18).

• INT7:4 share their package pins with four TCU inputs: TMRGATE1, TMRCLK1,
TMRGATE0, and TMRCLK0. These signal pairs are not multiplexed; however, the pin
inputs are enabled or disabled by the INTCFG register.

• INT9:8 share their pins with TMROUT1, TMROUT0, P3.1, P3.0

The three cascade outputs (CAS2:0) should be enabled when an external 82C59A module
nected to one of the INT9:8 or INT3:0 signals. The cascade outputs are ORed with addres
A18:16. See “Interrupt Acknowledge Cycle” on page 6-23 for details.

Use Tables 5-1 and 5-2 to configure the functionality of the master 82C59A’s IR3, IR4 inputs
the associated external pins.
5-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 5-1. Master’s IR3 Connections

Function INTCFG.6 MCR1.3 P3CFG.1

IR3 connected to SIOINT1

P3.1 selected at pin (P3.1)
0 X 0

IR3 connected to SIOINT1

OUT1 connected to pin (TMROUT1)
0 X 1

IR3 internally driven low

P3.1 selected at pin (P3.1)
1 0 0

IR3 connected to pin (INT8) 1 0 1

IR3 connected to SIOINT1

P3.1 selected at pin (P3.1)
1 1 0

IR3 connected to SIOINT1

pin (INT8) must not be left floating
1 1 1

NOTE: X is a don’t care

Table 5-2. Master’s IR4 Connections

Function INTCFG.5 MCR0.3 P3CFG.0

IR4 connected to SIOINT0

P3.0 selected at pin (P3.0)
0 X 0

IR4 connected to SIOINT0

OUT0 connected to pin (TMROUT0)
0 X 1

IR4 internally driven low

P3.0 selected at pin (P3.0)
1 0 0

IR4 connected to pin (INT9) 1 0 1

IR4 connected to SIOINT0

P3.0 selected at pin (P3.0)
1 1 0

IR4 connected to SIOINT0

pin (INT9) must not be left floating
1 1 1

NOTE: X is a don’t care
5-8

DEVICE CONFIGURATION
Figure 5-4. Interrupt Control Unit Configuration

IR0

IR1

IR2

8259A

Master

IR4

0
1

INT0

(P3.2)†To/From I/O Port 3

P3CFG.2
VSS

P3CFG.2

IR5

IR6

IR7

OUT0 (TCU)

IR3

SIOINT0

INT1

(P3.3)To/From I/O Port 3

P3CFG.3
VSS

P3CFG.3

INT2

(P3.4)To/From I/O Port 3

P3CFG.4VSS

P3CFG.4

INT3

(P3.5)To/From I/O Port 3

P3CFG.5VSS

P3CFG.5

IR0

IR1

IR2

IR4

IR5

IR6

IR3

INT4
VSS

INTCFG.0

INT5

To TCU

SSIOINT
INTCFG.1

INT6
To TCU

VSS

INTCFG.2

OUT1(TCU)

OUT2(TCU)

DMAINT

INT7
To TCU

VSS

INTCFG.3

0
1 CAS2:0

(A18:16)

VSS

A18:16

INTCFG.7

8259A

Slave

INT

CAS2:0

CAS2:0

3

A2522-03

IR7 WDTOUT#

To TCU

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

INTCFG.4

0
1

0

1

INTCFG.5 MCR0.3
SIOINT0

INT9

TMROUT0

(P3.0)OUT0(TCU)

INTCFG.5

SIOINT10
1 0

1

INTCFG.6 MCR1.3
SIOINT1

INT8

TMROUT1

(P3.1)OUT1(TCU)

INTCFG.6

† Alternate pin signals are in parentheses

Heavier lines indicate multiple signals.

INT
INTR

(to

core)

1

1

0 0

1 P3CFG.1

P3.1

1

0

(TMRGATE0)

(TMRCLK0)

0

1

P3.0

P3GFG.0

0

1

0

1

(TMRGATE1)

(TMRCLK1)

0

0

1

5-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-5. Interrupt Configuration Register (I NTCFG)

Interrupt Configuration
INTCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F832H
—
00H

7 0

CE IR3 IR4 SWAP IR6 IR5/IR4 IR1 IR0

Bit
Number

Bit
Mnemonic Function

7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:

See Table 5-1 on page 5-8 for all the IR3 configuration options.

5 IR4 Internal Master IR4 Connection:

See Table 5-2 on page 5-8 for all the IR4 configuration options.

4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.
1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave

IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects VSS to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:

These depend on whether INTCFG.4 is set or clear.

0 = Connects VSS to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IR0 Internal Slave IR0 Connection:

0 = Connects VSS to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.
5-10

DEVICE CONFIGURATION

0) or
 bits
FG.6

 the

 Tim-
t us-
#, and

 to

ins
FG
5.2.3 Timer/counter Unit Configuration

The three-channel Timer/counter Unit (TCU) and its configuration register (TMRCFG) are
shown in Figure 5-6 and Figure 5-7. The clock inputs can be external signals (TMRCLK2:
the on-chip programmable clock (PSCLK). All clock inputs can be held low by programming
in the TMRCFG register. The gate inputs can be controlled through software using TMRC
and the appropriate GTnCON bits in the TMRCFG register. Several of the timer signals go to
interrupt control unit (see Figure 5-4).

The Timer/counter0 and Timer/counter1 signals are selected individually. In contrast, the
er/counter2 signals (TMRCLK2, TMRGATE2, TMROUT2) are selected as a group. Note tha
ing the Timer/counter2 signals precludes use of the coprocessor signals (PEREQ, BUSY
ERROR#).

The CLKINn and GATEn inputs of Timer/counter0 and Timer/counter1 are routed directly
shared input pins, TMRCLK0/INT4, TMRCLK1/INT6, TMRGATE0/INT5 and
TMRGATE1/INT7. The OUTn inputs of these two counters can be connected to p
TMROUT0/INT9/P3.0 and TMROUT1/INT8/P3.1 respectively, using bits in registers P3C
and INTCFG.
5-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-6. Timer/Counter Unit Configuration

A2517-03

CLKIN0

GATE0

OUT0

GATE1

Timer/Counter

Unit

CLKIN1

OUT1

GATE2

CLKIN2

OUT2

0

1

TMROUT0

(INT9)

(P3.0)

To/From I/O Port 3

P3CFG.0

TMRCLK0

(INT4)†

PSCLK

TMRCFG.7

TMRCFG.0

To ICU

To ICU

0

1 TMRCLK1

(INT6)

PSCLK

TMRCFG.2

To ICU

TMROUT1

(INT8)

(P3.1)

To/From I/O Port 3

P3CFG.1To ICU, DMA

0

1 TMRCLK2

(PEREQ)

PSCLK

TMRCFG.4

To Core

0

1 TMRGATE2

(BUSY#)

VCC

TMRCFG.6

TMRCFG.5

PINCFG.5

TMROUT2

(ERROR#)To Core

To ICU, DMA

† Alternate pin signals are in parentheses.

0

1

To Core

TMRCFG.5

0

1 TMRGATE1

(INT7)

VCC

TMRCFG.6

TMRCFG.3 1

To ICU

TMRCFG.3

0

0

1 TMRGATE0

(INT5)

VCC

TMRCFG.6

TMRCFG.1 1

To ICU

TMRCFG.1

0

1

0

1

0

1

0

1

0

1

0

5-12

DEVICE CONFIGURATION
.

Figure 5-7. Timer Configuration Register (TMRCFG)

Timer Configuration
TMRCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F834H
—
00H

7 0

TMRDIS SWGTEN GT2CON CK2CON GT1CON CK1CON GT0CON CK0CON

Bit
Number

Bit
Mnemonic Function

7 TMRDIS Timer Disable:

0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.

6 SWGTEN Software GATEn Enable

0 = Connects GATEn to either the VCC pin or the TMRGATEn pin.
1 = Enables GT2CON, GT1CON, and GT0CON to control the

connections to GATE2, GATE1 and GATE0 respectively.

5 GT2CON Gate 2 Connection:

SWGTEN GT2CON

0 0 Connects GATE2 to VCC.
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.

4 CK2CON Clock 2 Connection:

0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.

3 GT1CON Gate 1 Connection:

SWGTEN GT1CON

0 0 Connects GATE1 to VCC.
0 1 Connects GATE1 to the TMRGATE1 pin.
1 0 Turns GATE1 off.
1 1 Turns GATE1 on.

2 CK1CON Clock 1 Connection:

0 = Connects CLKIN1 to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.

1 GT0CON Gate 0 Connection:

SWGTEN GT0CON

0 0 Connects GATE0 to VCC.
0 1 Connects GATE0 to the TMRGATE1 pin.
1 0 Turns GATE0 off.
1 1 Turns GATE0 on.

0 CK0CON Clock 0 Connection:

0 = Connects CLKIN0 to the internal PSCLK signal.
1 = Connects CLKIN0 to the TMRCLK0 pin.
5-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

nnels
l unit
 pins.)
buffer
 with
5.2.4 Asynchronous Serial I/O Configuration

Figures 5-8 and 5-9 show the asynchronous serial I/O unit configuration, consisting of cha
SIO0 and SIO1. Each channel has one output (SIOINT0, SIOINT1) to the interrupt contro
(see Figure 5-4) and two outputs to the DMA unit. (These signals do not go to package
SIOINTn is active when any one of the SIO status signals (receiver line status, receiver
full, transmit buffer empty, modem status) is set and enabled. All SIO0 pins are multiplexed
I/O port signals.

Using SIO1 precludes using DMA channel 1 for external DMA requests due to the multiplexing
of the transmit and receive signals with DMA signals (RXD1/DRQ1, TXD1/DACK1#).

NOTE
Using SIO1 modem signals RTS1#, DSR1#, DTR1#, and RI1# precludes use
of the SSIO unit.
5-14

DEVICE CONFIGURATION
Figure 5-8. Serial I/O Unit 0 Configuration

To DMATXEDMA0

To ICUSIOINT0

A2521-02

BCLKIN

Receive Data

Transmit Data

Request to Send

SIO0

Clear to Send

Data Set Ready

Data Terminal

Ready

Data Carrier

Detect

Ring Indicator

0

1

COMCLK

(P3.7)†To/From I/O Port 3

P3CFG.7

SERCLK

SIOCFG.0

† Alternate pin signals are in parentheses.

RXD0

(P2.5)

0

1

CTS0#

(P2.7)

SIOCFG.6

To/From I/O Port 2

RTS0#

(P1.1)

P1CFG.1

0

1

0

1

P2CFG.7

DTR0#

(P1.2)To/From I/O Port 1

P1CFG.2

0

1 VCC

To/From I/O Port 2

P2CFG.5

TXD0

(P2.6)To/From I/O Port 2

P2CFG.6

To/From I/O Port 1

DSR0#

(P1.3)To/From I/O Port 1

P1CFG.3

DCD0#

(P1.0)To/From I/O Port 1

P1CFG.0

RI0#

(P1.4)To/From I/O Port 1

P1CFG.4

To DMARBFDMA0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
1

0

5-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-9. Serial I/O Unit 1 Configuration

A2519-02

BCLKIN

Receive Data

Transmit Data

Request to Send

SIO1

Clear to Send

Data Set Ready

Data Terminal

Ready

Data Carrier

Detect

Ring Indicator

0

1

COMCLK

(P3.7)†To/From I/O Port 3

P3CFG.7

SERCLK

SIOCFG.1

† Alternate pin signals are in parentheses.

RXD1

(DRQ1)To DMA

TXD1

(DACK1#)From DMA

PINCFG.2

0

1

CTS1#

(EOP#)

SIOCFG.7

To/From DMA

RTS1#

(SSIOTX)From SSIO

PINCFG.0

0

1

DSR1#

(STXCLK)To/From SSIO

0

1

DCD1#

(DRQ0)To DMA

PINCFG.3

DTR1#

(SRXCLK)To/From SSIO

PINCFG.1

0

1

RI1#

(SSIORX)To SSIO

VCC

To DMATXEDMA1

To ICUSIOINT1

To DMARBFDMA1

1

0

1

0

1

0

1

0

1

0

5-16

DEVICE CONFIGURATION
Figure 5-10. SIO and SSIO Configuration Register (SIOCFG)

SIO and SSIO Configuration
SIOCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F836H
—
00H

7 0

S1M S0M — — — SSBSRC S1BSRC S0BSRC

Bit
Number

Bit
Mnemonic Function

7 S1M SIO1 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.

6 S0M SIO0 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SIO1 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate

generator.

0 S0BSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate

generator.
5-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

-
INT)
hapter
uffer
ignals.
5.2.5 Synchronous Serial I/O Configuration

The synchronous serial I/O unit (SSIO) is shown in Figure 5-11. Its single configuration register
bit is in the SIOCFG register (Figure 5-10). The transmit buffer empty and receive buffer full sig
nals (SSTBE and SSRBF) go to the DMA unit (Figure 5-2), and an interrupt signal (SSIO
goes to the ICU (Figure 5-4). Depending on the settings in the SSIOCON1 register (see C
13), SSIOINT is asserted for one of two conditions: the receive buffer is full or the transmit b
is empty. Note that using the SSIO signals precludes the use of four of the SIO1 modem s

Figure 5-11. SSIO Unit Configuration

A2518-02

Receive Data

Transmit Data

Transmit Clock

SSIO

Receive Clock

0

1

SSIOTX

(RTS1#)From SIO1

PINCFG.0

PSCLK

SIOCFG.2

SSIORX

(RI1#)*To SIO1

*Alternate pin signals are in parentheses.

SERCLK
BCLKIN

STXCLK

(DSR1#)To SIO1

SRXCLK

(DTR1#)From SSIO1

PINCFG.1

To ICU
To DMA

To DMA

SSIOINT
SSRBF

SSTBE

0

1

0

1

5-18

DEVICE CONFIGURATION

ower

m the
4 in
 CS0#
in the

with
5.2.6 Chip-select Unit and Clock and Power Management Unit Configuration

Figure 5-12 shows the multiplexing of signals of the Chip-select Unit and the Clock and P
Management Unit.

The Chip-select signals, CS6# and CS5# are multiplexed with the REFRESH# signal fro
Refresh Control Unit and the DACK0# signal from the DMA Unit, respectively. Bits 6 and
the PINCFG register (see Figure 5-15) control these multiplexers. CS3#, CS2#, CS1# and
are multiplexed with I/O Port 2 signals, P2.3, P2.2, P2.1 and P2.0, respectively. Bits 4:0
P2CFG register (see Figure 5-17) control these multiplexers.

The PWRDOWN output signal of the Clock and Power Management Unit is multiplexed
I/O Port 3 signal, P3.6. Bit 6 in the P3CFG register (see Figure 5-18) controls this multiplexer.
5-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-12. Configuration of Chip-select Unit and Clock and Power Management Unit

A3380-01

CS0#

CS1#

CS2#

CS3#

CS4#

CS5#

CS6#

CSU

CSO#

(P2.0)

To/From I/O Port 2

1

0

CS1#

(P2.1)

To/From I/O Port 2

1

0

CS2#

(P2.2)

To/From I/O Port 2

1

0

CS3#

(P2.3)

To/From I/O Port 2

1

0

PWRDOWN

Clock and

Power

Management

Unit

PWRDOWN

(P3.6)

To/From I/O Port 3

1

0

P2CFG.0

P2CFG.1

P2CFG.2

P2CFG.3

CS4#

(P2.4)

To/From I/O Port 2

1

0

CS5#

(DACK0#)

DACK0# (DMA)

1

0

CS6#

(REFRESH#)

REFRESH# (RCU)

1

0

P2CFG.4

PINCFG.4

PINCFG.6

P3CFG.6
5-20

DEVICE CONFIGURATION

 to the
lexing
5.2.7 Core Configuration

Three coprocessor signals (ERROR#, PEREQ, and BUSY# in Figure 5-13) can be routed
core, as determined by bit 5 of the PINCFG register (see Figure 5-15). Due to signal multip
at the pins, the coprocessor and Timer/counter2 cannot be used simultaneously.

Figure 5-13. Core Configuration

A2520-02

PEREQ

BUSY#

Core

0

1

PINCFG.5

† Alternate pin signals are in parentheses.

VCC

ERROR#
ERROR#

(TMROUT2)†From TCU

0

1 VSS

PEREQ

(TMRCLK2)To TCU

0

1 VCC

BUSY#

(TMRGATE2)To TCU

PINCFG.5

RESET

A20
To Chip-select Unit

and A20 Pin

PORT92.1

From Chip RESET Pin

RESET Timing

Generation

PORT92.0

LOCK# LOCK#

(P1.5)To/From I/O Port 1

0

1

0

1

0

1

1

0

P1CFG.5
5-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

e
ternal

affect
t be

resses
 not af-
Setting bit 0 in the PORT92 register (see Figure 5-14) resets the core without resetting the priph-
erals. Unlike the RESET pin, which is asynchronous and can be used to synchronize in
clocks to CLK2, this core-only reset is synchronized with the on-chip clocks and does not
the on-chip clock synchronization. After the CPU-RESET this bit is still set to 1. It mus
cleared and then set to cause another core-only reset.

Clearing bit 1 in the PORT92 register forces address line A20 to 0. This bit affects only add
generated by the core; addresses generated by the DMA and the refresh control unit are
fected.

Figure 5-14. Port 92 Configuration Register (PORT92)

Port 92 Configuration
PORT92
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F092H
0092H
XXXXXX10B

7 0

— — — — — — A20G CPURST

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 A20G A20 Grounded:

0 = Clearing this bit forces address line A20 to 0. This bit affects
addresses generated only by the core. Addresses generated by the
DMA and the Refresh Unit are not affected by this bit.

1 = Setting this bit leaves core-generated addresses unmodified.

0 CPURST CPU Reset:

0 = Clearing this bit performs no operation.
1 = Setting this bit resets the core without resetting the peripherals.

This bit must be cleared before issuing another reset.
5-22

DEVICE CONFIGURATION

e pins
rs are

pin
ur pin
Exam-

 the
5.3 PIN CONFIGURATION

Most of the microprocessor’s package pins support two peripheral functions. Some of thes
are routed to two peripheral inputs without the use of a multiplexer. These input-signal pai
listed in Table 5-3. The pin is connected to both peripheral inputs.

The remaining pins supporting two signals have multiplexers. For each such pin, a bit in a
configuration register enables one of the signals. Table 5-9 lists the bits in each of the fo
configuration registers. These abbreviated register tables are discussed in “Configuration
ple” on page 5-28.

When configuring ports to use INT8 or INT9, first set the appropriate INTCFG bit, then
P3CFG bit. Setting the bits in this order avoids any potential contention on INT8 or INT9.

Table 5-3. Signal Pairs on Pins without a Multiplexer

Names Signal Descriptions

DRQ0/
DCD1#

DMA External Request 0 indicates that an off-chip peripheral requires DMA service.

Data Carrier Detect SIO1 indicates that the modem or data set has detected the
asynchronous serial channel’s data carrier.

DRQ1/
RXD1

DMA External Request1 indicates that an off-chip peripheral requires DMA service.

Receive Data SIO1 accepts serial data from the modem or data set to the
asynchronous serial channel SIO1.

DSR1#/
STXCLK

Data Set Ready SIO1 indicates that the modem or data set is ready to establish a
communication link with asynchronous serial channel SIO1.

SSIO Transmit Clock synchronizes data being sent by the synchronous serial port.

RI1#/
SSIORX

Ring Indicator SIO1 indicates that the modem or data set has received a telephone
ringing signal.

SSIO Receive Serial Data accepts serial data (most-significant bit first) being sent to
the synchronous serial port.

TMRCLK0/
INT4

Timer/Counter0 Clock Input can serve as an external clock input for timer/counter0.
(The timer/counters can also be clocked internally.)

Interrupt 4 is an undedicated external interrupt.

TMRGATE0/
INT5

Timer/Counter0 Gate Input can control timer/counter0’s counting (enable, disable, or
trigger, depending on the programmed mode).

Interrupt 5 is an undedicated external interrupt.

TMRCLK1/
INT6

Timer/Counter1 Clock Input can serve as an external clock input for timer/counter1.
(The timer/counters can also be clocked internally.)

Interrupt 6 is an undedicated external interrupt.

TMRGATE1/
INT7

Timer/Counter1 Gate Input can control timer/counter1’s counting (enable, disable, or
trigger, depending on the programmed mode).

Interrupt 7 is an undedicated external interrupt.
5-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-15. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
5-24

DEVICE CONFIGURATION
Figure 5-16. Port 1 Configuration Register (P1CFG)

Port 1 Configuration
P1CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F820H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.

6 PM6 Pin Mode:

0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.

5 PM5 Pin Mode:

0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.

4 PM4 Pin Mode:

0 = Selects P1.4 at the package pin.
1 = Selects RI0# at the package pin.

3 PM3 Pin Mode:

0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.

2 PM2 Pin Mode:

0 = Selects P1.2 at the package pin.
1 = Selects DTR0# at the package pin.

1 PM1 Pin Mode:

0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.

0 PM0 Pin Mode:

0 = Selects P1.0 at the package pin.
1 = Selects DCD0# at the package pin.
5-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 5-17. Port 2 Configuration Register (P2CFG)

Port 2 Configuration
P2CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F822H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.

6 PM6 Pin Mode:

0 = Selects P2.6 at the package pin.
1 = Selects TXD0 at the package pin.

5 PM5 Pin Mode:

0 = Selects P2.5 at the package pin.
1 = Selects RXD0 at the package pin.

4 PM4 Pin Mode:

0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.

3 PM3 Pin Mode:

0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.

2 PM2 Pin Mode:

0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.

1 PM1 Pin Mode:

0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.

0 PM0 Pin Mode:

0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.
5-26

DEVICE CONFIGURATION
Figure 5-18. Port 3 Configuration Register (P3CFG)

Port 3 Configuration
P3CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INT0).

1 PM1 Pin Mode:

See Table 5-1 on page 5-8 for all the PM1 configuration options.

0 PM0 Pin Mode:

See Table 5-1 on page 5-8 for all the PM0 configuration options.
5-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

figura-
n the

re-
n Ex-

 to a

for

 that

e
ss.
5.4 DEVICE CONFIGURATION PROCEDURE

Before configuring the microprocessor, make the following selections:

• The set of peripherals to be used

• The signals to be available at the package pins

• The desired peripheral-peripheral and peripheral-core connections

Although final decisions regarding these selections may be influenced by the possible con
tions, we recommend that you initially make the selections without regard to limitations o
configurations.

We suggest the following procedure for configuring the device for your design. An aide for
cording the steps in the procedure and an example configuration are given in “Configuratio
ample” on page 5-28.

1. Pin Configuration. For each desired pin signal, consult the peripheral configuration
diagram to find the bit value in the pin configuration register that connects the signal
device pin. When the signal shares a pin that has no multiplexer, make a note of its
companion signal.

2. Peripheral Configuration. For each peripheral in your design, consult the peripheral
configuration diagram and the peripheral configuration register to find the bit values
your desired internal connections.

3. Configuration Review. Review the results of steps 1 and 2 to see if the configuration
registers have conflicting bit values. If conflicts exist, follow steps 3a and 3b.

a. Attempt to resolve the pin configuration conflicts first. In some cases you may find
using a different peripheral channel resolves the conflict.

b. Attempt to resolve peripheral configuration conflicts.

If conflicts remain, consider peripheral substitutions.

5.5 CONFIGURATION EXAMPLE

This section presents an example of a PC/AT*-compatible configuration. The last set of tables ar
blank; you can use them as worksheets as you follow the steps in the configuration proce

5.5.1 Example Design Requirements

The example is a PC/AT-compatible design with the following requirements:

• Interrupt Control Unit:

— External interrupt inputs available at package pins: INT1:0, INT7:4

• Timer Control Unit:

— Counters 0, 1: Clock input is on-chip programmable clock (PSCLK); no signals
connected externally.
5-28

DEVICE CONFIGURATION

bbre-

gisters
ld
— Counter 2: Clock input is on-chip programmable clock (PSCLK); no signals connected
to package pins

• DMA Unit:

— Not Used

• Asynchronous Serial I/O channel 0 (SIO0):

— Clock input is the internal clock SERCLK

— RXD0, TXD0 connected to package pins

— Modem Signals connected internally.

• Asynchronous Serial I/O channel 1 (SIO1):

— Clock input is the internal clock SERCLK

— Modem signals externally connected

• Synchronous Serial I/O (SSIO):

— Not Used

• Chip Select:

— Chip select signals CS6#, CS5:1#, UCS# connected to package pins

• Core and Bus Arbiter:

— Coprocessor signals connected to package pins

— HOLD and HLDA not connected to package pins

— LOCK# and PWRDOWN not connected to package pins

5.5.2 Example Design Solution

The configuration register bit values for the example design are recorded in the following a
viated register tables. Blank worksheets are provided for you to use when designing your system.

Table 5-4 summarizes the bit selections you would need to make in the pin configuration re
to implement the example design. Tables 5-5 through 5-8 summarize the bit selections you wou
make in the peripheral configuration registers.
5-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 5-4. Example Pin Configuration Registers

Bit # P1CFG Value Bit # P2CFG Value Bit # P3CFG Value

7 0 = P1.7 0 7 0 = P2.7 0 7 0 = P3.7 0

1 = HLDA 1 = CTS0# 1 = COMCLK

6 0 = P1.6 0 6 0 = P2.6 1 6 0 = P3.6 0

1 = HOLD 1 = TXD0 1 = PWRDOWN

5 0 = P1.5 0 5 0 = P2.5 1 5 0 = P3.5 0

1 = LOCK# 1 = RXD0 1 = INT3

4 0 = P1.4 0 4 0 = P2.4 1 4 0 = P3.4 0

1 = RIO# 1 = CS4# 1 = INT2

3 0 = P1.3 0 3 0 = P2.3 1 3 0 = P3.3 1

1 = DSR0# 1 = CS3# 1 = INT1

2 0 = P1.2 0 2 0 = P2.2 1 2 0 = P3.2 1

1 = DTR0# 1 = CS2# 1 = INT0

1 0 = P1.1 0 1 0 = P2.1 1 1 0 = P3.1 0

1 = RTS0# 1 = CS1# 1 = mux

0 0 = P1.0 0 0 0 = P2.0 0 0 0 = P3.0 0

1 = DCD0# 1 = CS0# 1 = mux

Bit # PINCFG Value Pins w/o Muxes X Pins w/o Muxes X

7 Reserved R DRQ0 X TMRCLK0

6 0 = CS6# 0 DCD1# INT4 X

1 = REFRESH# DRQ1 TMRGATE0

5 0 = Coprocessor Sigs.1 0 RXD1 X INT5 X

1 = TMR2 Signals2 DSR1# TMRCLK1

4 0 = DACK0# 1 STXCLK X INT6 X

1 = CS5# RI1# TMRGATE1

3 0 = EOP# 1 SSIORX X INT7 X

1 = CTS1#

2 0 = DACK1# 1

1 = TXD1 NOTES:

1 0 = SRXCLK 1 1 PEREQ, BUSY#, ERROR#

1 = DTR1# 2 TMROUT2, TMRCLK2, TMRGATE2

0 0 = SSIOTX 1

1 = RTS1#
5-30

DEVICE CONFIGURATION
Table 5-5. Example DMACFG Configuration Register

 Bit # DMACFG Value

7 0 = Enables DACK1# at chip pin 1

1 = Disables DACK1# at chip pin

6–4 000 = DRQ1 pin (external peripheral) connected to DREQ1 000

001 = SIO channel 1’s receive buffer full signal (RBFDMA1) connected to DREQ1

010 = SIO channel 0’s transmit buffer empty signal (TXEDMA0) to DREQ1

011 =SSIO receive holding buffer full signal (SSRBF) to DREQ1

100 = TCU counter 2’s output signal (OUT2) to DREQ1

101 = SIO channel 0’s receive buffer full signal (RBFDMA0) to DREQ1

110 = SIO channel 1’s transmit buffer empty signal (TXEDMA1) to DREQ1

111 = SSIO transmit holding buffer empty signal (SSTBE) to DREQ1

3 0 = Enables DACK0# at chip pin 1

1 = Disables DACK0# at chip pin

2–0 000 = DRQ0 pin (external peripheral) connected to DREQ0 000

001 = SIO channel 0’s receive buffer full signal (RBFDMA0) connected to DREQ0

010 = SIO channel 1’s transmit buffer empty signal (TXEDMA1) connected to DREQ0

011 = SSIO transmit holding buffer empty signal (THBE) connected to DREQ0

100 = TCU counter 1’s output signal (OUT1) connected to DREQ0

101 = SIO channel 1’s receive buffer full signal (RBFDMA1) connected to DREQ0

110 = SIO channel 0’s transmit buffer empty signal (TXEDMA0) connected to DREQ0

111 = SSIO receive holding buffer full signal (RHBF) connected to DREQ0
5-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 5-6. Example TMRCFG Configuration Register

Bit # TMRCFG Value

7 0 = All clock inputs enabled 0

1 = CLK2, CLK1, CLK0 forced to 0

6 0 = Connects GATEn to either the VCC pin or the TMRGATEn pin 0

1 = Turns GATEn on or off, depending on whether bits 1, 3, and 5 are set or clear

5 0 = With bit 6 clear: VCC to GATE2; with bit 6 set: GATE2 off. 0

1 = With bit 6 clear: TMRGATE2 pin conn. to GATE2; with bit 6 set: GATE2 on.

4 0 = PSCLK connected to CLK2 0

1 = TMRCLK2 connected to CLK2

3 0 = With bit 6 clear: VCC to GATE1; with bit 6 set: GATE1 turned off. 0

1 = With bit 6 clear: TMRGATE1 pin conn. to GATE1; with bit 6 set: GATE1 on.

2 0 = PSCLK connected to CLK1 0

1 = TMRCLK1 connected to CLK1

1 0 = With bit 6 clear: VCC to GATE0; with bit 6 set: GATE0 turned off. 0

1 = With bit 6 clear: TMRGATE0 pin conn. to GATE0; with bit 6 set: GATE0 on.

0 0 = PSCLK connected to CLK0 0

1 = TMRCLK0 connected to CLK0
5-32

DEVICE CONFIGURATION
Table 5-7. Example I NTCFG Configuration Register

Table 5-8. Example SIOCFG Configuration Register

Bit # INTCFG Value

7 0 = CAS2:0 disabled to pins 0

1 = CAS2:0 enabled from pins

6 0 = SIOINT1 connected to master IR3 0

1 = P3.1 connected to IR3

5 0 = SIOINT0 connected to master IR4 0

1 = P3.0 connected to IR4

4 0 = DMAINT connected to slave IR4. INT6 connected to slave IR5. 1

1 = INT6 connected to slave IR4. DMAINT connected to slave IR5.

3 0 = VSS connected to slave IR6 1

1 = INT7 connected to slave IR6

2 0 = VSS connected to slave IR5 1

1 = INT6 connected to slave IR5

1 0 = SSIO Interrupt to slave IR1 1

1 = INT5 connected to slave IR1

0 0 = VSS connected to slave IR0 1

1 = INT4 connected to slave IR0

SIOCFG

7 0 = SIO1 modem sigs. conn. to pin muxes 1

1 = SIO1 modem signals internal

6 0 = SIO0 modem sigs. conn. to pin muxes 0

1 = SIO0 modem signals internal

5–3 Reserved R

2 0 = PSCLK connected to SSIO BLKIN 1

1 = SERCLK connected to SSIO BCLKIN

1 0 = COMCLK connected to SIO1 BCLKIN 0

1 = SERCLK connected to SIO1 BCLKIN

0 0 = COMCLK connected to SIO0 BCLKIN 0

1 = SERCLK connected to SIO0 BCLKIN
5-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 5-9. Pin Configuration Register Design W oksheet

Bit # P1CFG Value Bit # P2CFG Value Bit # P3CFG Value

7 0 = P1.7 7 0 = P2.7 7 0 = P3.7

1 = HLDA 1 = CTS0# 1 = COMCLK

6 0 = P1.6 6 0 = P2.6 6 0 = P3.6

1 = HOLD 1 = TXD0 1 = PWRDOWN

5 0 = P1.5 5 0 = P2.5 5 0 = P3.5

1 = LOCK# 1 = RXD0 1 = INT3

4 0 = P1.4 4 0 = P2.4 4 0 = P3.4

1 = RIO# 1 = CS4# 1 = INT2

3 0 = P1.3 3 0 = P2.3 3 0 = P3.3

1 = DSR0# 1 = CS3# 1 = INT1

2 0 = P1.2 2 0 = P2.2 2 0 = P3.2

1 = DTR0# 1 = CS2# 1 = INT0

1 0 = P1.1 1 0 = P2.1 1 0 = P3.1

1 = RTS0# 1 = CS1# 1 = mux

0 0 = P1.0 0 0 = P2.0 0 0 = P3.0

1 = DCD0# 1 = CS0# 1 = mux

Bit # PINCFG Value Pins w/o Muxes X Pins w/o Muxes X

7 Reserved DRQ0 TMRCLK0

6 0 = CS6# DCD1# INT4

1 = REFRESH# DRQ1 TMRGATE0

5 0 = Coprocessor Sigs.1 RXD1 INT5

1 = TMR2 Signals2 DSR1# TMRCLK1

4 0 = DACK0# STXCLK INT6

1 = CS5# RI1# TMRGATE1

3 0 = EOP# SSIORX INT7

1 = CTS1#

2 0 = DACK1#

1 = TXD1 NOTES:

1 0 = SRXCLK 1 PEREQ, BUSY#, ERROR#

1 = DTR1# 2 TMROUT2, TMRCLK2, TMRGATE2

0 0 = SSIOTX

1 = RTS1#
5-34

DEVICE CONFIGURATION
Table 5-10. DMACFG Register Design Worksheet

 Bit # DMACFG Value

7 0 = Enables DACK1# at chip pin

1 = Disables DACK1# at chip pin

6–4 000 = DRQ1 pin (external peripheral) connected to DREQ1

001 = SIO channel 1’s receive buffer full signal (RBFDMA1) connected to DREQ1

010 = SIO channel 0’s transmit buffer empty signal (TXEDMA0) to DREQ1

011 =SSIO receive holding buffer full signal (SSRBF) to DREQ1

100 = TCU counter 2’s output signal (OUT2) to DREQ1

101 = SIO channel 0’s receive buffer full signal (RBFDMA0) to DREQ1

110 = SIO channel 1’s transmit buffer empty signal (TXEDMA1) to DREQ1

111 = SSIO transmit holding buffer empty signal (SSTBE) to DREQ1

3 0 = Enables DACK0# at chip pin

1 = Disables DACK0# at chip pin

2–0 000 = DRQ0 pin (external peripheral) connected to DREQ0

001 = SIO channel 0’s receive buffer full signal (RBFDMA0) connected to DREQ0

010 = SIO channel 1’s transmit buffer empty signal (TXEDMA1) connected to DREQ0

011 = SSIO transmit holding buffer empty signal (THBE) connected to DREQ0

100 = TCU counter 1’s output signal (OUT1) connected to DREQ0

101 = SIO channel 1’s receive buffer full signal (RBFDMA1) connected to DREQ0

110 = SIO channel 0’s transmit buffer empty signal (TXEDMA0) connected to DREQ0

111 = SSIO receive holding buffer full signal (RHBF) connected to DREQ0
5-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 5-11. TMRCFG Register Design Worksheet

Bit # TMRCFG Value

7 0 = All clock inputs enabled

1 = CLK2, CLK1, CLK0 forced to 0

6 0 = Connects GATEn to either the VCC pin or the TMRGATEn pin.

1 = Turns GATEn on or off, depending on whether bits 1, 3, and 5 are set or clear.

5 0 = With bit 6 clear: VCC to GATE2; with bit 6 set: GATE2 off.

1 = With bit 6 clear: TMRGATE2 pin conn. to GATE2; with bit 6 set: GATE2 on.

4 0 = PSCLK connected to CLK2

1 = TMRCLK2 connected to CLK2

3 0 = With bit 6 clear: VCC to GATE1; with bit 6 set: GATE1 turned off.

1 = With bit 6 clear: TMRGATE1 pin conn. to GATE1; with bit 6 set: GATE1 on.

2 0 = PSCLK connected to CLK1

1 = TMRCLK1 connected to CLK1

1 0 = With bit 6 clear: VCC to GATE0; with bit 6 set: GATE0 turned off.

1 = With bit 6 clear: TMRGATE0 pin conn. to GATE0; with bit 6 set: GATE0 on.

0 0 = PSCLK connected to CLK0

1 = TMRCLK0 connected to CLK0
5-36

DEVICE CONFIGURATION
Table 5-12. INTCFG Register Design Worksheet

Table 5-13. SIOCFG Register Design Worksheet

Bit # INTCFG Value

7 0 = CAS2:0 disabled to pins

1 = CAS2:0 enabled from pins

6 0 = SIOINT1 connected to master IR3

1 = P3.1 connected to IR3

5 0 = SIOINT0 connected to master IR4

1 = P3.0 connected to IR4

4 0 = DMAINT connected to slave IR4. INT6 connected to slave IR5.

1 = INT6 connected to slave IR4. DMAINT connected to slave IR5.

3 0 = VSS connected to slave IR6

1 = INT7 connected to slave IR6

2 0 = VSS connected to slave IR5

1 = INT6 connected to slave IR5

1 0 = SSIO Interrupt to slave IR1

1 = INT5 connected to slave IR1

0 0 = VSS connected to slave IR0

1 = INT4 connected to slave IR0

SIOCFG

7 0 = SIO1 modem sigs. conn. to pin muxes

1 = SIO1 modem signals internal

6 0 = SIO0 modem sigs. conn. to pin muxes

1 = SIO0 modem signals internal

5–3 Reserved

2 0 = PSCLK connected to SSIO BLKIN

1 = SERCLK connected to SSIO BCLKIN

1 0 = COMCLK connected to SIO1 BCLKIN

1 = SERCLK connected to SIO1 BCLKIN

0 0 = COMCLK connected to SIO0 BCLKIN

1 = SERCLK connected to SIO0 BCLKIN
5-37

6
BUS INTERFACE
UNIT

pports
t allow
U) can
fresh

com-
us,

 low-

us
CHAPTER 6
BUS INTERFACE UNIT

The processor communicates with memory, I/O, and other devices through bus operations. Ad-
dress, data, status, and control information define a bus cycle. The Bus Interface Unit su
read and write cycles to external memory and I/O devices. It also contains the signals tha
external bus masters to request and acquire control of the bus. The Bus Interface Unit (BI
execute memory read/write cycles, I/O read/write cycles, interrupt acknowledge cycles, re
cycles and processor halt/shutdown cycles.

This chapter is organized as follows:

• Overview (see below)

• Bus Operation (page 6-5)

• Bus Cycles (page 6-13)

• Bus Lock (page 6-34)

• External Bus Master Support (Using HOLD, HLDA) (page 6-35)

• Design Considerations (page 6-38)

6.1 OVERVIEW

The Intel386™ EX processor’s external bus is controlled by the bus interface unit (BIU). To
municate with memory and I/O, the external bus consists of a data bus, a separate address b
seven bus status pins, two data status pins, and three control pins.

• Bidirectional data bus (D15:0) can transfer 8 or 16 bits of data per cycle.

• Address bus includes the address pins (A25:1), a high-byte-enable pin (BHE#), and a
byte-enable pin (BLE#). Address pins select a word in memory, and byte-enable pins select
the byte within the word to access.

• Bus status pins include:

— ADS# indicates the start of a bus cycle and valid address bus outputs.

— W/R# identifies the bus cycle as a write or a read.

— M/IO# identifies the bus cycle as a memory or I/O access.

— D/C# identifies the bus cycle as a data or control cycle.

— LOCK# identifies a locked bus cycle.

— LBA# indicates that the processor generates an internal READY# for the current b
cycle.

— REFRESH# identifies a refresh bus cycle.
6-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

t the
ertain
out

:

nsfer-

uests

aster
e

iter

e by

.

.

e bus
• Data status pins indicate that data is available on the data bus for a write (WR#) or tha
processor is ready to accept data for a read (RD#). These pins are available so that c
system configurations can easily connect the processor directly to memory or I/O with
external logic.

• Bus control pins allow external logic to control the bus cycle on a cycle-by-cycle basis

— READY# indicates that internal logic has completed the current bus cycle or that
external hardware has terminated it.

— NA# requests the next address to be put on the bus during a pipelined bus cycle.

— BS8# indicates that the current bus transaction is for an 8-bit data bus.

The remaining external bus pins interface to external bus masters and external logic for tra
ring control of the bus.

• An external bus master activates the HOLD pin to request the external bus.

— The internal bus arbiter arbitrates between the HOLD input and other potential req
(DMA Units 0 and 1, Refresh Control Unit) based on their priorities.

— When another unit has control of the bus, the bus is released to the external bus m
based on the arbiter’s arbitration scheme (refer to “Bus Control Arbitration” on pag
12-9 for information on internal bus masters also controlled by the internal bus arb
and the arbitration protocol used by the arbiter).

— When the core has control of the bus, the arbiter passes the request on to the cor
asserting the core HOLD signal.

— The core finishes the current nonlocked bus transfer and releases the bus signals

— The core asserts the core HLDA signal to indicate that the bus has been released

— The arbiter then asserts the HLDA pin to indicate to the external bus master that th
has been released.
6-2

BUS INTERFACE UNIT
6.1.1 Bus Signal Descriptions

Table 6-1 describes the signals associated with the BIU.

Table 6-1. Bus Interface Unit Signals (Sheet 1 of 2)

Signal
Device Pin or
Internal Signal

only
Description

A25:1 Device pins Address Bus:

Outputs physical memory or I/O addresses. These signals are valid
when ADS# is active and remain valid until the next T1, T2P, or Ti.

ADS# Device pin Address Strobe:

Indicates that the processor is driving a valid bus-cycle definition and
address. (The processor is driving W/R#, D/C#, M/IO#, WR#, RD#,
UCS#, CS6:0#, LOCK#, REFRESH#, A25:1, BHE#, and BLE# on its
pins.)

BHE#
BLE#

Device pins Byte Enable Outputs:

Indicates which byte of the 16-bit data bus of the processor is being
transferred.

BHE# BLE# Output
0 0 word transfer
0 1 upper byte (D15:8) transfer
1 0 lower byte (D7:0) transfer
1 1 refresh cycle

BS8# Device pin Bus Size:

Indicates that the currently addressed device is an 8-bit device.

D15:0 Device pins Data Bus:

Inputs data during memory read, I/O read, and interrupt acknowledge
cycles; outputs data during memory write and I/O write cycles. During
reads, data is latched at the falling edge of phase 2 (coincides with
rising edge of PH1) of T2, T2P, or T2i when READY# is sampled
active. During writes, this bus is driven during phase 2 of T1 and T1P
and remains active until phase 2 of the next T1, T1P, or Ti.

LBA# Device pin Local Bus Access:

Indicates that the processor provides the READY# signal internally to
terminate a bus transaction. This signal is active when the processor
accesses an internal peripheral or when the chip-select unit generates
the READY# signal for accesses to an external peripheral. LBA# is
also active when internal READY# generation is enabled for
Halt/Shutdown cycles and the Watchdog Timer Unit’s Bus Monitor
Mode timeouts.

The LBA# signal goes active in the first T2 state and stays active until
the first T2, T2i or T2P state of the next cycle that does not have
internal READY# generation.

LOCK# Device pin Bus Lock:

Prevents other bus masters from gaining control of the system bus.
6-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
M/IO#
D/C#
W/R#
REFRESH#

Device pins Bus Cycle Definition Signals (Memory/IO, Data/Control, Write/Read,
and Refresh):

These four status outputs define the current bus cycle type, as shown
in Table 6-2.

NA# Device pin Next Address:

Requests address pipelining.

RD# Device pin Read Enable:

Indicates that the current bus cycle is a read cycle and the data bus is
able to accept data.

READY# Device pin Ready:

This bidirectional pin is used to terminate the current bus cycle. The
processor drives READY# when LBA# is active. The processor
samples the READY# pin at the falling edge of Phase 2 of T2, T2P or
T2i.

The READY# signal is also used to deassert the WR# signal (Refer to
“Write Cycle” on page 6-16).

WR# Device pin Write Enable:

Indicates that the current bus cycle is a write cycle and valid data is
present on the data bus.

Table 6-1. Bus Interface Unit Signals (Sheet 2 of 2)

Signal
Device Pin or
Internal Signal

only
Description
6-4

BUS INTERFACE UNIT

d RE-
6.2 BUS OPERATION

The processor generates eight different types of bus operations:

• Memory data read (data fetch)

• Memory data write

• Memory code read (instruction fetch)

• I/O data read (data fetch)

• I/O data write

• Halt or shutdown

• Refresh

• Interrupt acknowledge

These operations are defined by the states of four bus status pins: M/IO#, D/C#, W/R# an
FRESH#. Table 6-2 lists the various combinations and their definitions.

Table 6-2. Bus Status Definitions

M/IO# D/C# W/R# REFRESH# Bus Operation

0 0 0 1 interrupt acknowledge cycle

0 0 1 1 never occurs

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 0 0 1 memory code read

1 0 1 1 halt or shutdown cycle*

1 1 0 0 refresh cycle

1 1 0 1 memory data read

1 1 1 1 memory data write

*The byte address is 2 for a halt and 0 for a shutdown. For both conditions, BHE# is high and BLE# is low.
6-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 6-1. Basic External Bus Cycles

State

A25:1, BHE#

BLE#, D/C#

M/IO#

W/R#

ADS#

NA#

D15:0

RD#

WR#

BS8#

READY#

LOCK#

T1 T2 T1 T2 Ti T1 T2 T1 T2

A2305-02

Cycle 1

Nonpipelined

External

(Write)

[Late Ready]

Cycle 2

Nonpipelined

External

(Read)

Cycle 3

Nonpipelined

External

(Write)

[Late Ready]

Cycle 4

Nonpipelined

External

(Read)

Idle

Cycle

REFRESH#

LBA#

CLK2

CLKOUT

Valid 1 Valid 2 Valid 3

Out 1 In 2 Out 3 In 4

Valid 1 Valid 2 Valid 3 Valid 4

Valid 4
6-6

BUS INTERFACE UNIT

y
ate the

consists

 itself
 used
ER

rnal
 This
d logic

ampled
edge

 cycles

us state

e

ate,

n the
 the

ests are
 and Ti

s cycle
n an idle

 status
e bus
-
-
en the
6.2.1 Bus States

The processor uses a double-frequency clock input (CLK2). This clock is internally divided b
two and synchronized to the falling edge of RESET (see Figure 8-2 in Chapter 8) to gener
internal processor clock signal. Each processor clock cycle is two CLK2 cycles wide.

Each bus cycle is composed of at least two bus states: T1 and T2. Each bus state in turn
of two CLK2 cycles, which can be thought of as Phase 1 (PH1) and Phase 2 (PH2) of the bus state.

External circuitry can use the CLKOUT signal (generated by the processor) to synchronize
with the processor. This signal is a replica of the PH1P clock, which is the PH1 clock that is
by the internal peripherals. (For more information, refer to Chapter 8, “CLOCK AND POW
MANAGEMENT UNIT.”) The CLKOUT signal is used as a phase status indicator for exte
circuitry. All device inputs are sampled and outputs are activated at CLK2 rising edges.
makes synchronous circuit design easy through the use of rising-edge-triggered, registere
(such as PALs, PLDs and EPLDs).

Many signals are sampled by the processor on every other CLK2 rising edge: some are s
on the CLK2 edge when CLKOUT is going high, while others are sampled on the CLK2
when PH1 is going low.

The maximum data transfer rate for a bus operation is 16 bits for every two processor clock
(two CLKOUT cycles).

During the first bus state (T1), address and bus status pins go active. During the second b
(T2), external logic and devices respond.

• When the READY# input is sampled low at the falling edge of PH2 in T2, the bus cycl
terminates.

• When READY# is high when sampled, the bus cycle continues for an additional T2 st
called a wait-state, and READY# is sampled again. This process continues until READY#
is sampled active, at which point the bus cycle terminates.

Wait-states are added until READY# is sampled low. READY# is sampled externally whe
LBA# signal is inactive. When the LBA# signal is active, the processor is generating
READY# signal internally. READY# can be generated internally by either an internal peripheral
or the chip-select unit’s wait-state generator. When no bus cycles are needed (no bus requ
pending), the processor remains in the idle bus state, Ti. The relationship between T1, T2,
is shown in Figure 6-2.

From an idle bus, the processor begins a bus cycle by first driving a valid address and bu
status onto the address and status buses. Hardware can distinguish the difference betwee
cycle and an active bus cycle by the address strobe (ADS#) signal being driven active. TheADS#
signal remains active for only the first T-state of the bus cycle, while the address signals and
signals remain active until the bus cycle is terminated by an active READY# signal or th
cycle is pipelined. Pipelined bus cycles are discussed in “Pipelining” on page 6-8. Basic bus cy
cles are illustrated in Figure 6-1. The bus status signals indicate the type of bus cycle the proces
sor is executing. Notice that the signal combinations marked as invalid states may occur wh
bus is idle and ADS# is inactive.
6-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 using

us cycle
o over-

e,
sing

sfer
y 3 T-
s time
lower
n-pipe-

devic-
Memory read and memory write cycles can be locked to prevent another bus master from
the local bus. This allows for indivisible read-modify-write operations.

Figure 6-2. Simplified Bus State Diagram
(Does Not Include Address Pipelining or Hold states)

6.2.2 Pipelining

The processor can control the address and status outputs so that the outputs for the next b
become valid before the end of the present bus cycle. This technique, allowing bus cycles t
lap, is called pipelining.

Pipelining increases bus throughput without decreasing allowable memory or I/O access tim
thus allowing high bandwidth with relatively slow, inexpensive components. In addition, u
pipelining to address slower devices can yield the same throughput as addressing faster devices
with no pipelining. With pipelining, a device operating at 33 MHz (CLK2 = 66 MHz) can tran
data at 33 Mbytes per second while requiring a device with access time of approximatel
states (90 ns at 33 MHz, neglecting signal delays). Without address pipelining, the acces
has to be approximately 2 T-states (60 ns at 25 MHz). Therefore, when pipelining is used, s
devices can be used in the system to achieve performance similar to a faster device in a no
lined system.

Pipelining is not supported during I/O bus cycles and BS8 cycles (16-bit accesses to 8-bit
es).

NOTE
During I/O cycles, NA# is ignored. NA# must be kept deasserted (blocked
externally) during the T2 states of BS8 memory cycles.

Bus States:

T1 - First clock of a non-pipelined bus cycle (CPU drives

new address and asserts ADS#).

T2 - Subsequent clocks of a bus cycle when NA# has not

been sampled asserted in the current bus cycle.

Ti - Idle State

The fastest bus cycle consists of two states: T1 and T2.

Ti T2

A2484-02

T1

READY# Asserted •� No Request

READY# Asserted •

Request Pending

No Request

READY# Negated

Always

Request Pending

Reset Asserted
6-8

BUS INTERFACE UNIT

of
ice

en the
ocessor
-

t is a

ess
tivate

ansfer.

e cy-

te of

r byte
NOTE
Pipelining is also supported during memory cycles initiated by the two
integrated DMA units.

Refer to “Pipelined Cycle” on page 6-19 for a description of pipelined cycles.

6.2.3 Data Bus Transfers and Operand Alignment

The processor can address up to 64 Mbytes (226 bytes, addresses 0000000H–3FFFFFFH)
physical memory and up to 64 Kbytes (216 bytes, addresses 0000H–FFFFH) of I/O. The dev
maintains separate physical memory and I/O spaces.

A programmer views the address space (memory or I/O) as a sequence of bytes:

• Words consist of 2 consecutive bytes

• Doublewords consist of 4 consecutive bytes

However, in the system hardware, address space is implemented in 2-byte portions. Wh
processor reads a word, it accesses a byte from each portion of the 16-bit data bus. The pr
automatically translates the programmer’s view of consecutive bytes into this hardware imple
mentation.

Memory and I/O spaces are organized physically as sequences of 16-bit words (225 16-bit mem-
ory locations and 215 16-bit I/O ports maximum). Each word starts at a physical address tha
multiple of 2 and has 2 individually addressable bytes at consecutive addresses.

Pins A25:1 correspond to the most-significant bits of the physical address; these pins addr
words of memory. The least-significant bit of the physical address is used internally to ac
the appropriate byte enable outputs (BHE# or BLE# or both).

Data can be transferred in quantities of either 8 or 16 bits for each bus cycle of a data tr
When a data transfer can be completed in a single cycle, the transfer is said to be aligned. For
example, a word transfer involving D15:0 and activating BHE# and BLE# is aligned.

Word transfers that cross a word boundary or doubleword transfers that cross two word bound-
aries are called nonaligned transfers. Nonaligned word transfers require two bus cycles, while
nonaligned doubleword transfers require three. The processor automatically generates thes
cles. For example:

• A word (16-bit) transfer at (byte) address 03H requires two byte transfers:

— The first activates word address 04H and uses D7:0 (to write or read the upper by
the 16-bit word)

— The second activates word address 02H and uses D15:8 (to write or read the lowe
of the 16-bit word)
6-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

d

d the

upper

er

h trans-
 aligned

n in-
al pe-
rrectly
al. The

igure
sim-
l
s the
• A doubleword (32-bit) transfer at (byte) address 03H requires three transfers, one wor
transfer and two byte transfers:

— The first word transfer activates word address 04H and uses D15:0 (to write or rea
middle 2 bytes of the 32-bit doubleword)

— The next transfer activates word address 06H and uses D7:0 (to write or read the
byte of the 32-bit word)

— The last transfer activates word address 02H and uses D15:8 (to write or read the low
byte of the 32-bit word)

Table 6-3 shows the sequence of bus cycles for all possible alignments and operand lengt
fers. Even though nonaligned transfers are transparent to a program, they are slower than
transfers (due to the extra cycles needed) and should be avoided.

6.2.4 Ready Logic

A bus cycle is terminated externally by asserting the READY# pin or internally by either a
ternal peripheral or the Chip-select Unit’s wait-state logic. When an access is to an intern
ripheral, the address also goes out to the external bus. When an external device inco
decodes a match to the address and drives the READY# pin, contention occurs on the sign
LBA# pin should be used to alleviate the possibility of contention on the READY# pin. The
READY# pin is an output of the processor whenever LBA# is asserted and an input to the pro-
cessor whenever LBA# is deasserted.

The LBA# pin becomes active when the processor is generating the READY# internally. F
6-3 shows the implementation of the READY# signal using the LBA# signal. If you wish to
plify decoding of address space and overlap internal I/O registers, you need to provide externa
logic to monitor LBA# and end the bus cycle externally when the processor generate
READY# internally.

NOTE
Since LBA# may be used as an output-enable by both the internal and external
READY# buffers, care must be taken in selecting the external READY# buffer
to minimize contention on the READY# signal caused by differences in buffer
characteristics.

Table 6-3. Sequence of Nonaligned Bus Transfers

Transfer
Type

Physical
Address

First Cycle Second Cycle Third Cycle

Address
Bus

Byte
Enable

Address
Bus

Byte
Enable

Address
Bus

Byte
Enable

word 4N+1 4N BHE# 4N+2 BLE#

word 4N+3 4N+4 BLE# 4N+2 BHE#

doubleword 4N+1 4N+4 BLE# 4N BHE# 4N+2 both

doubleword 4N+2 4N+4 both 4N+2 both

doubleword 4N+3 4N+4 both 4N+6 BLE# 4N+3 BHE#
6-10

BUS INTERFACE UNIT

 state.
t bus
r may

n a cy-
d then
ctive

2, T2i
Figure 6-3. Ready Logic

When an internal cycle occurs, the LBA# signal becomes active in Phase 1 of the first T2
It then stays active until the rising edge of PH1 of the first T2, T2i or T2P state of the nex
cycle that requires external READY# to terminate the bus cycle. For example, the processo
start an internal bus cycle, go through a few idle states, perform another internal cycle, the
cle in which the Chip-select Unit generates READY#, run through a few more idle states an
finally do a cycle in which READY# needs to be generated by external logic. LBA# goes a
in the first T2 state of the first internal cycle, and stay active through the next two cycles (even
during all the idle states in between) and go inactive at the rising edge of PH1 in the first T
or T2P state of the final cycle (the one that requires an external READY# to terminate).

NOTE
LBA# is deasserted during HOLD cycles.

A2485-01

Bus

Unit

READY#

LBA#

Chip BoundaryTo Internal Units
6-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 6-4 shows internal and external bus cycles.

Figure 6-4. Basic Internal and External Bus Cycles

State

A25:1, BHE#

BLE#, D/C#

M/IO#

W/R#

ADS#

NA#

D15:0

RD#

WR#

BS8#

LOCK#

T1 T2 T1 T2 T1 T2 Ti T1 T2

Cycle 1

Nonpipelined

External

(Write)

[Late Ready]

Cycle 2

Nonpipelined

Internal

(Read)

Cycle 3

Nonpipelined

Internal

(Write)

[Early Ready]

Cycle 4

Nonpipelined

External

(Read)

REFRESH#

LBA#

CLK2

CLKOUT

Valid 1 Valid 2 Valid 3

Out 1

Valid 1 Valid 2 Valid 3

In

2 Out 3 In

4

Idle

Cycle

Idle

Cycle

Idle

Cycle

Ti Ti

End Cycle 1 End Cycle 2 End Cycle 3

READY#

End Cycle 4

Valid 4

Valid 4

A2486-03
6-12

BUS INTERFACE UNIT

e, to
” on

state
ith

ctive
he
/R#,
ould
 of
e

 read-
s are

DS#)

ta bus
6.3 BUS CYCLES

The processor executes five types of bus cycles:

• Read

• Write

• Interrupt

• Halt/shutdown

• Refresh

6.3.1 Read Cycle

Read cycles are of two types:

• In a pipelined cycle, the address and status signals are output in the previous bus cycl
allow longer memory access times. Pipelined cycles are described in “Pipelined Cycle
page 6-19.

• In a nonpipelined cycle, the address and status signals become valid during the first T-
of the cycle (T1). Figure 6-5 shows the timing for two nonpipelined read cycles (one w
and one without a wait-state).

The sequence of signals for the nonpipelined read cycle is as follows:

1. The processor initiates the cycle by driving the address bus and the status signals a
and asserting ADS#. The type of bus cycle occurring is determined by the states of t
address bus (A25:1), byte enable pins (BLE# and BHE#), and bus status outputs (W
M/IO#, D/C#, REFRESH#, and LOCK#). Because of output delays, these signals sh
be sampled at the rising edge of the CLK2 signal that coincides with the falling edge
PH2, when ADS# is definitely active. For a read cycle, the bus status outputs have th
following states:

• W/R# is low

• M/IO# is high for a memory read and low for an I/O read

• D/C# is high for a memory or I/O data read and low for a memory code read

• REFRESH# is deasserted

• LOCK# is asserted for a locked cycle and deasserted for a nonlocked cycle. In a
modify-write sequence, both the memory data read and memory data write cycle
locked. No other bus master should be permitted to control the bus between two
locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of A
remain active through the end of the read cycle.

2. At the start of phase 2 of T1, RD# becomes active as the processor prepares the da
for input. This indicates that the processor is ready to accept data.
6-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ert

med

s)
e

, and
.

3. When a chip-select region is enabled for the current read cycle but internal READY#
generation is disabled for that region, and the Chip-select Unit is programmed to ins
wait-states, the READY# signal is ignored (not sampled) by the processor until the
programmed number of wait-states are inserted into the cycle.

4. At the falling edge of PH2 in every T2 state (after the wait-states, if any are program
in the Chip-select Unit, have expired), READY# is sampled. If READY# is active, the
processor reads the input data on the data bus and deactivates RD#.

5. If READY# is high, wait states are added (additional T2 states for nonpipelined cycle
until READY# is sampled low. READY# is sampled at the end of each T2 state (at th
falling edge of PH2).

6. Once READY# is sampled low, the processor reads the input data, deactivates RD#
terminates the read cycle. If a new bus cycle is pending, it begins on the next T-state
6-14

BUS INTERFACE UNIT
Figure 6-5. Nonpipelined Address Read Cycles

A2487-03

LOCK#

D15:0

CLK2

BHE#, BLE#, A25:1

M/IO#, D/C#

Valid1

RD#

READY#

Ti T1 T2 T1 T2 T2 Ti

Cycle 1

Non-pipelined

External

(Read)

Cycle 2

Non-pipelined

External

(Read)

Idle

CLKOUT

Idle

ADS#

NA#

REFRESH#

W/R#

End Cycle End Cycle

In1 In2

WR#

LBA#

BS8#

Valid2

Valid1 Valid2
6-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

t a

ctive
he
/R#,
ould
 of
he

es,

ly.
 in

 read-

e
-State

ert
the
6.3.2 Write Cycle

Write cycles are of two types:

• Pipelined. Pipelined write cycles are described in “Pipelined Cycle” on page 6-19.

• Nonpipelined. Figure 6-6 shows two nonpipelined write cycles (one with and one withou
wait state).

The sequence of signals for a nonpipelined write cycle is as follows:

1. The processor initiates the cycle by driving the address bus and the status signals a
and asserting ADS#. The type of bus cycle occurring is determined by the states of t
address bus (A25:1), byte enable pins (BLE# and BHE#), and bus status outputs (W
M/IO#, D/C#, REFRESH#, and LOCK#). Because of output delays, these signals sh
be sampled at the rising edge of the CLK2 signal that coincides with the falling edge
PH2, when ADS# is definitely active. For a write cycle, the bus status outputs have t
following states:

• W/R# is high

• M/IO# is high for a memory write and low for an I/O write

• D/C# is high for a memory write or I/O write cycle. During halt and shutdown cycl
D/C# is low. Unless D/C# is decoded by external chip-select logic, the shutdown or
halt cycle looks like a memory write cycle to byte address zero or two, respective
Therefore, the signal D/C# needs to be decoded for memory device chip-selects
this address range (normally SRAM or DRAM devices) in order to recognize halt and
shutdown cycles, thus preventing incorrect write cycles to memory

• REFRESH# is deasserted

• LOCK# is asserted for a locked cycle and deasserted for an unlocked cycle. In a
modify-write sequence, both the memory data read and memory data write cycles are
locked. No other bus master should be permitted to control the bus between two
locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS# and
WR#) remain active through the end of the write cycle.

2. At the start of Phase 2 in T1, the WR# signal is asserted and the CPU begins to driv
output data on its data pins. The data remains valid until the start of phase 2 in the T
after the present bus cycle has terminated.

3. If a chip-select region is enabled for the current read cycle but internal READY#
generation is disabled for that region, and the Chip-select Unit is programmed to ins
wait-states, then the READY# signal is ignored (not sampled) by the processor until
programmed number of wait-states are inserted into the cycle.
6-16

BUS INTERFACE UNIT

T2

e

all
2

ct hold

 at
2

ing,
4. The WR# signal can be deasserted in two ways.

• Early Ready: WR# is deasserted at the rising edge of CLK2 in the middle of the
state, after any wait states programmed in the Chip-select Unit have expired.

At the rising edge of PH2, READY# is sampled. If it is found active, WR# is
synchronously deasserted in the middle of T2, driven inactive by the rising edge of
the PH2 clock. The write cycle is then terminated at the end of the T2 state.

NOTE
When READY# is generated by the processor (e.g., when the Chip-select Unit
generates it), then the write cycle is always an Early Ready cycle.

• Late Ready: When READY# goes low after the rising edge of PH2 of the T2 stat
(after the wait-states, if any are programmed in the Chip-select Unit, have expired),
WR# is asynchronously deasserted as soon as READY# is asserted (after a sm
delay caused by the logic). The write cycle is then terminated at the end of the T
state.

The WR# signal operates in this manner to ensure sufficient address and chip-sele
time during write cycles (required by many memory and I/O devices). In the first case, the
address and chip-select hold time is approximately one CLK2 cycle.

5. When READY# is high, wait-states are added (additional T2 states for nonpipelined
cycles) until READY# is sampled low. READY# is sampled in each T2 state (starting
the rising edge of PH2) to deassert the WR# signal appropriately, and at the end of each T
state (at the falling edge of PH2) to terminate the cycle.

6. Once READY# is sampled low, the write cycle terminates. If a new bus cycle is pend
it begins on the next T-state.
6-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 6-6. Nonpipelined Address Write Cycles

A2488-02

LOCK#

D15:0

CLK2

BHE#, BLE#, A25:1

M/IO#, D/C#

RD#

READY#

Ti T1 T2 T1 T2 T2 Ti

Cycle 1

Nonpipelined

External

(Write)

[Late Ready]

Cycle 2

Nonpipelined

External

(Write)

[Early Ready]

Idle

CLKOUT

Idle

ADS#

NA#

REFRESH#

W/R#

End Cycle 1 End Cycle 2

WR#

LBA#

Valid 2Valid 1

BS8#

Valid2Valid1

Out 2Out 1
6-18

BUS INTERFACE UNIT

y sub-
. Pipe-

ed by
 the

n valid
s) and
 is ter-
ing

-

cur:

 the
tus
. T2P

the
tus

 is not
er a

e is

(cycle
 en-
xt T2P
e until
6.3.3 Pipelined Cycle

The pipelining feature of the processor is normally used to achieve zero-wait-state memor
systems using devices that are slower than those in a zero-wait-state non-pipelined system
lining allows bus cycles to be overlapped, increasing the amount of time available for the memory
or I/O device to respond. The next address (NA#) input controls pipelining. NA# is generat
logic in the system to indicate that the address and status buses are no longer needed bysys-
tem. When pipelining is not desired in a system, the NA# input should be tied inactive.

During any particular bus cycle, NA# is sampled only after the address and status have bee
for one T-state (the T1P state of pipelined cycles or the first T2 state of nonpipelined cycle
is continuously sampled in each subsequent T-state until it is found active or the bus cycle
minated. In particular, NA# is sampled at the rising CLK2 edge in the middle of the T-state (ris
edge of Phase 2).

When the system is designed to assert NA#, pipelining may be dynamically requested on a cycle
by-cycle basis by asserting NA#. Typically, only some devices in a system are pipelined.

NOTE
Asserting the NA# pin is a request for pipelining. Asserting NA# during a bus
cycle does not guarantee that the next cycle is pipelined. NA# is ignored
during I/O cycles and must be kept deasserted during the T2 states of BS8
memory cycles.

During the T2 state of a nonpipelined cycle, if NA# is sampled active, one of four states oc

• If a bus cycle is internally pending in the processor and READY# is returned inactive to
processor and the HOLD input is inactive, then the address, byte enables, and bus sta
signals for the next bus cycle are driven and the processor bus unit enters a T2P state
states are repeated until the bus cycle is terminated.

• If a bus cycle is internally pending in the processor and READY# is returned active to
processor and the HOLD input is inactive, then the address, byte enables, and bus sta
signals for the next bus cycle are driven and the processor bus unit enters a T1
(nonpipelined) state. In effect, the NA# input is ignored in this case.

• If READY# is returned inactive and either a bus cycle is not internally pending or the
HOLD input is active, then the address and byte enables enter an unknown state, the bus
status signals go inactive, and the processor bus unit enters a T2i state. If the bus cycle
terminated, then the next state is either a T2P state or a T2i state depending on wheth
bus cycle is pending.

• If HOLD is asserted to the processor and READY# is returned active, then the Th stat
entered from a T2 state regardless of whether an internal bus cycle is pending.

Figure 6-8 illustrates the effect of NA# (Figure 6-7 shows the full bus state diagram including the
states related to pipelining). During the second T-state (T2) of a nonpipelined read cycle
2), NA# is sampled low. A bus cycle was pending internally (cycle 3) and the address, byte
ables, and bus status signals for this pending bus cycle (cycle 3) are driven during the ne
state (the first wait state of the current bus cycle). The RD# and WR# signals do not chang
READY# is sampled low.
6-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 6-7. Complete Bus States (Including Pipelined Address)

A2376-02

HOLD Asserted

READY# Asserted •

HOLD Asserted

HOLD Negated •

Request Pending

READY# Asserted •

HOLD Asserted

HOLD
 N

eg
at

ed
 •

No
Req

ue
st

Reset

Asserted

HOLD Negated •

No Request

HOLD
 A

ss
er

te
d

READY# Negated •

NA# Negated

READY# Asserted •

HOLD Negated •

Request Pending

Always NA# Negated

READY# Asserted •

HOLD Negated •

Request Pending

N
A

A

ss
er

te
d

•

(H
O

LD
 A

ss
er

te
d

+
N

o
R

eq
ue

st
)

Request Pending •

HOLD Negated

READY# Asserted •

HOLD Negated •

No Request

(N
o

R
eq

ue
st

 +
 H

O
LD

 A
ss

er
te

d)
 •

N

A

A
ss

er
te

d
•

R
E

A
D

Y

N
eg

at
ed

READY# Negated •

(No Request +

HOLD Asserted)

READY# Negated

R
E

A
D

Y

N
eg

at
ed

 •

N
A

A

ss
er

te
d

•

H

O
LD

 N
eg

at
ed

 •

R
eq

ue
st

 P
en

di
ng

R
E

A
D

Y

N
eg

at
ed

 •

R
eq

ue
st

 P
en

di
ng

 •

H
O

LD
 N

eg
at

ed

R
E

A
D

Y

A
ss

er
te

d

T2P

T2i

T2 T1PT1Ti

Th

Bus States:

T1—first clock of a non-pipelined bus cycle.

T2—subsequent clock of a bus cycle when NA# has
not been sampled active in the current bus cycle.

T2i—subsequent clocks of a bus cycle when NA# has
been sampled active in the current bus cycle and there
is not yet an internal bus request pending.

T2P—subsequent clocks of a bus cycle when NA# has
been sampled active in the current bus cycle and there
is an internal bus request pending.

T1P—first clock of a pipelined bus cycle.

Ti—idle state.

Th—hold acknowledge state.

READY# Asserted • HOLD Negated • No Request

N
A

A

ss
er

te
d

•

H

O
LD

 N
eg

at
ed

 •

R
eq

ue
st

 P
en

di
ng
6-20

BUS INTERFACE UNIT
Figure 6-8. Pipelined Address Cycles

A2477-03

LOCK#

D15:0

Valid 2 Valid 3 Valid 4

CLK2

BHE#, BLE#, A25:1,

M/IO#, D/C#

Valid3 Valid4Valid2Valid1

W/R#

ADS#

NA#

T1P T2P T2P T1P T2 T2P T1P T2i T2P T1P

Cycle 1

Pipelined

(Write)

[Late Ready]

Cycle 2

Non-pipelined

(Read)

Cycle 3

Pipelined

(Write)

[Late Ready]

Cycle 4

Pipelined

(Read)

CLKOUT

ADS# is asserted as

soon as the CPU has

another bus cycle to

perform, which is not

always immediately

after NA# is asserted.

As long as the CPU enters the T2P

state during Cycle 3, address

pipelining is maintained in Cycle 4.

Note ADS# is

asserted in

every T2P state.

In

2

Asserting NA# more

than once during

any cycle has no

additional effects

NA# could have been asserted in T1P

if desired. Assertion now is the latest

time possible to allow the CPU to enter

T2P state to maintain pipelining in cycle 3.

READY#

RD#

WR#

LBA#

BS8#

Out 1Out

Valid 1

Out 3

T2
6-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 for
 bus cy-
for this

 for
e a bus
nd the
active
(Ti).

d bus
eline
long as
t as the

ate) is

g typ-
ed
lined be-
s occur.

 status

pled

When

nals are
se the

ilored

ry few
 has en-
a
ined.
In cycle 3, NA# is sampled in the first T-state (T1P); the address and status have been valid
one previous T-state and this is a new bus cycle. NA# is sampled active and — because a
cle (cycle 4) is pending internally — the address, byte enables, and bus status signals
pending bus cycle (cycle 4) are driven during the next T2P state.

In cycle 4, NA# is sampled in the first T-state (T1P); the address and status have been valid
one previous T-state, and this is a new bus cycle. NA# is sampled active and — becaus
cycle is not internally pending — the address and byte enables go to an unknown state a
bus status signals go inactive in the next T2i state. When this cycle is terminated by an
READY# signal, there is no bus cycle pending internally and the bus enters the idle state

From an idle bus, an additional overhead of one clock cycle is required to start a pipeline
cycle (this is true with all pipelined bus architectures). This additional clock is used to pip
the address and status signals for the first bus cycle in a train of pipelined bus cycles. As
back-to-back bus cycles are executed, the pipelined bus can maintain the same throughpu
nonpipelined bus. Only when the bus pipeline gets broken (by entering an idle or hold st
the additional one-clock overhead required to start the pipe again for the next train of pipelined
bus cycles.

The first bus cycle after an idle bus state is always nonpipelined. Systems that use pipelinin
ically assert NA# during this cycle to enter pipelining. To initiate pipelining, this nonpipelin
cycle must be extended by at least one T-state so that the address and status can be pipe
fore the end of the cycle. Subsequent cycles can be pipelined as long as no idle bus cycle

Specifically, NA# is sampled at the start of phase 2 of any T-state in which the address and
signals have been active for one T-state and a new cycle has begun:

• The first T2 state of a nonpipelined cycle (the second T-state)

• The T1P state of a pipelined cycle (the first T-state)

• Any wait state of a nonpipelined or pipelined cycle unless NA# has already been sam
active

Once NA# is sampled active, it remains active internally throughout the current bus cycle.
NA# and READY# are active in the same T2 state, the state of NA# is irrelevant because
READY# causes the start of a new bus cycle. Therefore, the new address and status sig
always driven, regardless of the state of NA#. NA# has no effect on a refresh cycle becau
refresh cycle is entered from an idle bus state and exits to an idle bus state.

With this processor, address pipelining is optional so that bus cycle timing can be closely ta
to the access time of the memory device.

• Pipelining can be activated once the address is latched externally.

• Pipelining can be not activated if the address is not latched.

For systems that use address pipelining, the great majority of accesses are pipelined. Ve
idle states occur in an Intel386 EX processor system. This means that once the processor
tered pipelining, another bus cycle request is almost always internally pending, resulting in con-
tinuous train of pipelined cycles. In measured systems, about 85% of bus cycles are pipel
6-22

BUS INTERFACE UNIT

nal. It
 slave
t

e
ending
errupt

 output
upt ac-
bled).
s each
re 6-9.

h bus

an
al is

LD
pt

s;

ge
lid

state
en
A complete discussion of the considerations for using pipelining can be found in the Intel386™

SX Processor datasheet (order number 240187) or the Intel386™ SX Microprocessor Hardware
Reference Manual (order number 240332).

6.3.4 Interrupt Acknowledge Cycle

An interrupt causes the processor to suspend execution of the current program and execute in-
structions from another program called an interrupt service routine. Interrupts are described in
Chapter 9.

The interrupt control unit coordinates the interrupts of several devices, internal and exter
contains two 82C59A programmable interrupt controllers (PICs) connected in cascade. The
82C59A module controls up to five internal interrupt sources and up to four external interrup
sources depending upon the configuration programmed. The master 82C59A module controls th
slave 82C59A, three internal interrupt sources and up to six external interrupt sources dep
upon the configuration programmed. When a device signals an interrupt request, the int
control unit activates the processor’s INTR input.

Interrupt acknowledge cycles are special bus cycles that enable the interrupt control unit to
a service-routine vector onto the data bus. The processor performs two back-to-back interr
knowledge cycles in response to an active INTR input (as long as the interrupt flag is ena
Interrupt acknowledge cycles are similar to regular bus cycles in that the processor initiate
bus cycle and an active READY# terminates each bus cycle. The cycles are shown in Figu
The sequence of signals for an interrupt acknowledge cycle is as follows:

1. The address and status signals are driven active and ADS# is driven low to start eac
cycle.

• Status signals M/IO#, D/C#, and W/R# are low to indicate an interrupt acknowledge
bus cycle. These signals must be decoded to generate the INTA input signal for
external 82C59A, if an external cascaded 82C59A is used. The REFRESH# sign
high.

• LOCK# is active from the beginning of the first cycle to the end of the second. HO
requests from other bus masters are not recognized until after the second interru
acknowledge cycle is completed.

• NA# is ignored.

• The byte address driven during the first cycle is 4; during the second cycle the byte
address is 0. BHE# is high, BLE# is low, and A25:3 and A1 are low for both cycle
A2 is high for the first cycle and low for the second. If the CAS enable bit in the
interrupt control unit’s configuration register is set (INTCFG.7=1), address bits
A18:16 reflect the status of the CAS lines. The CAS lines go valid at the rising ed
of PH2 of the T1 state of the first interrupt acknowledge cycle. They then go inva
at the rising edge of PH2 of the next Ti state. At the rising edge of PH2 of the T1
of the second interrupt acknowledge cycle, the CAS lines go valid again. They th
go invalid at the rising edge of PH2 of the next Ti state.
6-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 if the
iven

l.
e, if
m a
ond
NOTE
Since the CAS lines are invalid in the Ti states between the two interrupt
acknowledge cycles, cascading of external 82C59A devices requires latching
the CAS lines. This ensures that the CAS lines remain valid during these Ti
states to fulfill the requirements of the external 82C59A devices.

2. The processor floats D15:0 for both cycles; however, at the end of the second cycle,
interrupt is from an external cascaded 82C59A, the service-routine vector number dr
on the lower data bus by the 82C59A is read by the processor on data pins D7:0.
Otherwise, the active internal 82C59A sends the vector to the processor.

3. The first cycle is always an internal cycle and the second may be internal or externa
Therefore, READY# is generated internally for the first cycle and for the second cycl
the interrupt request is from one of the internal 82C59A modules. If the interrupt is fro
cascaded external 82C59A, external logic must assert READY# to terminate the sec
cycle. The internal Chip-select Unit can not generate READY# for the second interrupt
acknowledge cycle.
6-24

BUS INTERFACE UNIT
Figure 6-9. Interrupt Acknowledge Cycles

A2490-03

CLK2

BHE#

BLE#, A25:A3, A1

M/IO#, D/C#, W/R#

LBA#

LOCK#

T2 T1 T2 Ti Ti Ti Ti T1 T2 Ti

Interrupt

Acknowledge

Cycle 1

(Internal)

Idle

(Four bus states)

Idle

CLKOUT

RD#

A2

Ti

Previous

Cycle

Interrupt

Acknowledge

Cycle 2

(Internal)

ADS#

READY#

WR#
6-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ocessor

llows:

and
ddress

r a

ess of
nd to

le.
ter

e
rvice
 and

o
6.3.5 Halt/Shutdown Cycle

The halt condition occurs in response to a HALT instruction. The shutdown condition occurs
when the processor is processing a double fault and encounters a protection fault; the pr
cannot recover and therefore, shuts down. Externally, a shutdown cycle differs from a halt cycle
only in the resulting address bus outputs. The sequence of signals for a halt cycle is as fo

1. As with other bus cycles, a halt or shutdown cycle is initiated by driving the address
status signals active and asserting ADS#. Figure 6-10 shows a halt bus cycle. The a
and status signals are driven to the following active states:

• M/IO# and W/R# are driven high and D/C# is driven low to indicate a halt cycle o
shutdown cycle.

• The address bus outputs a byte address of 2 for a halt condition and a byte addr
0 for a shutdown condition. These signals are used by external devices to respo
the halt or shutdown cycle.

NOTE
The halt or shutdown bus cycle appears as a memory write operation to byte
address 0 or 2 (depending on whether a shutdown or halt cycle is being
performed) if the D/C# signal is not decoded. External address decoders need
to decode the D/C# signal to avoid erroneous writes to devices in this address
region; otherwise, a halt or shutdown cycle corrupts the data at those
addresses. RD#, WR# and the chip-select signals, UCS# and CS6:0#, are
inactive during halt cycles.

2. READY# can be generated externally or internally to terminate a Halt/Shutdown cyc
The HSREADY bit in the Power Control Register (PWRCON, see Figure 8-5 in Chap
8), can be set to generate an internal READY# for halt/shutdown cycles. If internal
READY# generation is enabled, then the LBA# signal goes active and behaves as
described in “Ready Logic” on page 6-10. Also, the cycle is always a zero-wait-state
cycle. When external READY# is required to terminate the halt/shutdown cycle, then
READY# may be delayed to add wait-states. The processor remains in the halt or
shutdown condition until one of the following occurs:

• NMI goes active; the processor then services the interrupt.

• RESET goes active; the processor is reinitialized.

• In the halt condition (but not in the shutdown condition), if maskable interrupts ar
enabled, an active INTR input causes the processor to end the halt cycle and se
the interrupt. The processor can service processor extension (PEREQ) requests
hold (HOLD) requests while in the halt or shutdown condition.

• The processor is in the halt condition and SMI# goes active; the processor then
services the SMI#. When the processor is in the shutdown condition, SMI# has n
effect.
6-26

BUS INTERFACE UNIT
Figure 6-10. Halt Cycle

A2492-02

LOCK#

D15:0

CLK2

BHE#, A1, M/IO#, W/R#

RD#

READY#

T1 T2 T1 T2 Ti Ti Ti Ti

Cycle 1

Nonpipelined

(Write)

[Late Ready]

CLKOUT

Cycle 2

Nonpipelined

(Halt)

ADS#

NA#

A25:2, BLE#, D/C#

WR#

LBA#

Idle

Float

Valid 1

CPU remains halted until INTR, SMI#,

NMI, or RESET is asserted.

CPU responds to HOLD input

while in the HALT state.

HALT cycle must be acknowledged by READY# asserted. This READY# could be

generated internally or externally.

Valid 2

†

†

Out Undefined

Valid 1

Valid 1
6-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

d cy-
L

en

ip
ed in
t then

al

 refresh
6.3.6 Refresh Cycle

The refresh control unit simplifies dynamic memory controller design by issuing dummy rea
cles at specified intervals. (For more information, refer to Chapter 15, “REFRESH CONTRO
UNIT.”) Figure 6-11 shows a basic refresh cycle. The sequence of signals for a refresh cycle is as
follows:

1. Like a read cycle, the refresh cycle is initiated by asserting ADS# and completed by
asserting READY#. The address and status pins are driven to the following values:

• M/IO# and D/C# are driven high and W/R# and REFRESH# are driven low to
indicate a memory refresh.

• Address lines are driven to the current refresh address (the value in the Refresh
Address Counter in the Refresh Control Unit), while the BHE# and BLE# are driv
high.

2. To complete the refresh cycle, either READY# must be asserted externally or the ch
select unit must be programmed to generate READY# for the address region specifi
the Refresh Address Base Register in the refresh control unit. The refresh control uni
relinquishes control to the current internal bus master until the next refresh cycle is
needed.

During hold acknowledge cycles with the HLDA pin active, a refresh request causes the intern
bus arbiter to deassert the HLDA pin. The processor then waits for the HOLD pin to be deasserted
for at least one processor clock cycle. Once HOLD is deasserted, the processor begins the
cycle. Figure 6-12 shows a refresh cycle during a HOLD/HLDA condition.

NOTE
BS8# is ignored during refresh cycles. It has no effect on a refresh cycle.

CAUTION
External bus arbitration logic should monitor the HLDA signal when the
refresh control unit is being used. If a refresh request is not serviced (by
performing a refresh cycle) because an external master does not give up the
bus, the DRAM devices may lose data.
6-28

BUS INTERFACE UNIT
Figure 6-11. Basic Refresh Cycle

A2491-02

LOCK#

D15:0

CLK2

BHE#, BLE#

M/IO#, D/C#

Valid 1

RD#

READY#

Ti T1 T2 Ti T1 T2 T2 Ti Ti T1

Cycle 1

Nonpipelined

External

(Read)

Cycle 2

Refresh

CLKOUT

Idle Idle Cycle 3

Nonpipelined

External

(Write)

[Late Ready]

T2

Valid 3

ADS#

NA#

A25:1

W/R#

WR#

LBA#

Idle

REFRESH#

Float

HOLD

HLDA

In Out

Valid 1 Valid 2

Valid 1 Valid 2 Valid 3
6-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 6-12. Refresh Cycle During HOLD/HLDA

A2493-02

D15:0

HOLD

CLK2

BHE#, BLE#

M/IO#, D/C#

FloatingFloating

RD#

READY#

Ti Th Th Th Ti T1 T2 Ti Ti Th

HOLD

Acknowledge

Cycle 1

Refresh

CLKOUT

Idle Idle Idle

Th

ADS#

NA#

REFRESH#

W/R#

WR#

LBA#

LOCK#

HOLD

Acknowledge

A25:1

HLDA

Floating

Due to refresh pending.

Floating Floating

Floating Floating

FloatingFloating

Valid 1
6-30

BUS INTERFACE UNIT

and a

t
 pin) in
ct unit

s the

sor

sor

ssor
tive),
ycle
ata
dress
d).

(D7:0)

sor

ssor
tive),

lower
ve
le
:0)
6.3.7 BS8 Cycle

The BS8 cycle allows external logic to dynamically switch between an 8-bit data bus size
16-bit data bus size, by using the BS8# signal. Figure 6-13 shows a word access to an 8-bit pe-
ripheral.

To use the dynamic 8-bit bus sizing, an external memory or I/O should connect to the lower eigh
bits of the data bus (D7:0), use the BLE# as address bit 0, and assert BS8# (at the BS8#
T2 of a memory or I/O access. A BS8 cycle can also be generated by the internal chip-sele
(Refer to Chapter 14, “CHIP-SELECT UNIT”). In this case, the Chip Select Unit generate
BS8# signal internally.

Depending upon the current bus access width and address and the state of the BS8# signal, the
processor performs the actions described in the next two sections.

6.3.7.1 Write Cycles

• If the current bus cycle is a byte write with BHE# active and BLE# inactive, the proces
copies the upper eight bits of the data bus (D15:8) to the lower eight bits of the data bus
(D7:0), i.e. the byte appears on both the upper and lower data buses.

• If the current bus cycle is a byte write with BHE# inactive and BLE# active, the proces
ignores the state of the BS8# signal.

• If the current bus cycle is a word write with both BHE# and BLE# active and the proce
samples the BS8# signal active at the end of the last T2 (when READY# is sampled ac
the processor waits for the current bus to complete and then executes another write c
with the upper eight bits of the data bus (D15:8) copied to the lower eight bits of the d
bus (D7:0). The processor deactivates BLE# on the second cycle (BLE# is used as ad
A0 to an 8-bit device; this translates to A0=0 for the first cycle and A0=1 for the secon

6.3.7.2 Read Cycles

• If the current bus cycle is a byte read with BHE# active and BLE# inactive, and the
processor samples the BS8# signal active at the end of the last T2 (when READY# is
sampled active), the processor latches the data on the lower eight bits of the data bus
and internally routes this data to the upper data bus of the core.

• If the current bus cycle is a byte read with BHE# inactive and BLE# active, the proces
ignores the state of the BS8# signal.

• If the current bus cycle is a word read with both BHE# and BLE# active and the proce
samples the BS8# signal active at the end of the last T2 (when READY# is sampled ac
the processor waits for the current bus cycle to complete and latches the data on the
eight bits of the data bus (D7:0). It then executes another read cycle, with BLE# inacti
(BLE# is used as address A0 to an 8-bit device; this translates to A0=0 for the first cyc
and A0=1 for the second), latching the data on the lower eight bits of the data bus (D7
again and using it.
6-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

pt and
The BS8 cycle generates additional bus cycles for read and write cycles only. For interru
halt/shutdown cycles, the accesses are byte wide and the BS8# signal is ignored. For a refresh
cycle, the byte enables are both disabled and the BS8# signal is ignored.

NOTE
If a BS8 cycle requires an additional bus cycle, the processor retains the
current address for the second cycle. Address pipelining cannot be used with
BS8 cycles because address pipelining requires that the next address be
generated on the bus before the end of the current bus cycle. NA# must be kept
deasserted during the T2 states of BS8 memory cycles. NA# is ignored in all
I/O cycles.

NOTE
BS8# must be inactive at the falling edge of PH2 of the T1 state of a non-BS8
cycle; for example, if the current cycle is a BS8 cycle (BS8# asserted) and the
next cycle is not a BS8 cycle, BS8# must be deasserted before the end of the
T1 state of the next cycle, i.e. the non-BS8 cycle.
6-32

BUS INTERFACE UNIT
Figure 6-13. 16-bit Cycles to 8-bit Devices (Using BS8#)

State

A25:1

M/IO#

D/C#

W/R#

BHE#

ADS#

NA#

D15:8

RD#

WR#

BS8#

READY#

LOCK#

Low Byte

Write

[Late Ready]

High Byte

Write

[Late Ready]
Low Byte

Read
High Byte

Read

T1 T2 T1 T2 T1 T2 T1 T2 Ti

Idle

Cycles

Ti

BLE#

D7:0

Must be high

CLK2

CLKOUT

A3375-01

Data Out High

Data Out

Low

Data Out

High

Data

In

High

Data

In

Low

Valid 1 Valid 2

Valid 1 Valid 2
6-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 cycles
ed by a

 other
e value
 sema-
ndicate
ed to
e two

e bus.
om an-

 in-

r up-

 when
d and
s used,
r the
ss cy-

s by an-
6.4 BUS LOCK

In a system in which more than one device (a bus master) may control the local bus, locked
are used to make sequential bus cycles indivisible. Otherwise, the cycles may be separat
cycle from another bus master.

Any bus cycles that must be performed back-to-back, without any intervening bus cycles by
bus masters, must be locked. The use of a semaphore is one example of this concept. Th
of a semaphore indicates a condition such as the availability of a device. If the CPU reads a
phore to determine that a device is available, then writes a new value to the semaphore to i
that it intends to take control of the device, the read cycle and write cycle should be lock
prevent another bus master from reading from or writing to the semaphore in between th
cycles.

The LOCK# output indicates, to the other bus masters, that they may not gain control of th
In addition, when LOCK# is asserted, the processor does not recognize a HOLD request fr
other bus master.

6.4.1 Locked Cycle Activators

The LOCK# signal is activated explicitly by the LOCK prefix on certain instructions. (The
structions are listed in the Intel386™ SX Microprocessor Programmer’s Reference Manual, order
number 240331). LOCK# is also asserted automatically for XCHG instructions, descripto
dates, and interrupt acknowledge cycles.

6.4.2 Locked Cycle Timing

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle and deactivated
READY# is sampled active at the end of the last bus cycle to be locked. LOCK# is activate
deactivated on these CLK2 edges regardless of address pipelining. If address pipelining i
LOCK# remains active until the current bus cycle is completed (READY# sampled active fo
current bus cycle). Consequently, the LOCK# signal can extend into the next memory acce
cle that does not need to be locked. (See Figure 6-14). The result is that the use of the bu
other bus master is delayed by one bus cycle.
6-34

BUS INTERFACE UNIT

 be-
ds on
tion of
ware
escrip-
it in the

l

 arbi-
r using
col

ignals,
 cycle

urned
er.
 arbiter
Figure 6-14. LOCK# Signal During Address Pipelining

6.4.3 LOCK# Signal Duration

The maximum duration of the LOCK# signal affects the maximum HOLD request latency
cause HOLD is recognized only after LOCK# goes inactive. The duration of LOCK# depen
the instruction being executed and the number of wait states per cycle. The longest dura
LOCK# is 9 bus cycles plus approximately 15 clocks. This occurs when an interrupt (hard
or software) occurs and the processor performs a Locked read of the gate in the interrupt d
tor table (8 bytes), a read of the target descriptor (8 bytes), and a write of the accessed b
target descriptor.

6.5 EXTERNAL BUS MASTER SUPPORT (USING HOLD, HLDA)

The processor provides internal arbitration logic that supports a protocol for transferring contro
of the processor bus to an external bus master. This protocol is implemented through the HOLD
input and the HLDA output. The internal arbitration logic of the processor consists of a bus
ter. This arbiter supports the core and four other bus masters, i.e. external bus maste
HOLD, two internal DMA Units and the Refresh Control Unit. For a description of the proto
of the internal bus arbiter, refer to “Bus Control Arbitration” on page 12-9.

When the internal bus arbiter receives a request through one of its four possible request s
it asserts the HOLD signal to the core. The core then completes its current nonlocked bus
and asserts its HLDA signal, thus informing the arbiter that control of the bus can now be t
over to the requester.The arbiter then asserts its appropriate acknowledge signal to the request
For example, if an external bus master requests the bus using the HOLD input pin, then the
asserts the HLDA output.

A2489-02

LOCK#

CLKOUT

Unlocked

Bus Cycle

Locked

Bus Cycle

Locked

Bus Cycle

BLE#, BHE#, A25:1

Unlocked

Bus Cycle

LOCK Deasserted

Address Asserted

READY#
6-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

. This

 bus

When
.

t re-
ignal.

gnal

aster
 allow
y lose

ore re-
OLD

fetch
 HOLD
 if more

s:

 bus.

e
6.5.1 HOLD/HLDA Timing

To gain control of the local bus, the requesting bus master drives the HOLD input active
signal can be asynchronous to the processor’s CLK2 input. The processor responds by:

• completing its current bus cycle

• deasserting WR#, RD#, LBA#, SMIACT#, UCS#, CS6:0# and REFRESH# and three-
stating all other bus outputs except HLDA (effectively removing itself from the bus)

• driving HLDA active to signal the requesting bus master that it may take control of the

The requesting bus master must maintain HOLD active until it no longer needs the bus.
HOLD goes low, the processor drives HLDA low and starts a bus cycle (if one is pending)

For valid system operation, the requesting bus master must not take control of the bus until i
ceives the HLDA signal and must remove itself from the bus before deasserting the HOLD s
Setup and hold times relative to CLK2 for both rising and falling transitions of the HOLD si
must be met.

If the internal refresh control unit is used, the HLDA signal may drop while an external m
has control of the bus, in which case the external bus master may or may not drop HOLD to
the processor to perform the refresh cycle. If the latter occurs, the memory device(s) ma
data because the refresh cycle could not execute.

When the processor receives an active HOLD input, it completes the current bus cycle bef
linquishing control of the bus. Figure 6-7 shows the state diagram for the bus including the H
state.

During HOLD, the processor can continue executing instructions that are already in its pre
queue. Program execution is delayed if a read cycle is needed while the processor is in the
state. The processor can queue one write cycle internally, pending the return of bus access;
than one write cycle is needed, program execution is delayed until HOLD is released and the pro-
cessor regains control of the bus.

HOLD has priority over most core bus cycles, but is not recognized under certain condition

• During locked cycles

• Between two interrupt acknowledge cycles (LOCK# asserted)

• During misaligned word transfers (LOCK# not asserted)

• During doubleword (32-bit) transfers (LOCK# not asserted)

• During misaligned doubleword transfers (LOCK# not asserted)

• During an active RESET signal (HOLD is recognized during the time between the falling
edge of RESET and the first instruction fetch)

All inputs are ignored while the processor is in the HOLD state, except for the following:

• HOLD pin - It is monitored to determine when the processor may regain control of the

• RESET pin - It is of a higher priority than HOLD. An active RESET input reinitializes th
device.
6-36

BUS INTERFACE UNIT

.

d.

cause
occurs
. Wait
upt ac-
• NMI pin - The request is recognized and latched. It is serviced after HOLD is released

• SMI# pin - The request is recognized and latched. It is serviced after HOLD is release

6.5.2 HOLD Signal Latency

Because other bus masters may be used in time-critical applications, the amount of time the bus
master must wait for bus access (HOLD latency) can be a critical design consideration. Be
a bus cycle must be terminated before HLDA can go active, the maximum possible latency
when a bus-cycle instruction is being executed or a DMA block mode transfer is in progress
states increase latency, and HOLD is not recognized between locked bus cycles and interr
knowledge cycles. The internal DMA may also contribute to the latency.

The HOLD latency is dependent on a number of parameters:

• The instruction being executed at the time the HOLD request occurs.

• The number of wait states during various access cycles, including the following:

— Memory wait states

— Code fetch wait states

— Interrupt acknowledge wait states

— Refresh wait states

• The priority of the requester.

• The mode of the DMA:

— Block mode

— Single cycle mode

— Demand transfer mode
6-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ly an
ion
g the

sor ar-
bed-

are that

 float-
an-

e.

essor
6.6 DESIGN CONSIDERATIONS

• Upon reset, UCS# is configured as a 16-bit chip-select signal. If the Boot device is on
8-bit device, then BS8# must be asserted whenever UCS# is active (until the UCS reg
can be reprogrammed to reflect an 8-bit region). One way of doing this is by connectin
UCS# pin directly to the BS8# pin, if there are no other devices that need to use the BS8#
pin. If UCS# is tied directly to BS8#, then the UCS region need not be programmed to
reflect an 8-bit region.

• Since LBA# may be used as an output-enable by both the internal and external READY#
buffers, care must be taken in selecting the external READY# buffer to minimize
contention on the READY# signal caused by differences in buffer characteristics.

6.6.1 Interface To Intel387™ SX Math Coprocessor

The Intel387 SX Math Coprocessor is an extension to the Intel386 EX embedded proces
chitecture. The combination of the Intel387 SX Math Coprocessor with the Intel386 EX em
ded processor dramatically increases the processing speed of computer application softw
uses high performance floating-point operations.

An internal Power Management Unit enables the Intel387 SX Math Coprocessor to perform
ing-point operations while maintaining very low power consumption. The internal Power M
agement Unit effectively reduces power consumption by 95% when the coprocessor is idl

This section describes special considerations for interfacing the Intel387 SX Math Coproc
with the Intel386 EX embedded processor. For complete information, refer to the Intel387™ SX
Math Coprocessor datasheet (Order number 240225).
6-38

BUS INTERFACE UNIT

ssor as

 oper-
rol pins
6.6.1.1 System Configuration

The Intel387 SX Math Coprocessor can be interfaced to the Intel386 EX embedded proce
shown in Figure 6-15.

Figure 6-15. Intel386 EX Processor to Intel387 SX Math Coprocessor Interface

A dedicated communication protocol makes possible high-speed transfer of opcodes and
ands between the Intel386 EX processor and the Intel387 SX math coprocessor. Most cont
of the Intel387 SX Math Coprocessor are connected directly to Intel386 EX processor pins.

BUSY#

PEREQ

ERROR#

READY#

BUSY#

PEREQ

ERROR#

READY#

Clock

Generator

CPUCLK2CLK2

A2852-02

Synchronous

Reset

LBA#
D15:0

W/R#

ADS#

NPS1#

NPS2

CMD0#

W/R#

ADS#

M/IO#

A23

A2

READYO#

NUMCLK2

VCC

STEN
CKM

D15:0

16

80386EX 80387SX

RESETINRESET

Intel386™ EX
Embedded Processor

Intel387™ SX
Math Coprocessor
6-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

.

.

ize

cessor
W

ess
hen
ath

er is
 the

is

lower
The interface has these characteristics:

• The Intel387 SX Math Coprocessor shares the local bus of the Intel386 EX processor

• The Intel386 EX processor and Intel387 SX Math Coprocessor share the same reset signals
They also share the same clock input.

• The corresponding BUSY#, ERROR#, and PEREQ pins are connected together.

• The Status Enable (STEN) selects the math coprocessor. It causes the chip to recogn
other chip select inputs. STEN is tied high.

• CKM is tied high to select the synchronous mode of operation for the coprocessor.

• The math coprocessor NPS1# and NPS2 inputs are connected to the Intel386 EX pro
M/IO# and A23 inputs respectively. For math coprocessor cycles, M/IO# is always LO
and A23 always HIGH.

• The math coprocessor input CMD0 is connected to the A2 output. The Intel386 EX
embedded processor generates address 8000F8H when writing a command and addr
8000FCH or 8000FEH (treated as 8000FCH by the Intel387 SX Math Coprocessor) w
writing or reading data. It does not generate any other addresses during Intel387 SX M
Coprocessor bus cycles.

CAUTION
A chip-select signal could go active during coprocessor cycles if a match for
the lower 16 bits of address is found in one of the chip-select regions of the
Chip-select Unit. This can happen because only the lower 16 bits are decoded
by the Chip-select Unit during I/O cycles.

• The READYO# pin of the coprocessor must be sent through a buffer to prevent the Intel386
EX processor and coprocessor from simultaneously driving the READY# pin. The buff
enabled using the LBA# pin. During internal bus cycles, the LBA# pin is asserted and
Intel386 EX processor provides the READY# signal. In a coprocessor access, the LBA
deasserted, the external buffer is enabled, and the coprocessor provides the READY# signal
to the Intel386 EX processor.

6.6.1.2 Software Considerations

To enable math-coprocessor support in the Intel386 EX processor, you must set the MP (Math
Present) bit and clear the EM (Coprocessor Emulation) bit in the Machine Status Word (
half of the CR0 register in the core). This can be done using the following code:

smsw ax ;; Store Machine Status Word into AX
or ax, 2 ;; Set MP bit
and ax, 0fffbh ;; Clear EM bit
lmsw ax ;; Load AX into Machine Status Word
6-40

BUS INTERFACE UNIT

r:

wn in
sig-
an-
Also, bit 5 in the PINCFG register (Figure 5-15 on page 5-24) must be cleared, to connect the
coprocessor-related signals of the core to the package pins.

Below is an example of a simple routine that can be executed using the math-coprocesso

6.6.2 SRAM/FLASH Interface

SRAM and FLASH devices can be connected directly to the Intel386 EX processor as sho
Figure 6-16. Separate CSn#, RD# and WR# strobes enable a “glueless” interface. The WR#
nal, when used with an “EARLY READY#” (described in “Write Cycle” on page 6-16), guar
tees the ‘WE#-Inactive-to-Address-Invalid’ time of most SRAM and FLASH devices.

Figure 6-16. Intel386 EX Pr ocessor to SRAM/FLASH Interface

fninit ;; Initialize Math Coprocessor
fldpi ;; Load (Push on to the 387 stack) “Pi”
fld1 ;; Load (Push on to the 387 stack) “1”
fadd ;; Add the two values, i.e. Pi + 1
fist word ptr [di] ;; Convert to integer and Store at

;; location pointed to by DS:DI

Intel386™ EX

Embedded

Processor

OE#

CE#

WE#

A2853-02

SRAM

or FLASH

Address

Data

RD#

CSn#

WR#
6-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 pro-
o pin-
s are:

e the

le.

6.6.3 PSRAM Interface

Pseudo SRAM (PSRAM) devices can be easily interfaced (Figure 6-17) to the Intel386 EX
cessor. PSRAM devices have an interface that is similar to SRAM devices (They are als
compatible in many cases). The two major differences between PSRAM and SRAM device

• PSRAM devices require a CE# precharge (inactive) time between access cycles. Sinc
Intel386 EX processor does not guarantee a minimum inactive time on it’s CSn# signals,
control logic is required to satisfy the PSRAM device’s CE# precharge time.

• PSRAM devices have a RFSH# input pin. This signal activates an internal refresh cyc
The REFRESH# output of the Intel386 EX processor can be connected directly to the
PSRAM device’s RFSH# pin.

Figure 6-17. Intel386 EX Processor to PSRAM Interface

Intel386™ EX

Embedded

Processor

OE#

WE#

RFSH#

Note:

Control logic is necessary to satisfy the precharge time for the CE# signal of the

PSRAM. The precharge time is specified by the PSRAM manufacturer.

PSRAM

Address

Data

RD#

WR#

REFRESH#

Control

Logic CE#CSn#

A2854-02
6-42

BUS INTERFACE UNIT

wn in

, then
 signal
6.6.4 Paged DRAM Interface

External logic is required to interface the Intel386 EX processor to DRAM devices, as sho
Figure 6-18. The PLD generates the RAS# and CAS# signals.

If RAS#-Only Refresh is being performed (using the Refresh Control Unit of the processor)
during a Refresh Cycle, the PLD enables the Column Address Buffer and asserts the RAS#
(shaded sections in the figure). Refer to Chapter 6, “BUS INTERFACE UNIT,” for more infor-
mation.

A single multiplexer can be used instead of the separate row and column address buffers.

Figure 6-18. Intel386 EX Processor to Paged DRAM Interface

Intel386™ EX

Embedded Processor

Row

Address

Buffer

PLD

Upper Address
Row

Address

Paged

DRAM

Column

Address

Address

Lower Address

OE_ROW#

OE_COL#

RAS#

CAS#
BHE#

BLE#

A3264-02

Column

Address

Buffer

CSn#

REFRESH#

Note:

A single mux can be used in place of the row and column address buffers.
6-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

dress

he
efresh
6.6.5 Non-Paged DRAM Interface

This interface is similar to the Paged DRAM Interface, except that in this case, the lower ad
bits are routed to the Row Address Buffer and the higher address bits to the Column Address
Buffer. This is done to simplify the RAS#-Only Refresh logic. The PLD in this case enables t
Row Address Buffer and asserts the RAS# signal (shaded sections in the figure) during a R
Cycle. Refer to Chapter 15, “REFRESH CONTROL UNIT,” for more information.

A single multiplexer can be used instead of the separate row and column address buffers.

Figure 6-19. Intel386 EX Pr ocessor and Non-Paged DRAM Interface

Intel386™ EX

Embedded Processor

Row

Address

Buffer

PLD

Lower Address
Row

Address

Non-paged

DRAM

Column

Address

Address

Upper Address

OE_ROW#

OE_COL#

RAS#

CAS#
BHE#

BLE#

A3265-02

Column

Address

Buffer

CSn#

REFRESH#

Note:

A single mux can be used in place of the row and column address buffers.
6-44

7
SYSTEM
MANAGEMENT
MODE

nation
tion of
r man-
stems,

stem-
anage-

 ele-

#.

edge
MI#

hese
CHAPTER 7
SYSTEM MANAGEMENT MODE

The Intel386™ EX processor provides a mechanism for system management with a combi
of hardware and CPU microcode enhancements. For low power systems, the primary func
SMM is to provide a transparent means for power management. For systems where powe
agement is not critical, SMM may be used for other functions such as alternate operating sy
debuggers, hard disk drive backup, or virtual I/O.

This chapter is organized as follows:

• System Management Mode Overview (see below)

• SMM Hardware Interface (page 7-1)

• System Management Mode Programming and Configuration (page 7-3)

• The Intel386 EX Processor Identifier Registers (page 7-15)

• Programming Considerations (page 7-16)

7.1 SYSTEM MANAGEMENT MODE OVERVIEW

An externally generated system management interrupt (SMI#) allows the execution of sy
wide routines that are independent and transparent to the operating system. The system m
ment mode (SMM) architectural extensions to the Intel386 CPU consist of the following
ments:

• An interrupt input pin (SMI#) to invoke SMM

• An output pin (SMIACT#) to identify execution state

• A new instruction (RSM, executable only from SMM) to exit SMM

7.2 SMM HARDWARE INTERFACE

The Intel386 EX processor provides two pins for use in SMM systems: SMI# and SMIACT

7.2.1 System Management Interrupt Input (SMI#)

The SMI# input signal is used to invoke system management mode. SMI# is a falling
triggered interrupt input signal and is the highest priority of all external interrupt sources. S
forces the core into SMM at the completion of the current instruction. SMI# has t
characteristics:

• SMI# is not maskable.

• SMI# is recognized on an instruction boundary and at each iteration for repeat string
instructions.

• SMI# does not break locked bus cycles.
7-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

g
g
 the

sserted
ecutes
. Be-

nction
 qual-

 This

nd

lize
.

chip

sion
p-
• SMI# cannot interrupt currently executing SMM code. The processor latches the fallin
edge of a pending SMI# signal while the Intel386 EX processor is executing an existin
SMI# (this allows one level of buffering). The nested SMI# is not recognized until after
execution of a resume instruction (RSM).

• SMI# brings the processor out of idle or powerdown mode.

7.2.2 SMM Active Output (SMIACT#)

This output indicates that the processor is operating in system management mode. It is a
when the CPU initiates the SMM sequence and remains active (low) until the processor ex
the RSM instruction (described in “Resume Instruction (RSM)” on page 7-15) to leave SMM
fore SMIACT# is asserted, the CPU waits until the end of the instruction boundary. SMIACT# is
used to establish a new memory map for SMM operation. The processor supports this fu
by an extension to the internal chip-select unit. In addition, external logic can use this pin to
ify RESET and SMI#. SMIACT# never transitions during a pipelined bus cycle.

7.2.3 System Management RAM (SMRAM)

The SMM architecture requires that a partition of memory be set aside for the SMM driver.
is called the SMRAM. Several requirements must be met by the system:

• The address range of this partition must be, as a minimum, from 038000H to 03FFFFH
(32 Kbytes).

• The address range from 03FE00H to 03FFFFH (512 bytes) is reserved for the CPU a
must be RAM.

• The SMM handler must start execution at location 038000H. It is not relocatable.

• During normal operation the SMRAM is only accessible when the system is in SMM.

• During system initialization it must be possible to access the SMRAM in order to initia
it and possibly to install the SMM driver. Obviously, this must be done outside of SMM

• When the SMRAM overlays other memory in the system, then address decoding and
selects must allow the SMM driver to access the shadowed memory locations while in
SMM.

• The SMRAM should not be accessible to alternate bus masters such as DMA.

These requirements are made to ensure that the SMM remains transparent to non-SMM code and
to maintain uniformity across the various Intel processors that support this mode.

NOTE
It is possible for the designer of an embedded system to place the SMM driver
code in read-only storage, as long as the address space between 03FE00H and
03FFFFH is writable.

The Intel386 EX processor does not support SMRAM relocation. Bit 17 of the SMM Revi
Identifier (see “SMRAM State Dump Area” on page 7-14) indicates whether the processor su
7-2

SYSTEM MANAGEMENT MODE

loca-

red.

 space
erts the

shown

gram-
s, a 32-
d into a
rect in-
 value
e. In
tents of
e Save
nt

d and
ace is

ver, there
ports the relocation of SMRAM. When this bit is set (1), the processor supports SMRAM re
tion. When this bit is cleared (0), then the processor does not support SMRAM relocation. Since
this device doesn’t support SMRAM relocation, bit 17 of the SMM Revision Identifier is clea
The SMRAM address space is fixed from 38000H to 3FFFFH.

7.3 SYSTEM MANAGEMENT MODE PROGRAMMING AND CONFIG URATION

7.3.1 Register Status During SMM

When the CPU recognizes SMI# on an instruction boundary, it waits for all write cycles to com-
plete and asserts the SMIACT# pin. The processor then saves its register state to SMRAM
and begins to execute the SMM handler. The RSM instruction restores the registers, deass
SMIACT# pin, and returns to the user program.

Upon entering SMM, the processor’s PE, MP, EM, TS and PG bits in CR0 are cleared, as
in Table 7-1.

Debug register DR7 is also cleared, except for bits 11–15.

Internally, a descriptor register (invisible to the programmer) is associated with each pro
mer-visible segment register. Each descriptor register holds a 32-bit segment base addres
bit segment limit, and other necessary segment attributes. When a selector value is loade
segment register, the associated descriptor register is automatically updated with the cor
formation. In Real mode, only the base address is updated directly (by shifting the selector
four bits to the left), since the segment maximum limit and attributes are fixed in Real mod
Protected mode, the base address, the limit, and the attributes are all updated per the con
the segment descriptor indexed by the selector. After saving the CPU state, the SMM Stat
sequence sets the appropriate bits in the segment descriptor, placing the core in an environme
similar to Real mode, without the 64 Kbyte limit checking.

In SMM, the CPU executes in a Real-like mode. In this mode, the CPU can access (rea
write) any location within the 4 Gbyte logical address space. The physical address sp
64 Mbytes. The CPU can also perform a jump and a call anywhere within a 1 Mbyte boundary
address space. In SMM, the processor generates addresses as it does in real mode; howe

Table 7-1. CR0 Bits Cleared Upon Entering SMM

CR0 Bit Mnemonic Description Function

0 PE Protection Enable 0 = protection disabled
1 = protection enabled

1 MP Math Coprocessor Present 0 = coprocessor not present
1 = coprocessor present

2 EM Emulate Coprocessor 0 = coprocessor opcodes execute
1 = coprocessor opcodes generate a fault

3 TS Task Switched 0 = coprocessor ESC opcode does not cause fault
1 = coprocessor ESC opcode causes fault

31 PG Paging Enable 0 = paging disabled
1 = paging enabled
7-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 and
ffective
tended
R ser-

32-bit
 16-bit

 entire
ns that

 to the

PU is
inter-
s

adding
 detail

uction
 state
is no 64 Kbyte limit. The value loaded into the selector register is shifted to the left four bits
moved into its corresponding descriptor base, then added to the effective address. The e
address can be generated indirectly, using a 32-bit register. However, only 16 bits of the Ex
Instruction Pointer (EIP) register are pushed onto the stack during calls, exceptions and INT
vices. Therefore, when returning from calls, exceptions or INTRs, the upper 16 bits of the
EIP are zero. In an SMI# handler, the EIP should not be over the 64 Kbyte boundary. The
CS allows addressing within a 1 Mbyte boundary.

Instructions that explicitly access the stack, such as MOV instructions, can access the
4 Gbytes of logical address space by using a 32-bit address size prefix. However, instructio
implicitly access the stack, such as POP, PUSH, CALL, and RET, still have the 64Kbytes limit.

After SMI# is recognized and the processor state is saved, the processor state is initialized
default values shown in Table 7-2.

When a valid SMI# is recognized on an instruction execution boundary, the CPU immediately
begins execution of the SMM State Save sequence, asserting SMIACT# low (unless the C
in a shutdown condition). The CPU then starts SMI# handler execution. An SMI# cannot
rupt a CPU shutdown. The SMI# handler always starts at 38000H. When there are multiple cause
of SMI#s, only one SMI# is generated, thereby ensuring that SMI#s are not nested.

7.3.2 System Management Interrupt

The Intel386 EX processor extends the standard Intel386 microprocessor architecture by
a new feature called the system management interrupt (SMI#). This section describes in
how the system designer uses SMI#.

The execution unit recognizes an SMI# (falling edge) on an instruction boundary (see instr
#3 in Figure 7-1). After all CPU bus cycles have completed, including pipelined cycles, the

Table 7-2. SMM Processor State Initialization V alues

Register Content

General Purpose Register Unpredictable

EFLAGS 00000002H

EIP 00008000H

CS Selector 3000H

DS,ES,FS,GS,SS Selectors 0000H

CS Descriptor Base 00030000H

DS,ES,FS,GS,SS Descriptor Base 00000000H

CS,DS,ES,FS,GS,SS Descriptor Limit 0FFFFFH

DS,ES,FS,GS,SS Attributes 16-bit

CR0 Bits 0, 1, 2, 3, 31 cleared

DR6 Unpredictable

DR7 Bits 0–10,16–31 cleared
7-4

SYSTEM MANAGEMENT MODE

 CPU
tency
 Fig-

MM
 State
omple-

ctly by
 SMI-
of the CPU is saved to the SMM State Dump Area. After executing a RSM instruction, the
proceeds to the next application code instruction (see instruction #4 in Figure 7-1). SMM la
is measured from the falling edge of SMI# to the first ADS# where SMIACT# is active (see
ure 7-2).

Figure 7-1. Standard SMI#

The SMM handler may optionally enable the NMI interrupt, but NMI is disabled when the S
handler is entered. (Note that the CPU does not recognize NMI while executing the SMM
Save sequence or SMM State Resume sequence.) NMI is always enabled following the c
tion of the first interrupt service routine (ISR) or exception handler.

Even when the processor is in SMM, address pipelined bus cycles can be performed corre
asserting NA#. Pipelined bus cycles can also be performed immediately before and after
ACT# assertion. The numbers in Figure 7-2 also reflect a pipelined bus cycle.

A2510-02

State

Save

SMI#

SMM

Handler

Instr

State

Resume

Instr Instr
#1 #2 #4 #5

InstrInstr
#3

SMI#

SMIACT#

SMI

Latency

Interrupts

Blocked

2nd SMI# is blocked

Interrupts

Blocked
7-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 7-2. SMIACT# Latency

NOTE
Even if bus cycles are pipelined, the minimum clock numbers are guaranteed.

A2512-02

CLKOUT

T1 T2

CLK2

ADS#

SMI#

SMIACT#

READY#

B D

A

C

Normal State
State Save, SMM Handler,

State Restore
Normal State

A = 1 CLK min, B = 20 CLK min, C = 16 CLK min, D = 4 CLK min
7-6

SYSTEM MANAGEMENT MODE

cessor

m the
ndler.
d ex-
ption.
7.3.2.1 SMI# Priority

When more than one exception or interrupt is pending at an instruction boundary, the pro
services them in a predictable order. The priority among classes of exception and interrupt sourc-
es is shown in Table 7-3. The processor first services a pending exception or interrupt fro
class that has the highest priority, transferring execution to the first instruction of the ha
Lower priority exceptions are discarded; lower priority interrupts are held pending. Discarde
ceptions are reissued when the interrupt handler returns execution to the point of interru
SMI# has the following relative priority, where 1 is highest and 11 is lowest:

Table 7-3. Relative Priority of Exceptions and Interrupts

1
(Highest priority)

Double Fault

2 Segmentation Violation

3 Page Fault

4 Divide-by-zero

5 SMI#

6 Single-step

7 Debug

8 ICE Break

9 NMI

10 INTR

11
(Lowest Priority)

I/O Lock
7-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

terest
r max-
7-3
dify-

struc-
7.3.2.2 System Management Interrupt During HALT Cycle

Since SMI# is an asynchronous signal, it may be generated at any time. A condition of in
arises when an SMI# occurs while the CPU is in a HALT state. To give the system designe
imum flexibility, the processor allows an SMI# to optionally exit the HALT state. Figure
shows that the CPU normally re-executes the HALT instruction after RSM; however, by mo
ing the HALT restart slot in the SMM State Dump area, the SMM handler can redirect the in
tion pointer past the HALT instruction.

Figure 7-3. SMI# During HALT

A2508-01

State

Save

SMI#

SMM

Handler

Instr HALT

State

Resume

Instr Instr
#1 #2 #3 #4

Halted State

Option
7-8

SYSTEM MANAGEMENT MODE

 this
river

upted

 inter-
 cycle
e Fig-

ndler

then
ould

k

te for
 data
7.3.2.3 HALT Restart

It is possible for SMI# to break into the HALT state. In some cases the application might want to
return to the HALT state after RSM. The SMM architecture provides the option of restarting the
HALT instruction after RSM.

The word at address 03FF02H is the HALT restart slot. The processor sets bit 0 of this location
when the processor is in the HALT state while the SMI# occurred. If the SMM driver leaves
bit set, then the processor re-enters the HALT state when it exits from SMM. When the d
clears this bit, the processor continues execution with the instruction just after the interr
HALT instruction.

7.3.2.4 System Management Interrupt During I/O Instruction

Like the HALT restart feature, the processor allows restarting I/O cycles which have been
rupted by an SMI#. This gives the system designer the option of performing a hardware I/O
restart without having to modify either application, operating system, or BIOS software. (Se
ure 7-4.)

When a SMI# occurs during an I/O cycle, it then becomes the responsibility of the SMM ha
to determine the source of the SMI#. If, for example, the source is the powered down I/O device,
the SMM handler would power up the I/O device and reinitialize it. The SMM handler would
write 0FFH to the I/O restart slot in the SMM State Dump area and the RSM instruction w
then restart the I/O instruction.

Figure 7-4. SMI# During I/O Instruction

The SMI# input signal can be asynchronous; as a result, SMI# must be valid at least three cloc
periods before READY# is asserted for it to be recognized right after the current bus cycle. SMI#
must be sampled valid for at least two clocks, with the other clock used to internally arbitra
control. See Figure 7-5 for details. (Note that this diagram is only for I/O cycles and memory
read cycles.)

A2509-01

State

Save

SMI#

SMM

Handler

Instr

State

Resume

Instr Instr
#1 #2 #4 #5

I/O InstrInstr
#3 Option
7-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 an
uted
e I/O
 exe-

 re-

dler
f the
 the
MM

y the
MM,
Figure 7-5. SMI# Timing

7.3.2.5 I/O Restart

Bit 16 of the SMM Revision Identifier is set (1) indicating that this device does support the I/O
trap restart extension to the SMM base architecture.

The I/O trap restart slot provides the SMM handler the option of automatically re-executing
interrupted I/O instruction using the RSM instruction. When the RSM instruction is exec
with the I/O trap restart slot set to a value of 0FFH, the CPU automatically re-executes th
instruction that the SMI# has trapped. If the slot contains 00H when the RSM instruction is
cuted, the CPU does not re-execute the I/O instruction. This slot is initialized to 00H during an
SMI#. It is the SMM handler’s responsibility to load the I/O trap restart slot with 0FFH when
start is desired.

NOTE
The SMM handler must not set the I/O trap restart slot to 0FFH when the
SMI# is not asserted on an I/O instruction boundary, because this causes
unpredictable results.

7.3.3 SMM Handler Interruption

7.3.3.1 Interrupt During SMM Handler

When the CPU enters SMM, both INTR and NMI are disabled (Figure 7-6). The SMM han
may enable INTR by executing the STI instruction. NMI is enabled after the completion o
first interrupt service routine (software or hardware initiated ISR) or exception handler within
SMM handler. Software interrupt and exception instructions are not blocked during the S
handler.

The SMM feature can be used without any other interrupts. INTR and NMI are blocked b
system during SMI#, unless enabled by software. If INTR or NMI are not enabled during S

A2511-02

CLK2

Priority Arbitration

SMI#

Sampled

Tsu Thold
SMI#

RDY#

Tsu = SMI# setup time, Thold = SMI# hold time
7-10

SYSTEM MANAGEMENT MODE

tion.

nce in-
nues
that le-

 The
 in-
ted.
NMI
rupt

turns
then any pending INTR and NMI is serviced after completion of RSM instruction execu
Only one INTR and one NMI can be pending.

The SMM handler may choose to enable interrupts to take advantage of device drivers. Si
terrupts were enabled while under control of the SMM handler, the signal SMIACT# conti
to be asserted. If the system designer wants to take advantage of existing device drivers
verage interrupts, the memory controller must take this into account.

Figure 7-6. Interrupted SMI# Service

7.3.3.2 HALT During SMM Handler

The system designer may wish to place the system into a HALT condition while in SMM.
CPU allows this condition to occur; however, unlike a HALT while in normal mode, the CPU
ternally blocks INTR and NMI from being recognized until after the RSM instruction is execu
When a HALT needs to be breakable in SMM, the SMM handler must enable INTR and
before a HALT instruction execution. NMI is enabled after the completion of the first inter
service routine within the SMM handler.

After the SMM handler has enabled INTR and NMI, the CPU exits the HALT state and re
to the SMM handler when INTR or NMI occurs. See Figure 7-7 for details.

A2505-02

SMI#

SMIACT#

INTR

NMI

RESET

Application

Instr

SMM

Handler

Intr

Service

SMM Handler

SMI

Latency

State

Save RSM

State

Restore

NMI is Blocked

Instr Instr Instr Instr Instr

SMM

Handler

Instr Instr Instr

Application

Instr Instr
7-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ither
rmal

pter 8.

rrently
ly one
viced.
e sec-

 two
I#

 Next,
 exe-
se the

on re-
curs

an-

 10 in
 bits
Figure 7-7. HALT During SMM Handler

7.3.3.3 Idle Mode and Powerdown Mode During SMM

Both Idle Mode and Powerdown Mode may be used while in SMM. Entering and exiting e
of these power management modes from SMM is identical to entering or exiting from no
mode. The interaction between SMM and power management modes is described in Cha

7.3.3.4 SMI# During SMM Operation

If the SMI# request is asserted during SMM operation, the second SMI# cannot nest the cu
executing SMM. The second SMI# request is latched, and held pending by the CPU. On
SMI# request can be pending. After RSM execution is completed, the pending SMI# is ser
At this time, SMIACT# is deasserted once at completion of RSM, then asserted again for th
ond SMI#.

When the SMM handler polls the various SMI# sources for one of the SMI# triggers, and
SMI# sources are found in the SMI# generation circuit, the SMM handler services both SM
sources and executes a RSM instruction. In this SMM handler, if the SMI# generation circuit as-
serts the second SMI# during the first SMI# service routine, the second SMI# is pending.
the SMM handler finds and services two SMI# sources. After the CPU completes the RSM
cution, the pending SMI# (second SMI#) is generated, but there is nothing to service becau
second SMI# was serviced during the first SMM handler. This unnecessary SMI# transacti
quires a few hundred clocks. There may be some performance degradation if this example oc
frequently. For good performance, it is the responsibility of the SMI# generation circuitry to m
age multiple SMI# assertions.

7.3.4 SMRAM Programming

7.3.4.1 Chip-select Unit Support for SMRAM

The internal chip-select unit (CSU) has been extended to support the SMRAM by using bit
each Low Address (CASMM) and Low Mask register (CMSMM). The CSU acts on these

A2507-01

State

Save

SMI#

SMM

Handler

Instr Instr

Enable

INTR & NMI

HALT Halted

State

SMM

Handler

State

Resume

Instr Instr

Interrupt

Handler

INTR or NMI
#1 #2 #3 #4
7-12

SYSTEM MANAGEMENT MODE

edded
 and

t logic.

the re-
ation
f the

elects
exactly as if they represented another address line. The following options are supported by the
chip select unit:

To see how this extension of the CSU supports the SMRAM requirements, consider an emb
system which has 1 Mbyte of 16-bit wide EPROM in the region 03F00000H to 03FFFFFFH
1 Mbyte of 16-bit wide RAM in the region 00000000H to 000FFFFFH. A single 32 Kbyte RAM
in the region 00038000H to 0003FFFFH is added to support SMM. The chip selects for this sys-
tem during normal operation would be programmed as follows:

Each row in the above table represents a region of memory and its associated chip selec
During initialization, these same chip selects could be programmed as follows:

Only the SMRAM row has been changed; the SMRAM chip select has been redirected to
gion 013F800H to 013FFFFH and the CASMM bit has been cleared. This allows the initializ
software to set up the SMRAM without entering the SMM. Note that the external design o
system must guarantee that an SMI# cannot occur while the SMRAM is being initialized.

If the SMM driver needs to access the memory shadowed under the SMRAM, the chip s
can be reconfigured as follows:

This leaves the SMRAM in place but moves the normal RAM into the partition 0100000H to
01FFFFFH. The CASMM bit is masked so that the RAM is selected independent of SMM.

CASMM CMSMM Chip select active:

0 0 During normal mode only

1 0 During SMM only

X 1 During normal mode or SMM

REGION CA25:11 CM25:11 CASMM CMSMM BS16

EPROM 11 1111 0000 0000 0 00 0000 1111 1111 1 0 0 1

RAM 00 0000 0000 0000 0 00 0000 1111 1111 1 0 0 1

SMRAM 00 0000 0011 1000 0 00 0000 0000 0111 1 1 0 0

REGION CA25:11 CM25:11 CASMM CMSMM BS16

EPROM 11 1111 0000 0000 0 00 0000 1111 1111 1 0 0 1

RAM 00 0000 0000 0000 0 00 0000 1111 1111 1 0 0 1

SMRAM 00 0001 0011 1000 0 00 0000 0000 0111 1 0 0 0

REGION CA25:11 CM25:11 CASMM CMSMM BS16

EPROM 11 1111 0000 0000 0 00 0000 1111 1111 1 0 0 1

RAM 00 0001 0000 0000 0 00 0000 1111 1111 1 0 1 1

SMRAM 00 0000 0011 1000 0 00 0000 0000 0111 1 1 0 0
7-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

odules
s only

ccess
 by the
 of the

 a map
7.3.4.2 SMRAM State Dump Area

The SMM State Save sequence asserts SMIACT#. This mechanism indicates to internal m
that the CPU has entered and is currently executing SMM. The resume (RSM) instruction i
valid when in SMM. SMRAM space is an area located in the memory address range 38000H–
3FFFFH. The SMRAM area cannot be relocated internally. SMRAM space is intended for a
by the CPU only, and should be accessible only when SMM is enabled. This area is used
SMM State Save sequence to save the CPU state in a stack-like fashion from the top
SMRAM area downward.

The CPU state dump area always starts at 3FFFFH and ends at 3FE00H. The following is
of the CPU state dump in the SMRAM.

Hex Address Name Description

03FFFC CR0 Control flags that affect the processor state

03FFF8 CR3 Page directory base register

03FFF4 EFLGS General condition and control flags

03FFF0 EIP Instruction pointer

03FFEC EDI Destination index

03FFE8 ESI Source index

03FFE4 EBP Base pointer

03FFE0 ESP Stack pointer

03FFDC EBX General register

03FFC8 EDX General register

03FFD4 ECX General register

03FFD0 EAX General register

03FFCC DR6 Debug register; contains status at exception

03FFC8 DR7 Debug register; controls breakpoints

03FFC4 TR Task register; used to access current task descriptor

03FFC0 LDTR Local descriptor table pointer

03FFBC GS General-purpose segment register

03FFB8 FS General-purpose segment register

03FFB4 DS Data segment register

03FFB0 SS Stack segment register

03FFAC CS Code segment register

03FFA8 ES General-purpose segment register

03FFA7–03FF04 — Reserved

03FF02 — Halt restart slot

03FF00 — I/O trap restart slot

03FEFC — SMM revision identifier (10000H)

03FEFB–03FE00 — Reserved
7-14

SYSTEM MANAGEMENT MODE

sor is in

PU to
is ex-
ystem.

tion,

 SMM
ister
The programmer should not modify the contents of this area in SMRAM space directly. SMRAM
space is reserved for CPU access only and is intended to be used only when the proces
SMM.

7.3.5 Resume Instruction (RSM)

After an SMI# request is serviced, the RSM instruction must be executed to allow the C
return to an application transparently after servicing the SMI#. When the RSM instruction
ecuted, it restores the CPU state from SMRAM and passes control back to the operating s
The RSM instruction uses the special opcode of 0FAAH. The RSM instruction is reserved for the
SMI# handler and should only be executed by the SMI# handler. Any attempt to execute the RSM
outside of SMM mode results in an invalid opcode exception. At the end of the RSM instruc
the processor drives SMIACT# high, indicating the end of an SMM routine.

7.4 THE Intel386 EX PROCESSOR IDENTIFIER REGISTERS

The processor has two identifier registers: the Component and Revision ID register and the
Revision ID register. The component ID is 23H; the component revision ID is 09H. This reg
can be read as 2309H. The SMM revision identifier is 10000H.
7-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ly
7.5 PROGRAMMING CONSIDERATIONS

7.5.1 System Management Mode Code Example

The following code example contains these software routines.

SerialWriteStr2 Located in SMRAM upon program execution, this routine loops
endlessly while writing a character “X” out the serial port on the
EV386EX board.

SerialWriteStr Located in the main program in FLASH, this routine loops endlessly
while writing a string out the serial port before entering SMM.

InitSIO Initializes the serial port including the mode, baud rate, and clock
rate.

MAIN Executes the program once it is located in FLASH. It also configures
chip selects, copies SMM handler to SMRAM, and loops endless
until an SMI# is issued.

See Appendix C for the included header files.

#include “80386EX.h”
#include “EV386EX.h”
#include <string.h>
#include <conio.h>
#include <dos.h>

#if _DEBUG_ == 0 // _DEBUG_ must be defined on the command line
#define SIO_PORT SIO_1 // The debugger uses SIO_0 for host communications
#else // Under the debugger we must avoid using SIO_0
#define SIO_PORT SIO_0
#endif

#define BAUD_CLKIN 1843200L // Clock rate of COMCLK, i.e., External clocking,
extern char far SMMString[];
extern void InitEXSystem(void);

int DataSeg; // For assembly data segment register init.
BYTE Buf[20];

/*********************** Function SerialWriteStr2 **************************
Parameters:

None
Returns:

None
Assumptions:

 Not called from main. This function is used as a jump point and is
 relocated by the main to 38000H (SRAM) for SMM.

Real/Protected Mode:
 No changes required
7-16

SYSTEM MANAGEMENT MODE
---*/

void SerialWriteStr2()
 /* Loops while writing a char out to the serial port */

{
_asm
{

mov ax,0x3900
mov ss,ax
mov sp,0x100

Forever:
mov dx,0xf4fd

TstStatus:
in al,dx
testal,0x20
je TstStatus

// Code below is same as _SetEXRegByte(TransmitPortAddr,’X’)
mov ax,’X’
mov dx,0xf4f8
out dx, al
jmp Forever

}
}
/*********************** Function SerialWriteStr **************************

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0, 1 for SIO

port 1.
*str Character string to be written out the serial port.

Returns:
None

Assumptions:
 None

Real/Protected Mode
 --*/

void SerialWriteStr(int Unit, const char far *str)
{

WORD TransmitPortAddr;
WORD StatusPortAddr;

// Set Port base, based on serial port used
TransmitPortAddr = (Unit ? TBR1 : TBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

for(; *str != ‘\0’; str++)
{

// Wait until buffer is empty
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;

// Write Character
_SetEXRegByte(TransmitPortAddr,*str);

}

7-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
}
/*************************** Function InitSIO *******************************

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0, 1 for SIO

port 1.
Mode Defines parity, number of data bits, number of stop bits...

Reference Serial Line Control register for various options
ModemCntrl Defines the operation of the modem control lines
BaudRate Specifies baud rate. The baud divisor value is calculated

based on clocking source and clock frequency. The clocking
frequency is set by calling the InitializeLibrary function.

ClockRate Specifies the serial port clocking rate, for internal clocking
= CLK2 for external = COMCLK

Returns: Error Codes
E_INVAILD_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:
SIOCFG Has already been configured for Clocking source and Modem control
source

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Real/Protected Mode
No changes required.

--*/

int InitSIO(int Unit,
 BYTE Mode,
 BYTE ModemCntrl,
 DWORD BaudRate,
 DWORD BaudClkIn)

{
WORD SIOPortBase;
WORD BaudDivisor;

// Check for valid unit
if(Unit > 1)

return E_INVALID_DEVICE;

// Set Port base based on serial port used
SIOPortBase = (Unit ? SIO1_BASE : SIO0_BASE);

// Initialized Serial Port registers
// Calculate the baud divisor value, based on baud clocking

 BaudDivisor = (WORD)(BaudClkIn / (16*BaudRate));

 // Turn on access to baud divisor register
 _SetEXRegByte(SIOPortBase + LCR, 0x80);

// Set the baud rate divisor register, High byte first
7-18

SYSTEM MANAGEMENT MODE
 _SetEXRegByte(SIOPortBase + DLH, HIBYTE(BaudDivisor));
 _SetEXRegByte(SIOPortBase + DLL, LOBYTE(BaudDivisor));

// Set Serial Line control register
_SetEXRegByte(SIOPortBase + LCR, Mode); // Sets Mode and resets the

// Divisor latch

// Set modem control bits
_SetEXRegByte(SIOPortBase + MCR, ModemCntrl);

return E_OK;
}
/******************************* MAIN ***********************************/

Parameters:
None

Returns:
None

Assumptions:
None

Real/Protected Mode
No changes required.

--*/

#ifndef SetEXRegWordInline
#define SetEXRegWordInline(address, word) \

_asm mov dx, address; \
_asm mov ax, word; \
_asm out dx, ax;

#endif

void main(void)
{

 InitSIO(SIO_PORT, // Which Serial Port
 SIO_8N1, // Mode, 8-data, no parity, 1-stop
 SIO_MCR_RTS+SIO_MCR_DTR, // Modem line controls
 9600, // Baud Rate
 BAUD_CLKIN); // Baud Clocking Rate

 _asm // Store registers to preserve values
 {
 push DI
 push SI
 push DS
 push ES

}

SetEXRegWordInline(CS4ADL, 0x702); // Configure chip select 4
 SetEXRegWordInline(CS4ADH, 0x0);
 SetEXRegWordInline(CS4MSKL, 0xFC01);
 SetEXRegWordInline(CS4MSKH, 0x0);
7-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 SetEXRegWordInline(CS2ADL,0x08700); // Enables SRAM as memory
 SetEXRegWordInline(CS2ADH,0x3);
 SetEXRegWordInline(CS2MSKL,0x07C01);
 SetEXRegWordInline(CS2MSKH,0x00);

 _asm // Copy SMM_EXAM.BIN code into SRAM
 {
 mov ax,0x3800 // Starting address for SMM_EXAM file
 mov es,ax // to be placed

 mov ax,seg SerialWriteStr2 // Address where SMM_EXAM is located
 mov ds,ax

 mov cx,0x100 // Length of SMM_EXAM file in bytes
 mov si,offset SerialWriteStr2
 mov di,0
 rep movsb
 }

 SetEXRegWordInline(CS2MSKL,0x7801); // Resets SRAM to enabled in SMM only

 _asm // Restore register values
 {
 pop DI
 pop SI
 pop DS
 pop ES
 }
 // Loop endlessly and display another serial message

while(1) // Serial Write Loop
 {
 SerialWriteStr(SIO_PORT,SMMString);

}
}
/**************************** END MAIN **********************************/
7-20

8
CLOCK AND
POWER
MANAGEMENT
UNIT

 power

nage-
hro-

ntal
ide-
s the
ndent

1P and

(SER-
s. The

er and
cy di-
513
CHAPTER 8
CLOCK AND POWER MANAGEMENT UNIT

The clock generation circuitry provides uniform, nonoverlapping clock signals to the core and in-
tegrated peripherals. The power management features control the clock signals to provide
conservation options.

This chapter is organized as follows:

• Overview (see below)

• Controlling the PSCLK Frequency (page 8-7)

• Controlling Power Management Modes (page 8-8)

• Design Considerations (page 8-11)

• Programming Considerations (page 8-13)

8.1 OVERVIEW

The clock and power management unit (Figure 8-1) includes clock generation, power ma
ment, and system reset circuitry. It also provides a clock output signal (CLKOUT) for sync
nizing external logic to the processor’s system clock. CLKOUT is the PH1P clock.

8.1.1 Clock Generation Logic

An external oscillator must provide an input signal to CLK2, which provides the fundame
timing for the processor. As Figure 8-1 shows, the clock generation circuitry includes two div
by-two counters and a programmable clock divider. The first divide-by-two counter divide
CLK2 frequency to generate two clocks (PH1 and PH2). For power management, indepe
clock signals are routed to the core (PH1C and PH2C) and to the internal peripherals (PH
PH2P).

The second divide-by-two counter divides the processor clock to generate a clock input
CLK) for the baud-rate generators of the asynchronous and synchronous serial I/O unit
SERCLK frequency is half the internal clock frequency, or CLK2/4.

The programmable divider generates a prescaled clock (PSCLK) input for the timer/count
synchronous serial I/O units. The maximum PSCLK frequency is the internal clock frequen
vided by 2 (CLK2/4) and the minimum is the internal clock frequency divided by
(CLK2/1026).
8-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

LK

 the
Three of the internal peripherals have selectable clock sources.

• The asynchronous serial I/O (SIO) unit can use either the SERCLK signal or an external
clock (connected to the COMCLK pin) as its clock source.

• The synchronous serial I/O (SSIO) unit can use either the SERCLK signal or the PSC
signal.

• The timer/counters can use either the PSCLK signal or an external clock connected to
TMRCLKn input pin.

The individual peripheral chapters explain how to select the clock inputs.

Figure 8-1. Clock and Power Management Unit Connections

A2470-02

INT

(From ICU)

NMI

SMI#

RESET

Power

Management

IDLE

PWRDN

To WDT

PWRDOWN

(pin mux)

CLKPRS

Programmable

Divider

÷2

Core

Buffer

Peripheral

Buffer

To Timer

To SIO0

To SIO1

To SSIO

To SSIO

To Peripherals

To Core

To Core

PSCLK

SERCLK

PH1C

PH2C

PH1P

To Peripherals
PH2P

÷2

Processor Clock

PH1/PH2

PWRCON

CLK2

CLKOUT

Async Reset
8-2

CLOCK AND POWER MANAGEMENT UNIT

nizes
 inter-
H1 or
 next

able
e of
wer-

s

 are
re

ibed in
e de-
The signal from the RESET pin is also routed to the clock generation unit, which synchro
the processor clock with the falling edge of the RESET signal and provides a synchronous
nal RESET signal to the rest of the device. The RESET falling edge can occur in either P
PH2. If RESET falls during PH1, the clock generation circuitry inserts a PH2, so that the
phase is PH1 (Figure 8-2). If it falls during PH2, the next phase is automatically PH1.

NOTE
The RESET signal must be high for 16 CLK2 cycles to properly reset the
processor.

Figure 8-2. Clock Synchronization

In addition to internal synchronization, a CLKOUT (PH1P) clock output is provided to en
external circuitry to maintain synchronization with the Intel386 EX processor. Since it is on
the peripheral clock signals, it remains active during idle mode, but is driven low during po
down mode.

8.1.2 Power Management Logic

The power management circuitry provides two power management modes:

Idle Mode Idle mode freezes the core clocks, but leaves the peripheral clock
running. Idle mode can reduce power consumption by about half,
depending on peripheral usage.

Powerdown mode Powerdown mode freezes both the core and peripheral clocks,
reducing current to leakage current (microamps). Peripherals that
clocked externally (SIO, Timers, SSIO) continue to run. If inputs a
toggling, power consumption is higher.

To prepare for a power management mode, program the power control register as descr
“Controlling Power Management Modes” on page 8-8, then execute a HALT instruction. Th

A2467-01

CLK2

PH2

? ? ? PH2 PH1

PH1

RESET

PH2
8-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

his

ntrol
execut-
t, the

e.

s, soft-
ing the
down
vice enters the programmed mode when the HALT cycle is terminated by a valid READY#. T
READY# may be generated either internally or externally.

A device reset, an NMI or SMI#, or any unmasked interrupt request from the interrupt co
unit causes the device to exit the power management mode. After a reset, the CPU starts
ing instructions at 3FFFFF0H and the device remains in normal operation. After an interrup
CPU executes the interrupt service routine, then returns to the instruction following the HALT
that prompted the power management mode. Unless software modifies the power control register,
the next HALT instruction returns the device to the programmed power management mod

8.1.2.1 SMM Interaction with Power Management Modes

When the processor receives an SMI# interrupt while it is in idle or powerdown mode, it exits the
power management mode and enters System Management Mode (SMM). Upon exiting SMM,
software can check whether the processor was in a halt state before entering SMM. If it wa
ware can set a flag that returns the processor to the halt state when it exits SMM. Assum
power control register bits were not altered in SMM, the processor re-enters idle or power
when it exits SMM. Figure 8-3 illustrates the relationships among these modes.
8-4

CLOCK AND POWER MANAGEMENT UNIT

uring
control
arbiter
e way

unter.
n it is

ile the
Figure 8-3. SMM Interaction with Idle and Powerdown Modes

8.1.2.2 Bus Interface Unit Operation During Idle Mode

The bus interface unit (BIU) can process DMA, DRAM refresh, and external hold requests d
idle mode. When the first request occurs, the core wakes up long enough to relinquish bus
to the bus arbiter, then returns to idle mode. For the remaining time in idle mode, the bus
controls the bus. DMA, DRAM refresh, and external hold requests are processed in the sam
as during normal operation.

8.1.2.3 Watchdog Timer Unit Operation During Idle Mode

When the watchdog timer unit is in system watchdog mode, idle mode stops the down-co
Since no software can run while the CPU is idle, a software watchdog is not needed. Whe
in bus monitor or general-purpose timer mode, the watchdog timer unit continues to run wh
device is in idle mode. (Chapter 17 describes the watchdog timer unit.)

Reset or

RSM Instruction

with Halt Restart

Slot Clear

System

Management

Mode

Powerdown

Mode

Idle

Mode

Normal

Operation

S
M

I#

A2229-03

Halt Instruction

with Idle Flag Set

RSM Instruction

with Idle Flag and

Halt Restart Slot Set

S
M

I#

Res
et

or

U
nm

asked

Interrupt

Halt Instruction

with Powerdown

Flag Set

RSM with

Powerdown Flag

and Halt Restart

Slot Set

or N
M

I or N

M
I

S
M

I#Unmask
ed

In
te

rr
up

t

R
eset or
8-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
8.1.3 Clock and Power Management Registers and Signals

Table 8-1 lists the registers and Table 8-2 list the signals associated with the clock and power man-
agement unit.

Table 8-1. Clock and Power Management Registers

Register Expanded
Address Description

CLKPRS 0F804H
Clock Prescale:

This register contains the programmed divisor value used to generate PSCLK
from the internal clock.

PWRCON 0F800H
Power Control:

This register selects the power management mode and internal ready options.

Table 8-2. Clock and Power Management Signals

Signal Device Pin or
Internal Signal Description

CLK2 Device pin
Input Clock:

Connect an external clock to this pin to provide the fundamental timing for
the microprocessor.

CLKOUT Device pin
Output Clock:

CLKOUT is a Phase 1 output clock (PH1P)

IDLE Internal signal
Idle Output (to the Watchdog Timer Unit):

IDLE indicates that the device is in idle mode.

INTR Internal signal
Interrupt Input (from the Interrupt Control Unit):

INT causes the device to exit powerdown or idle mode.

NMI Device pin
Nonmaskable Interrupt Input:

NMI causes the device to exit powerdown or idle mode.

PSCLK Internal signal

Prescaled Clock Output:

PSCLK is one of two possible clock inputs for the SSIO baud-rate
generator and the Timer/counter Unit. The PSCLK frequency is controlled
by the CLKPRS register.

PWRDOWN Device pin
Powerdown Output (multiplexed with P3.6):

A high state on the PWRDOWN pin indicates that the device is in
powerdown mode.

RESET Device pin
System Reset Input:

This signal resets the processor and causes the device to exit powerdown
or idle mode.

SERCLK Internal signal
Serial Clock Output:

SERCLK is one of two possible clock inputs for the SIO or SSIO baud-
rate generator. The SERCLK frequency is one-fourth the CLK2 frequency.

SMI# Device pin
System Management Interrupt Input:

SMI# causes the device to exit powerdown or idle mode and causes the
processor to enter System Management Mode.
8-6

CLOCK AND POWER MANAGEMENT UNIT

 SSIO
utput
ale val-

d.
8.2 CONTROLLING THE PSCLK FREQUENCY

The PSCLK signal can provide a 50% duty cycle prescaled clock to the timer/counter and
units. This feature is useful for providing various frequencies, including a 1.19318 MHz o
for a PC-compatible system timer, or speaker tone generator. Determine the required presc
ue using the following formula, then write this value to the CLKPRS register (Figure 8-4).

Figure 8-4. Clock Prescale Register (CLKPRS)

To change the frequency of PSCLK, write a new value to the CLKPRS register. The new frequen-
cy takes effect at the first high-to-low transition of PSCLK after CLKPRS has been change

Clock Prescale Register
CLKPRS
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F804H
—
0000H

15 8

— — — — — — — PS8

7 0

PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

Bit
Number

Bit
Mnemonic Function

15–9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

8–0 PS8:0 Prescale Value:

These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).

divisor = PS8:0 + 2

Prescale value
internal clock frequency (CLK2/2)

desired PSCLK frequency
-- 2–=
8-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

5.
8.3 CONTROLLING POWER MANAGEMENT MODES

Two power management modes are available: idle and powerdown. These modes are clock dis-
tribution functions controlled by the power control register (PWRCON), shown in Figure 8-

Figure 8-5. Power Control Register (PWRCON)

Power Control Register
PWRCON
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F800H
—
00H

7 0

— — — — WDTRDY HSREADY PC1 PC0

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:

0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.

1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.

1–0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT
instruction causes a normal halt and the device remains in active mode.

PC1 PC0

0 0 active mode
1 0 idle mode
0 1 powerdown mode
1 1 active mode
8-8

CLOCK AND POWER MANAGEMENT UNIT

clocks
8.3.1 Idle Mode

Idle mode freezes the core clocks (PH1C low and PH2C) high, and leaves the peripheral
(PH1P and PH2P) toggling. To enter idle mode:

1. Program the PWRCON register (Figure 8-5).

2. Execute a HALT instruction.

3. The CPU enters idle mode when READY# terminates the halt bus cycle.

NOTE
CLKOUT continues to run while the CPU is in idle mode.

Figure 8-6. Timing Diagram, Entering and Leaving Idle Mode

A2468-02

CLK2

PH2C

PH1 PH2 ?

PH1C

CLKOUT/PH1P

?

PH2P

CLK2

PH2C

PH2 PH1 PH2

PH1C

CLKOUT/PH1P

PH1

PH2P
8-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

P low,
sts

he

 stop,
e pin

y can
 bit 2
 bit 2
BA#

revent
8.3.2 Powerdown Mode

Powerdown mode freezes both the core clocks and the peripheral clocks (PH1C and PH1
PH2C and PH2P high). The BIU cannot acknowledge DMA, refresh, and external hold reque
in powerdown mode, since all the clocks are frozen.

To enter powerdown mode, follow these steps:

1. Program the PWRCON register (Figure 8-5).

2. Execute a HALT instruction.

3. The CPU enters powerdown mode when READY# (internal or external) terminates t
halt bus cycle.

When P3.6/PWRDOWN is configured as a peripheral pin, the pin goes high when the clocks
to indicate that the device is in powerdown mode. (Chapter 16 explains how to configure th
as either a peripheral pin or a general-purpose I/O port pin.)

8.3.3 Ready Generation During HALT

A halt cycle, like all other CPU bus cycles, requires a valid READY# to complete. This read
be generated by either external logic, or from the internal bus interface unit (BIU). Setting
of the PWRCON causes the READY# to be generated by the internal BIU, and clearing
requires it to be generated by external logic. When READY# is generated internally the L
signal is driven low.

External logic can use the PWRDOWN output to control other system components and p
DMA and hold requests.

NOTE
When the processor exits Powerdown Mode, use the CLKOUT pin for
external synchronization with the processor clock.
8-10

CLOCK AND POWER MANAGEMENT UNIT

 high

wer-

al pe-

es not
Figure 8-7. Timing Diagram, Entering and Leaving Powerdown Mode

8.4 DESIGN CONSIDERATIONS

This section outlines design considerations for the clock and power management unit.

8.4.1 Reset Considerations

External circuitry must provide an input to the RESET pin. The RESET input must remain
for at least 16 CLK2 cycles to reset the chip properly.

The RESET pin signal is routed directly to the device’s bidirectional pins. Even in idle or po
down, a device reset floats the bidirectional pins and turns on the weak pull-up or pull-down tran-
sistors.

The clock generation logic generates a synchronous internal RESET signal for the intern
ripherals. If you need a synchronous RESET signal for other system components, you can use a
simple circuit such as the one shown in Figure 8-8 to generate it. Otherwise, the CPU do
need a synchronous reset.

A2469-02

CLK2

PH2P/PH2C

PH1 PH2 ?

CLKOUT/PH1P/PH1C

PWRDOWN

?

CLK2

PH2P/PH2C

PH2 PH1 PH2

CLKOUT/PH1P/PH1C

PWRDOWN

PH1
8-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

he
f
e of

t
ration.

has its
equires
ert the
Figure 8-8. Reset Synchronization Circuit

8.4.2 Power-up Considerations

8.4.2.1 Built-in Self Test

The Intel386 EX processor supports the Intel386 SX processor built-in self-test (BIST) mode for
testing core functions. To initiate the self test, follow these steps:

1. Hold the RESET pin high for a minimum of 80 CLK2 cycles.

2. Transition the RESET pin from high to low while keeping the BUSY# pin asserted. T
BUSY# input should be asserted at least eight CLK2 cycles before the falling edge o
RESET and must be kept asserted for at least eight CLK2 cycles after the falling edg
RESET.

Once BIST has been initiated, it takes approximately 220 processor clock cycles to complete. A
the completion of the BIST, the processor performs an internal reset and begins normal ope

8.4.2.2 JTAG Reset

The processor supports an IEEE 1149.1 compliant JTAG boundary scan. The JTAG unit
own clock and RESET signals, independent from the rest of the processor. The processor r
that the JTAG unit be reset before normal operation can begin. To reset the JTAG unit, inv
processor RESET signal and connect this inverted RESET signal to the TRST# pin.

Synchronous

Reset Signal

to chip and

other system

logic.

D Q

CLK2

Asynchronous RESET D Q

A2465-02
8-12

CLOCK AND POWER MANAGEMENT UNIT

g the
he
 idle
8.4.3 Powerdown Mode and Idle Mode Considerations

• The “wake-up” signals (INT, NMI, and SMI#) are level-sensitive inputs to the wake-up
circuitry. The active state of any of these inputs prevents the device from entering
powerdown or idle mode.

• The refresh control unit cannot perform DRAM refreshes during powerdown.

• Powerdown mode freezes PSCLK and SERCLK.

• When the device exits powerdown mode, the PWRDOWN signal is synchronized with
CLK2 (at the falling edge of PWRDOWN) so that other devices in the system exit
powerdown at the same internal clock phase as the processor.

• The INTR output of the ICU cannot be masked off to the power management unit usin
CLI instruction. If it is necessary to mask off INTR to the power management unit, all t
interrupt inputs to the 82C59As must be masked. This applies to both powerdown and
modes.

8.5 PROGRAMMING CONSIDERATIONS

8.5.1 Clock and Power Management Unit Code Example

This section contains these software routines:

Set_Prescale_Value Sets the clock prescale value.

Enter_Idle_Mode Programs the Intel386 EX processor for idle mode.

Enter_Powerdown_Mode Programs the Intel386 EX processor for powerdown
mode.

Mode_Setting_to_Active Returns the Intel386 EX processor to active mode.

See Appendix C for the included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

/***
 Set_Prescale_Value:

Description:
This function sets the clock prescale value.

Parameters:
Prescale Prescale value

Returns: Error Codes
E_BAD_VECTOR -- Specified Prescale is invalid
E_OK -- Initialized OK, No error.

Assumptions:
8-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
None

Syntax:

 int error;
 WORD psclk = 0x02;

 error = Set_Prescale_Value(psclk);

Real/Protected Mode:
No changes required.

**/

int Set_Prescale_Value(WORD Prescale)
{

 WORD clkprs = 0x0000;

 clkprs = _GetEXRegWord(CLKPRS);

 /* clear lowest nine bits of clkprs */
 clkprs = clkprs & 0xfe00;

 /* check that prescale value is only 9 bits in length */
 if (Prescale != (Prescale & 0x01ff))
 return(E_BADVECTOR);

 _SetEXRegWord(CLKPRS, (clkprs | Prescale));

 return(E_OK);

}/*Set_Prescale_Value*/

/**

 Enter_Idle_Mode:

Description:
This function programs the 386EX for Idle mode. This freezes the
core clocks while leaving the peripheral clocks toggling.

Parameters:
 None

Returns:

None

Assumptions:
None

 Syntax:

 Enter_Idle_Mode();

 Real/Protected Mode:
8-14

CLOCK AND POWER MANAGEMENT UNIT
 No changes required.

**/

void Enter_Idle_Mode(void)
{
 BYTE pwrcon = 0x00;

 pwrcon = _GetEXRegByte(PWRCON);

 /* clear lowest two bits of pwrcon */
 pwrcon = pwrcon & 0xfc;

 /* Set mode to idle */
 _SetEXRegByte(PWRCON, (pwrcon | IDLE));

 /* call HALT instruction to execute IDLE mode */
 _asm {

 HLT
 }

}/* Enter_Idle_Mode */

/***

 Enter_Powerdown_Mode:

Description:
This function programs the 386EX for Powerdown mode. This freezes
both the core and peripheral clocks.

Parameters:
 None

Returns:

None

Assumptions:
None

Syntax:

 Enter_Powerdown_Mode();

 Real/Protected Mode:
 No changes required.

***/

void Enter_Powerdown_Mode(void)
{
 BYTE pwrcon = 0x00;

 pwrcon = _GetEXRegByte(PWRCON);
8-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 /* clear lowest two bits of pwrcon */
 pwrcon = pwrcon & 0xfc;

 /* Set mode to powerdown */
 _SetEXRegByte(PWRCON, pwrcon | PWDWN);

 /* call HALT instruction to execute POWERDOWN mode */
 _asm {

 HLT
 }

}/* Enter_Powerdown_Mode */

/***

 Mode_Setting_To_Active:

Description:
This function returns the 386EX to Active mode. Thus, the next
HALT instruction will not invoke the Idle or Powerdown Mode.

Parameters:
 None

Returns:

None

Assumptions:
None

Syntax:

 Mode_Setting_To_Active();

Real/Protected Mode:
 No changes required.

**/

void Mode_Setting_To_Active(void)
{
 BYTE pwrcon = 0x00;

 pwrcon = _GetEXRegByte(PWRCON);

 /* clear lowest two bits of pwrcon */
 pwrcon = pwrcon & 0xfc;

 /* Set mode to active */
 _SetEXRegByte(PWRCON, pwrcon | ACTIVE);

}/*Mode_Setting_To_Active*/
8-16

9
INTERRUPT
CONTROL UNIT

and a
pt the

cted
 can be
a

t

rrupts,

t inter-
nnected
ces are

hile the
ructure

led and
ds the
.

CHAPTER 9
INTERRUPT CONTROL UNIT

The Interrupt Control Unit (ICU) consists of two cascaded interrupt controllers, a master
slave, that allow internal peripherals and external devices (through interrupt pins) to interru
core through its interrupt input.

The interrupt control unit is functionally identical to two industry-standard 82C59As conne
in cascade. The system supports a maximum of 15 simultaneous interrupt sources, which
individually or globally disabled. The ICU passes the interrupts on to the core based on pro-
grammable priority structure.

Though the ICU can only handle a maximum of 15 simultaneous sources, a total of 18 interrup
sources can be connected to the ICU. Eight of these interrupt sources come from internal periph-
erals and the other ten come from external pins. To increase the number of possible inte
you can cascade additional 82C59As to six of the external interrupt pins (the pins that connect to
the master 82C59A only).

This chapter describes the interrupt control unit and is organized as follows:

• Overview (see below)

• ICU operation (page 9-4)

• Register Definitions (page 9-15)

• Design Considerations (page 9-29)

• Programming Considerations (page 9-32)

9.1 OVERVIEW

The ICU consists of two 82C59As configured as master and slave. Each 82C59A has eigh
rupt request (IR) signals. The master has seven interrupt sources and a slave 82C59A co
to its IR signals. The slave has nine interrupt sources connected to its IR signals (two sour
multiplexed into IR1). The interrupts can be globally or individually enabled or disabled.

The master can receive multiple interrupt requests at once. It can also receive a request w
core is already processing another interrupt. The master uses a programmable priority st
that determines:

• The order in which to process multiple interrupt requests

• Which requests can interrupt the processing of other requests

When the master receives an interrupt request, it checks to see that the interrupt is enab
determines its priority. If the interrupt is enabled and has sufficient priority, the master sen
request to the core. This causes the core to initiate an internal interrupt acknowledge cycle
9-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

aster,
uest, it
ty). The
est to the
nternal

A IN-
ut the
 which
 bus).

address

 addi-
ources.
al I/O
gnal,
 IR4

#, see

aster’s
s-

o the
The slave 82C59A is cascaded from (or connected to) the master’s IR2 signal. Like the m
the slave uses a programmable priority structure. When the slave receives an interrupt req
sends the request to the master (assuming the request is enabled and has sufficient priori
master sees the slave request as a request on its IR2 line. The master then sends the requ
core (assuming the request is enabled and has sufficient priority) and the core initiates an i
interrupt acknowledge cycle.

The internal interrupt acknowledge cycle consists of two pulses that are sent to the 82C59
TA# inputs. This cycle causes the 82C59A that received the original interrupt request to p
request’s vector number on the bus. The master’s cascade signals (CAS2:0) determine
82C59A is being acknowledged (i.e., which 82C59A needs to put the vector number on the
The core uses its processing mode (real or protected) and the vector number to find the
of the interrupt service routine.

The master 82C59A has six device pins (INT9:8, INT3:0) connected to it. You can cascade
tional external 82C59A slaves to these pins to increase the number of possible interrupt s
The external interrupt signals, INT9:8, are multiplexed with the internal asynchronous seri
interrupt signals, SIOINT0 and SIOINT1. On the slave 82C59A, the external interrupt si
INT6, and the DMA Unit’s DMAINT signal, can be swapped before connecting to the slave’s
and IR5 inputs (see Figure 9-1). The core initiates interrupt acknowledge cycles for the internal
82C59As. External logic must decode the bus signals (M/IO#, D/C#, W/R# and REFRESH
Table 6-2 on page 6-5) to generate external interrupt acknowledge signals. Since the cascade bus
determines which 82C59A is being acknowledged, each external slave must monitor the m
cascade signals to determine whether it is the acknowledged slave. For external slaves, the ma
ter’s cascade signals (CAS2:0) can be driven (using bit 7 of the INTCFG register) ont
A18:16 address pins.

NOTE
Since external 82C59As require the CAS2:0 signals to stay valid through the
idle states that occur between the two interrupt acknowledge cycles, and since
the processor drives these lines high during these idle states, the CAS2:0 lines
must be latched externally to ensure validity during the idle states.
9-2

INTERRUPT CONTROL UNIT
Figure 9-1. Interrupt Control Unit Configuration

IR0

IR1

IR2

8259A

Master

IR4

0
1

INT0

(P3.2)†To/From I/O Port 3

P3CFG.2
VSS

P3CFG.2

IR5

IR6

IR7

OUT0 (TCU)

IR3

SIOINT0

INT1

(P3.3)To/From I/O Port 3

P3CFG.3
VSS

P3CFG.3

INT2

(P3.4)To/From I/O Port 3

P3CFG.4VSS

P3CFG.4

INT3

(P3.5)To/From I/O Port 3

P3CFG.5VSS

P3CFG.5

IR0

IR1

IR2

IR4

IR5

IR6

IR3

INT4
VSS

INTCFG.0

INT5

To TCU

SSIOINT
INTCFG.1

INT6
To TCU

VSS

INTCFG.2

OUT1(TCU)

OUT2(TCU)

DMAINT

INT7
To TCU

VSS

INTCFG.3

0
1 CAS2:0

(A18:16)

VSS

A18:16

INTCFG.7

8259A

Slave

INT

CAS2:0

CAS2:0

3

A2522-03

IR7 WDTOUT#

To TCU

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

INTCFG.4

0
1

0

1

INTCFG.5 MCR0.3
SIOINT0

INT9

TMROUT0

(P3.0)OUT0(TCU)

INTCFG.5

SIOINT10
1 0

1

INTCFG.6 MCR1.3
SIOINT1

INT8

TMROUT1

(P3.1)OUT1(TCU)

INTCFG.6

† Alternate pin signals are in parentheses

Heavier lines indicate multiple signals.

INT
INTR

(to

core)

1

1

0 0

1 P3CFG.1

P3.1

1

0

(TMRGATE0)

(TMRCLK0)

0

1

P3.0

P3GFG.0

0

1

0

1

(TMRGATE1)

(TMRCLK1)

0

0

1

9-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

iority

imul-
ice pins
INT0
c-
s Se-
nal,
 IR4

than
e
gister
rrupt

to con-
9.2 ICU OPERATION

The following sections describe the ICU operation. The ICU’s interrupt sources, interrupt pr
structure, interrupt vectors, interrupt processing, and polling mode are discussed.

9.2.1 Interrupt Sources

The ICU support a total of 18 interrupt sources (see Table 9-1) but only a maximum of 15 s
taneous sources. Eight of these sources are internal peripherals and ten are external dev
(INT9:0). However, IR3 and IR4 of the master can be connected to either SIOINT1 and SIO
(internal Asynchronous Serial I/O interrupts), or to external device pins INT8 and INT9, respe
tively. Similarly, IR1 of the slave can be connected to either SSIOINT (internal Synchronou
rial I/O interrupt), or to external device pin INT5. On the slave, the external interrupt sig
INT6, and the DMA Unit’s DMAINT signal can be swapped before connecting to the slave’s
and IR5 inputs

The device pins (INT3:0) are multiplexed with port pins. When the port pin function (rather
the interrupt function) is enabled at the pin, VSS is internally connected to the ICU’s respectiv
interrupt request input. The device pins, INT7, INT6, and INT4, must be enabled (using re
bits) in order to be used. The port 3 configuration register (P3CFG) controls INT3:0 inte
source connections, and the interrupt configuration register (INTCFG) controls the INT9:4 inter-
rupt source connections. The modem control registers (MCR1 and MCR0) are also used
trol the INT9:8 interrupt source connections.
9-4

INTERRUPT CONTROL UNIT
Table 9-1. 82C59A Master and Slave Interrupt Sources

Master IR
Line Source Connected

by
Slave

IR Line Source Connected
by

IR0 TMROUT0
(timer control unit)

Hardwired IR0 VSS INTCFG.0=0

INT4
(device pin)

INTCFG.0=1

IR1 VSS P3CFG.2=0 IR1 SSIOINT
(SSIO unit)

INTCFG.1=0

INT0
(device pin)

P3CFG.2=1 INT5
(Device pin)

INTCFG.1=1

IR2 Slave 82C59A
Cascade

Hardwired IR2 TMROUT1
(timer control unit)

Hardwired

IR3 SIOINT1
(SIO unit)

INTCFG.6=0

P3CFG.1=0

IR3 TMROUT2
(timer control unit)

Hardwired

INT8

(device pin)

INTCFG.6=1

P3CFG.1=1

MCR0.3=1

IR4 SIOINT0
(SIO unit)

INTCFG.5=0

P3CFG.0=0

IR4 DMAINT
(DMA unit)

INTCFG.4=0

INT9

(device pin)

INTCFG.5=1

P3CFG.0=1

MCR1.3=1

INT6
(device pin)

INTCFG.4=1

IR5 VSS P3CFG.3=0 IR5 INT6

(device pin)

INTCFG.4=0

INTCFG.2=1

INT1
(device pin)

P3CFG.3=1 DMAINT
(DMA unit)

INTCFG.4=1

INTCFG.2=1

IR6 VSS P3CFG.4=0 IR6 VSS INTCFG.3=0

INT2
(device pin)

P3CFG.4=1 INT7
(device pin)

INTCFG.3=1

IR7 VSS P3CFG.5=0 IR7 WDTOUT#
(watchdog timer)

Hardwired

INT3
(device pin)

P3CFG.5=1
9-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 pro-
r

of the

urrent
hen ei-
 order

t level
g this

r.
the

4

e
re
R4

 and
Interrupt processing begins with the assertion of an IR signal. During the ICU initialization
cess (described in “Register Definitions” on page 9-15), you can program the ICU to be eithe
edge-triggered or level-triggered. See “Interrupt Detection” on page 9-29 for a description
difference between level and edge triggered signals.

9.2.2 Interrupt Priority

Each 82C59A contains eight interrupt request signals. An 82C59A can receive several conc
interrupt requests or can receive a request while the core is servicing another interrupt. W
ther condition occurs, the 82C59A uses a programmable priority structure to determine the
in which to process the interrupts. There are two parts to the priority structure:

• Assigning an interrupt level to each IR signal

• Determining their relative priorities

9.2.2.1 Assigning an Interrupt Level

By default, the interrupt structure for each 82C59A is configured so that IR0 has the highes
and IR7 has the lowest level. Two methods (shown in Figure 9-2) are available for changin
interrupt structure:

Specific Rotation This method assigns a specific IR signal as the lowest level. The
other IR signals are automatically rearranged in a circular manne
For example, if you specify IR5 as the lowest level, IR6 becomes
highest level, IR7 becomes the second-highest, and so on, with IR
the second-lowest.

Automatic Rotation This method assigns an IR signal to the lowest level after the cor
services its interrupt. As with specific rotation, the other signals a
automatically rearranged in a circular manner. For example, the I
signal is assigned the lowest level after the core services its interrupt,
IR5 becomes the highest level, IR6 becomes the second-highest,
so on, with IR3 the second-lowest.
9-6

INTERRUPT CONTROL UNIT

er, or

pt

wer
inish

als

s
e
oes
e
Figure 9-2. Met hods for Changing the Default Interrupt Structure

9.2.2.2 Determining Priority

There are three modes that determine relative priorities, i.e., whether a level higher, low
equal to another level has higher or lower interrupt priority.

Fully nested In the fully nested mode, higher level IR signals have higher interru
priority. In this mode, when an 82C59A receives multiple interrupt
requests, it passes the highest level request to the core (or to the
master if the 82C59A is a slave). The core stops processing the lo
level request, processes the higher level request, then returns to f
the lower level request.

Special fully nested The special fully nested mode allows higher or equal level IR sign
to have higher interrupt priority. In this mode, if the core is
processing an interrupt, a higher or equal level interrupt request i
passed through to the core. Also, since all interrupts from the slav
are directed into a single IR line (IR2) on the master (the master d
not know the priorities of the slave interrupts it receives), this mod
enables a higher-level interrupt on the slave to interrupt the

IR0
Highest

Level

Lowest

Level

IR1

IR2

IR3

IR4

IR5

IR6

IR7

Specific

Rotation

IR6
Becomes

Highest

Level

Specified

Lowest

Level

IR7

IR0

IR1

IR2

IR3

IR4

IR5

Default Automatic

Rotation

(After)

IR5
Becomes

Highest

Level

IR6

IR7

IR0

IR1

IR2

IR3

IR4

Assigned

Lowest

Level

After Being

Serviced

A2303-02

Automatic

Rotation

(Before)

IR4
Highest

Level

Before

Being

Serviced

IR5

IR6

IR7

IR0

IR1

IR2

IR3
9-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

d

and
e

om

he mas-
ested
,

quest to
ority).
enabled
cess-
 is as-

the core
 inter-

 (IR2 is

tored.

al,
ce

 bus.
here to

rmine
er cor-

se. For
rs for

e on an
processing of a lower-level slave interrupt. The special fully neste
mode is generally used by the master in a cascaded system.

Special mask In some applications, you may want to allow lower-level requests
interrupt the processing of higher-level interrupts. The special mask
mode supports these applications. Unlike the special-fully nested
fully nested modes, which are selected during ICU initialization, th
special mask mode can be enabled and disabled during program
operation. When special mask mode is enabled, only interrupts fr
the source currently in service are inhibited. All other interrupt
requests (of both higher or lower levels) are passed on.

When the internal slave receives an interrupt request, it passes that request to the master. T
ter receives all internal slave interrupt requests on its IR2 signal. This means that in fully n
mode, higher-level slave requests cannot interrupt lower-level slave interrupts. For examplesup-
pose the slave gets an interrupt request on its IR7 signal. The slave sends the interrupt re
the master’s IR2 signal (assuming the slave’s IR7 interrupt is enabled and has sufficient pri
The master sends the interrupt request to the core (assume the master’s IR2 interrupt is
and has sufficient priority). The core initiates an interrupt acknowledge cycle and begins pro
ing the interrupt. Next, the slave gets an interrupt request on its IR0 signal (assume IR0
signed a higher level than IR7). It then sends another IR2 to the master.

When the master is in fully nested mode, it does not relay the request to the core because
is in the process of servicing the previous IR2 interrupt and only a higher-level request can
rupt its process (IR2 is not higher than IR2).

When the master is in special fully nested mode, the request is passed through to the core
equal to IR2).

9.2.3 Interrupt Vectors

Each interrupt request has a corresponding interrupt vector number. The interrupt vector number
is a pointer to a location in memory where the address of the interrupt’s service routine is s
The relationship between the interrupt vector number and the location in memory of the inter-
rupt’s service routine address depends on the system’s programmed operating mode (repro-
tected, or virtual86). Chapter 9 of the Intel386™ SX Microprocessor Programmer’s Referen
Manual explains this relationship.

During an interrupt acknowledge cycle, the ICU puts the interrupt’s vector number on the
From the interrupt vector number and the system’s operating mode, the core determines w
find the address of the interrupt’s service routine.

You must initialize each 82C59A with an interrupt vector base number. The 82C59As dete
the vector number for each interrupt request from this base number. The base vector numb
responds to the IR0 signal’s vector number and must be on an 8-byte boundary.

Other vector numbers are determined by adding the line number of the IR signal to the ba
example, if the base vector number is 32, the IR5 vector number is 37. Valid vector numbe
maskable interrupts range from 32 to 255. Because the base vector number must resid
8-byte boundary, the valid base vector numbers are 32 + n × 8 where 0≤ n ≤ 27.
9-8

INTERRUPT CONTROL UNIT

ually

g bit

 bit and
y). The
ice bit,

). When
st to the
terrupt
 mas-

rs

er an
g ser-
nt pri-

 com-

e
9.2.4 Interrupt Process

Each IR signal has a mask, a pending, and an in-service bit associated with it.

• The mask bit disables the IR signal. The respective mask bits provide a way to individ
disable the IR signals. You can globally disable all interrupts to the core using the CLI
instruction. The mask bits reside in the OCW1.

• The pending bit indicates that the IR signal is requesting interrupt service. The pendin
resides in the IRR (Interrupt Request Register, which is accessed through OCW3).

• The in-service bit indicates that the processor is in the process of servicing the interrupt.
The in-service bit resides in the ISR (Interrupt Service Register, which is accessed through
OCW3).

When the master 82C59A receives an interrupt request, it sets the corresponding pending
sends the request to the core (assuming the request is enabled and has sufficient priorit
core then initiates an acknowledge cycle: the master clears its pending bit, sets its in-serv
and puts the interrupt vector number on the bus.

When the slave 82C59A receives an interrupt request, it sets the corresponding pending bit and
sends the request to the master (assuming the request is enabled and has sufficient priority
the master receives the slave request, it sets its IR2 pending bit and sends the IR2 reque
core (assuming the request is enabled and has sufficient priority). The core initiates an in
acknowledge cycle: the master clears its IR2 pending bit and sets its IR2 in-service bit. The
ter’s cascade bus activates the slave, which responds to the interrupt acknowledge cycle, clea
its pending bit, sets its in-service bit, and puts the interrupt vector number on the bus.

An 82C59A uses its in-service bits and programmed priority structure to determine wheth
interrupt has sufficient priority. The in-service bits indicate which interrupt requests are bein
viced. The priority structure determines whether a new interrupt request’s level has sufficie
ority to interrupt the current process.

You can use one of three methods to clear an in-service bit: enable the automatic end-of-interrupt
(AEOI) mode, issue a specific end-of-interrupt (EOI) command, or issue a nonspecific EOI
mand. The AEOI mode is available only on the master 82C59A.

AEOI mode This mode is enabled during system initialization. In
this mode, the 82C59A clears the in-service bit at th
beginning of an interrupt’s processing. This means
that interrupts of any level can interrupt the
processing of other interrupts.

Specific EOI command This command instructs the 82C59A to clear a
specific IR in-service bit.

Nonspecific EOI command This command instructs the 82C59A to clear the in-
service bit that corresponds to the highest level IR
signal active at that time.
9-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

nterrupt
ascaded
quest.

request
NOTE
Unlike the AEOI mode (this is a mode, and not a command like specific EOI
or nonspecific EOI), which is enabled during initialization, the other methods
are commands issued during interrupt processing, usually at the end of an
interrupt’s service routine.

Figure 9-3 illustrates the process that takes place when the master receives a non-slave i
request (which is a request on any IR signal to the master, that does not have a slave c
from it). Figure 9-4 illustrates the process that occurs when a slave receives an interrupt re
Figure 9-5 continues by showing what happens when the master receives a slave interrupt
(for example, an IR2 request).
9-10

INTERRUPT CONTROL UNIT
Figure 9-3. Interrupt Process – Master Request f rom Non-slave Source

A2427-01

Master receives an interrupt request. (From a non-slave source.)

Master sets the request's pending bit.

Is

request

enabled?

Is

special

mask mode

enabled?

Is master

operating in

special-fully

nested

mode?

(operating in

fully nested

mode)

Is

the

in-service

bit for this

request

set?

Is

request

higher level

than any set

in-service

bits?

Is

request

equal or higher

than any set

in-service

bits?

Master sends request to CPU. CPU initiates interrupt acknowledge cycle.

Master clears request's pending bit, sets its in-service bit, and puts its

interrupt vector number on the bus.

An interrupt return instruction is issued, ending the interrupt process.

Is

master in

AEOI

mode?

Master clears its in-service bit. The

CPU uses its operating mode and the

interrupt vector number to find the

interrupt service routine's address.

CPU begins processing interrupt.

The interrupt service routine sends an EOI command, causing the master

to clear its in-service bit.

End

Yes No No

YesYesNo

Yes No No

YesYesNo

Yes

No

The CPU uses its operating mode and the interrupt vector number to find

the interrupt service routine's address. CPU begins processing interrupt.
9-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 9-4. Interrupt Process – Slave Request

Slave receives an interrupt request.

Slave sets the request's pending bit.

Is

request

enabled?

Is

special

mask mode

enabled?

(operating in

fully nested mode)

Is

the

in-service

bit for this

request

set?

Is

request

higher

than any set

in-service

bits?

Slave sends request to master.

End

A2428-01

Yes No

No

No

Yes

Yes

Yes

No

Note:

See the "Interrupt Process - Master Request from Slave Source" figure for the continuation of this flow chart.
9-12

INTERRUPT CONTROL UNIT
Figure 9-5. Interrupt Process – Master Request from Slave Source

A2429-02

Master receives IR2 interrupt request.

Master sets its IR2 pending bit.

Master sends request to CPU. CPU initiates interrupt acknowledge cycle.

Master clears IR2 pending bit and sets IR2 in-service bit.

Slave clears its pending bit, sets its in-service bit, and puts its interrupt

vector number on the bus.

The CPU uses its operating mode and the interrupt vector number to find

the interrupt service routine's address. The CPU processes the interrupt.

Interrupt routine sends an EOI command to the slave, clearing its IR2

in-service bit

An interrupt return instruction is issued, ending the interrupt process.

Interrupt routine sends an

EOI command to the master,

clearing its IR2 in-service bit.

Does

slave have

other

in-service bits

set?

Is

request

enabled?

Is

special

mask mode

enabled?

Is

the

IR2 in-service

bit

set?

End

Yes No No

YesYesNo

Yes No No

YesYesNo

Is

request

higher level

than any set

in-service

bits?

Is

request

equal or higher

than any set

in-service

bits?

(operating in

fully nested

mode)

Yes

No

Is master

operating in

special-fully

nested

mode?
9-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

e spe-
rrupt
e it al-

rvice

of oth-
priate
 slave

ore to
. With
r any
g ef-

 to it.
gister

pt
uest can
er the
s the

 the re-
e poll
 At the
it.

lling,
y cas-

 inter-
ility by
The interrupt’s priority structure determines which EOI command should be used. Use th
cific EOI command for the special mask mode. In this mode, a lower-level interrupt can inte
the processing of a higher-level interrupt. The specific EOI command is necessary becaus
lows you to specifically clear the lower level in-service bit.

The fully nested mode allows only interrupts of higher levels to interrupt the processing of alow-
er-level interrupt. In this mode, the nonspecific EOI command automatically clears the in-se
bit for the current process (because it has the highest level).

Special-fully nested mode allows equal or higher level requests to interrupt the processing
er interrupts. For this mode, the nonspecific EOI command automatically clears the appro
in-service bit. However, when processing master IR2 interrupts, you must make sure all the
in-service bits are cleared before issuing the nonspecific EOI command to the master.

9.2.5 Poll Mode

The 82C59A modules can operate in a polling mode. Conventional polling requires the c
check each peripheral device in the system periodically to see whether it requires servicing
the 82C59A’s polling mode, the core, by initiating the polling process, can determine whethe
of the devices attached to the 82C59A require servicing. This improves conventional pollin
ficiency by allowing the core to poll only the 82C59A, not each of the devices connected
The polling mode is enabled by setting the polling bit in the Operation Command Word 3 re
(OCW3).

NOTE
After the polling procedure has been executed once, polling is disabled, i.e., it
is a one-shot operation. To repeat the polling procedure, the polling bit must be
set again.

The polling process takes the place of the standard interrupt process. In the standard interrupro-
cess, the master sends interrupt requests to the core. In the polling mode, an interrupt req
be detected by reading the 82C59A’s poll status byte. The poll status byte indicates wheth
82C59A requires servicing. If the 82C59A requires servicing, the poll status byte indicate
highest-priority pending interrupt request.

Polling is always a two-step process:

• A poll command is issued.

• The poll status byte is read.

When an 82C59A receives an interrupt request before it receives a poll command, it sets
quest’s in-service bit and configures the poll status byte to reflect the interrupt request. Th
status byte is used to determine which device connected to the 82C59A requires servicing.
end of a request’s servicing, you must issue a command to clear the request’s in-service b

The polling mode allows expansion of the system’s external interrupt capability. Without po
the system can have a maximum of 52 external interrupt sources. This is accomplished b
cading six 82C59As to the master’s six external interrupt pins and using the four external
rupt pins connected to the slave. The polling mode increases the system’s interrupt capab
9-14

INTERRUPT CONTROL UNIT

e ad-
s for a

 Al-
uction.

aliza-

r each
configuring more than six external 82C59As. Since the polling mode doesn’t require that th
ditional 82C59As be cascaded from the master, the number of interrupt request source
polled system is limited only by the number of 82C59As that the system can address.

Polling and standard interrupt processing can be used within the same program. Systems that use
polling as the only method of device servicing must still fully initialize the 82C59A modules.
so, the interrupt requests to the core must be disabled using the mask bits or the CLI instr

9.3 REGISTER DEFINITIONS

The registers associated with the ICU consist of pin and signal configuration registers, initi
tion command words (ICWs), operation command words (OCWs), and status registers.

• The configuration registers enable the external interrupt sources.

• The ICWs initialize the 82C59As during system initialization.

• The OCWs modify an 82C59A’s operation during program execution.

• The status registers reflect pending and in-service interrupts.

NOTE
ICW2, ICW3 and ICW4 of an 82C59A are all at the same address. Therefore a
programming sequence must be followed to program these registers. The first
access goes to ICW2, the second to ICW3 and the third to ICW4. When
programming any of these registers, the above sequence must be followed and
completed every time.

When initializing the ICU, write first to ICW1, then to ICW2, ICW3 and
ICW4 in order.

Table 9-2 describes these registers and the following sections contain bit descriptions fo
register.
9-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 9-2. ICU Registers (Sheet 1 of 2)

Register
Expanded
Address

PC/AT*
Address

Function

P3CFG

(read/write)

0F824H — Port 3 Configuration:

The INT3:0 signals are multiplexed with P3.5:2. This register
determines which signals are connected to the package pins.
When a P3.n signal rather than an INTn signal is connected to
a package pin, VSS is connected to the master’s IRn signal.

INTCFG

(read/write)

0F832H — Interrupt Configuration:

Determines the master’s and the slave’s IR signal
connections: SIOINT1 or INT8; SIOINT0 or INT9; VSS or INT7;
VSS or INT6; SSIOINT or INT5; VSS or INT4. Swaps DMAINT
and INT6. Also enables the master’s cascade bus (CAS2:0).
When enabled, the cascade signals appear on the A18:16
address lines during an interrupt acknowledge cycle.

ICW1 (master)
ICW1 (slave)

(write only)

0F020H
0F0A0H

0020H
00A0H

Initialization Command Word 1:

Determines whether interrupt request signals are level
sensitive or edge triggered.

ICW2 (master)
ICW2 (slave)

(write only)

0F021H
0F0A1H

0021H
00A1H

Initialization Command Word 2:

Contains the base interrupt vector number for the 82C59A.
The base interrupt vector is the IR0 vector number, the base
plus one is the IR1 vector number, and so on.

ICW3 (master)

(write only)

0F021H 0021H Initialization Command Word 3:

Identifies the master’s IR signals that are connected to slave
82C59A devices. The internal slave is connected to the
master’s IR2 signal. You can connect external slaves to the
master’s IR1, IR3, IR4, IR5, IR6, and IR7 signals.

ICW3 (slave)

(write only)

0F0A1H 00A1H Initialization Command Word 3:

Indicates that the internal slave is cascaded from the master’s
IR2 signal.

ICW4 (master)
ICW4 (slave)

(write only)

0F021H
0F0A1H

0021H
00A1H

Initialization Command Word 4:

Selects either special-fully nested or fully nested mode and
enables the automatic end-of-interrupt mode.

OCW1 (master)
OCW1 (slave)

(read/write)

0F021H
0F0A1H

0021H
00A1H

Operation Command Word 1:

Masks (disables) individual interrupt request signals.

OCW2 (master)
OCW2 (slave)

(write only)

0F020H
0F0A0H

0020H
00A0H

Operation Command Word 2:

Changes interrupt levels and sends end-of-interrupt
commands.

OCW3 (master)
OCW3 (slave)

(write only)

0F020H
0F0A0H

0020H
00A0H

Operation Command Word 3:

Enables special mask mode, issues the poll command, and
allows access to the interrupt request and in-service registers.

NOTE: All master 82C59A registers are accessed through two expanded or PC/AT addresses; all the slave
registers are accessed through two other expanded or PC/AT addresses. The order in which you write
or read these addresses along with certain register bit settings determines which register is accessed.
9-16

INTERRUPT CONTROL UNIT

proper
To initialize the 82C59As:

1. Globally disable all maskable interrupts to the core using the CLI instruction.

2. Write to the initialization command words.

NOTE
You must initialize both the master and the slave (either can be initialized
first).

The 8259A module has a state machine that controls access to the individual registers. Im
initialization occurs when the following sequences are not followed:

• To initialize the master, write to its initialization command words in order (ICW1, ICW2,
ICW3, then ICW4).

• To initialize the slave, write to its initialization command words in order (ICW1, ICW2,
ICW3, then ICW4).

IRR (master)
IRR (slave)

(read only)

0F020H
0F0A0H

0020H
00A0H

Interrupt Request:

Indicates pending interrupt requests.

ISR (master)
ISR (slave)

(read only)

0F020H
0F0A0H

0020H
00A0H

In-service:

Indicates the interrupt requests that are currently being
serviced.

POLL (master)

POLL (slave)

(read only)

0F020H
0F021H

0F0A0H
0F0A1H

0020H
0021H

00A0H
00A1H

Poll Status Byte:

Indicates whether any of the devices connected to the 82C59A
require servicing. If the 82C59A requires servicing, this byte
indicates the highest-priority pending interrupt.

NOTE: Once the polling bit is set in OCW3, the Poll Status
Byte of a particular 82C59A can be read by doing an access to
any of the four addresses of that 82C59A.

Table 9-2. ICU Registers (Sheet 2 of 2)

Register
Expanded
Address

PC/AT*
Address

Function

NOTE: All master 82C59A registers are accessed through two expanded or PC/AT addresses; all the slave
registers are accessed through two other expanded or PC/AT addresses. The order in which you write
or read these addresses along with certain register bit settings determines which register is accessed.
9-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

e pins.
 pack-
9.3.1 Port 3 Configuration Register (P3CFG)

Use the P3CFG register to connect the interrupt request signals (INT3:0) to the packag
These signals are multiplexed with port 3 signals, P3.5–2. Connecting a port 3 signal to the
age pin also connects VSS to the corresponding master’s IR signal, disabling the signal.

Figure 9-6. Port 3 Configuration Register (P3CFG)

Port 3 Configuration
P3CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INT0).

1 PM1 Pin Mode:

See Table 5-1 on page 5-8 for all the PM1 configuration options.

0 PM0 Pin Mode:

See Table 5-1 on page 5-8 for all the PM0 configuration options.
9-18

INTERRUPT CONTROL UNIT

d the
 cascade
l slave
9.3.2 Interrupt Configuration Register (INTCFG)

Use the INTCFG register to connect the INT9:4 interrupt request pins to the master’s an
slave’s IR signals and to enable the master’s external cascade signals. When enabled, the
signals appear on address lines A18:16 during interrupt acknowledge cycles. Every externa
monitors these lines to determine whether it is the slave being addressed.

Figure 9-7. Interrupt Configuration Register (I NTCFG)

Interrupt Configuration
INTCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F832H
—
00H

7 0

CE IR3 IR4 SWAP IR6 IR5/IR4 IR1 IR0

Bit
Number

Bit
Mnemonic Function

7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:

See Table 5-1 on page 5-8 for all the IR3 configuration options.

5 IR4 Internal Master IR4 Connection:

See Table 5-2 on page 5-8 for all the IR4 configuration options.

4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.
1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave

IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects VSS to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:

These depend on whether INTCFG.4 is set or clear.

0 = Connects VSS to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IR0 Internal Slave IR0 Connection:

0 = Connects VSS to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.
9-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ype
ten:
9.3.3 Initialization Command Word 1 (ICW1)

Initialization begins with writing ICW1. Use ICW1 to select the interrupt request triggering t
(level or edge). The following actions occur within an 82C59A module when its ICW1 is writ

• The interrupt mask register is cleared, enabling all interrupt request signals.

• The IR7 signal is assigned the lowest interrupt level (default).

• Special mask mode is disabled.

Figure 9-8. Initialization Command Word 1 Register (ICW1)

Initialization Command Word 1
ICW1 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

0 0 0 RSEL1 LS 0 0 1

Bit
Number

Bit
Mnemonic Function

7–5 — Clear these bits to guarantee device operation.

4 RSEL1 Register Select 1 (Also see OCW2 and OCW3):

ICW1, OCW2, and OCW3 are accessed through the same addresses.

0 = OCW2 or OCW3 is accessed (Figure 9-13 and Figure 9-15).
1 = ICW1 register is accessed.

3 LS Level/Edge Sensitive:

0 = Selects edge-triggered IR input signals.
1 = Selects level-sensitive IR input signals.

All internal peripherals interface with the 82C59As in edge-triggered
mode only. This is compatible with the PC/AT bus specification. Each
source signal initiates an interrupt request by making a low-to-high
transition. External peripherals interface with the 8259As in edge-
triggered or level-sensitive mode. The modes are selected for the
device, not for individual interrupts.

NOTE: If an internal peripheral interrupt is used, the 8259A that the
interrupt is connected to must be programmed for edge-triggered
interrupts.

2–1 — Clear these bits to guarantee device operation.

0 — Set this bit to guarantee device operation.

NOTE: The 82C59A must be initialized before it can be used. After reset, the 82C59A register states are
undefined. The 82C59A modules must be initialized before the IF flag in the core FLAG register is
set. All peripherals that use interrupts connected to the ICU must be initialized before initializing
the ICU.
9-20

INTERRUPT CONTROL UNIT

bers
e on an

de-
se in-
9.3.4 Initialization Command Word 2 (ICW2)

Use the ICW2 register to define the base interrupt vector for the 82C59A. Valid vector num
for maskable interrupts range from 32 to 255. Because the base vector number must resid
8-byte boundary, the valid base vector numbers are 32 + n × 8 where 0≤ n ≤ 27. Write the base
interrupt vector’s five most-significant bits to ICW2’s five most-significant bits. The 82C59A
termines specific IR signal vector numbers by adding the number of the IR signal to the ba
terrupt vector.

Figure 9-9. Initialization Command Word 2 Register (ICW2)

Initialization Command Word 2
ICW2 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

T7 T6 T5 T4 T3 0 0 0

Bit
Number

Bit
Mnemonic Function

7–3 T7:3 Base Interrupt Type:

Write the base interrupt vector’s five most-significant bits to these bits.

2–0 T2:0 Clear these bits to guarantee device operation.
9-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

on, the

es from
C59A
9.3.5 Initialization Command Word 3 (ICW3)

The ICW3 register contains information about the master/slave connections. For this reas
functions of the master’s ICW3 and the slave’s ICW3 differ.

ICW3 (at 0F021H or 0021H) is the master’s cascade configuration register (Figure 9-11). The
master has an internal slave cascaded from its IR2 signal. You can cascade additional slav
the master’s IR7, IR6, IR5, IR4, IR3 and IR1 signals. Setting a bit indicates that a slave 82
is cascaded from the corresponding master’s IR signal.

NOTE
Since the internal slave is cascaded from the master’s IR2 signal, you must set
the S2 bit.

Figure 9-10. Initialization Command Word 3 Register (ICW3 – Master)

Initialization Command Word 3
ICW3 (master)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F021H
0021H
XXH

7 0

S7 S6 S5 S4 S3 S2 S1 0

Bit
Number

Bit
Mnemonic Function

7–3 S7:3 Slave IRs

0 = No slave 8259A is attached to the corresponding IR signal of the
master.

1 = A slave 82C59A is attached to the corresponding IR signal of the
master.

2 S2 0 = Internal slave not used
1 = Internal slave is cascaded from the master’s IR2 signal.

1 S1 Slave IRs

0 = No slave 8259A is attached to the master through the IR1 signal of
the master.

1 = A slave 82C59A is attached to the IR1 signal of the master.

0 — Clear this bit to guarantee device operation.
9-22

INTERRUPT CONTROL UNIT

er to
ave an
d.
als are
ICW3 (at 0F0A1H or 00A1H) is the internal slave ID register (Figure 9-11). Use this regist
indicate that the slave is cascaded from the master’s IR2 signal. This gives the internal sl
ID of 2. Each slave device uses the IDs to determine whether it is the slave being addresseDur-
ing a slave access, the slave’s ID is driven on the master’s CAS2:0 signals. If these sign
enabled (bit 7 of INTCFG is 1), they appear on the A18:16 address lines.

Figure 9-11. Initialization Command Word 3 Register (ICW3 – Slave)

Initialization Command Word 3
ICW3 (slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F0A1H
00A1H
XXH

7 0

0 0 0 0 0 0 1 0

Bit
Number

Bit
Mnemonic Function

7–2 — Clear these bits to guarantee device operation.

1 — Set this bit to guarantee device operation.

0 — Clear this bit to guarantee device operation.
9-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

the au-
9.3.6 Initialization Command Word 4 (ICW4)

Use ICW4 to select the special-fully nested mode or the fully nested mode and to enable
tomatic EOI mode.

Figure 9-12. Initialization Command Word 4 Register (ICW4)

Initialization Command Word 4
ICW4 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

0 0 0 SFNM 0 0 AEOI 1

Bit
Number

Bit
Mnemonic Function

7–5 — Write zero to these bits to guarantee device operation.

4 SFNM Special-fully Nested Mode:

0 = Selects fully nested mode.
1 = Selects special-fully nested mode. Only the master 82C59A can

operate in special-fully nested mode.

3–2 — Write zero to these bits to guarantee device operation.

1 AEOI Automatic EOI Mode:

0 = Disables automatic EOI mode.
1 = Enables automatic EOI mode. Only the master 82C59A can operate

in automatic EOI mode.

0 — Write one to this bit to guarantee device operation.
9-24

INTERRUPT CONTROL UNIT

it dis-
ables
9.3.7 Operation Command Word 1 (OCW1)

OCW1 is the interrupt mask register. Setting a bit in the interrupt mask register disables (masks)
interrupts from the corresponding IR signal. For example, setting the master’s OCW1 M3 b
ables interrupts from the master IR3 signal. Clearing a bit in the interrupt mask register en
interrupts from the corresponding IR signal.

Figure 9-13. Operation Command Word 1 (OCW1)

Operation Command Word 1
OCW1 (master and slave)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

M7 M6 M5 M4 M3 M2 M1 M0

Bit
Number

Bit
Mnemonic Function

7–0 M7:0 Mask IR:

0 = Enables interrupts on the corresponding IR signal.
1 = Disables interrupts on the corresponding IR signal.

NOTE: Setting the mask bit does not clear the respective interrupt
pending bit.

NOTE: The 8259A must be initialized before it can be used. After reset, the 8259A register states are
undefined. The 8259A modules must be initialized before the IF flag in the core FLAG register is
set.
9-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
9.3.8 Operation Command Word 2 (OCW2)

Use OCW2 to change the priority structure and issue EOI commands.

Figure 9-14. Operation Command Word 2 (OCW2)

Operation Command Word 2
OCW2 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

R SL EOI RSEL1 RSEL0 L2 L1 L0

Bit
Number

Bit
Mnemonic Function

7 R The Rotate (R), Specific Level (SL), and End-of-Interrupt (EOI) Bits:

These bits change the priority structure and/or send an EOI command.

R SL EOI Command

0 0 0 Cancel automatic rotation*
0 0 1 Send a nonspecific EOI command
0 1 0 No operation
0 1 1 Send a specific EOI command**
1 0 0 Enable automatic rotation*
1 0 1 Enable automatic rotation and send a nonspecific EOI
1 1 0 Initiate specific rotation**
1 1 1 Initiate specific rotation and send a specific EOI**
* These cases allow you to change the priority structure while the

82C59A is operating in the automatic EOI mode.
** The L2:0 bits (see below) specify the specific level for these cases.

6 SL

5 EOI

4–3 RSEL1:0 Register Select Bits:

ICW1, OCW2 and OCW3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 00
to these bits to access OCW2.

RSEL1 RSEL0

0 0 OCW2
0 1 OCW3
1 X ICW1

2–0 L2:0 IR Level:

When you program bits 7–5 to initiate specific rotation, these bits specify
the IR signal that is assigned the lowest level.

When you program bits 7–5 to send a specific EOI command, these bits
specify the IR signal that receives the EOI command.

If SL=0, then these bits have no effect.
9-26

INTERRUPT CONTROL UNIT

s to the
9.3.9 Operation Command Word 3 (OCW3)

Use OCW3 to enable the special mask mode, issue a poll command, and provide acces
interrupt in-service and request registers (ISR, IRR).

Figure 9-15. Operation Command Word 3 (OCW3)

Operation Command Word 3
OCW3 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

0 ESMM SMM RSEL1 RSEL0 POLL ENRR RDSEL

Bit
Number

Bit
Mnemonic Function

7 — Clear this bit to guarantee device operation.

6 ESMM Enable Special Mask Mode (ESMM) and Special Mask Mode (SMM):

Use these bits to enable or disable special mask mode.

ESMM SMM

0 0 No action
0 1 No action
1 0 Disable special mask mode
1 1 Enable special mask mode

5 SMM

4–3 RSEL1:0 Register Select:

ICW1, OCW2 and OCW3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 01
to these bits to access OCW3.

RSEL1 RSEL0

0 0 OCW2
0 1 OCW3
1 X ICW1

2 POLL Poll Command:

Set this bit to issue a poll command, thus initiating the polling process.

1 ENRR Enable Register Read Select (ENRR) and Read Register Select
(RDSEL):

These bits select which register is read during the next F020H and
F0A0H (or PC/AT address 0020H, 00A0H) read access.

ENRR RDSEL Register Read on Next Read Pulse

0 0 No action
0 1 No action
1 0 Interrupt Request Register
1 1 In-service Register

0 RDSEL
9-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

d. It is

t

ed us-
ed.

evices
tatus

 of that
9.3.10 Interrupt Request Register (IRR)

This 8-bit, read-only register contains the levels requesting an interrupt to be acknowledge
accessed using OCW3 (see Figure 9-15). The highest request level is reset from the IRR when an
interrupt is acknowledged. Bits 7:0 of this register are the pending bits, respectively, of interrup
requests IR7:0.

9.3.11 In-Service Register (ISR)

This 8-bit, read-only register contains the priority levels that are being serviced. It is access
ing OCW3 (see Figure 9-15). The ISR is updated when an End-of-Interrupt command is issu
Bits 7:0 of this register are the in-service bits, respectively, of interrupt requests IR7:0.

9.3.12 Poll Status Byte (POLL)

Read the poll status byte after issuing a poll command to determine whether any of the d
connected to the 82C59A require servicing. Once the polling bit is set in OCW3, the Poll S
Byte of a particular 82C59A can be read by doing an access to any of the four addresses
82C59A.

Figure 9-16. Poll Status Byte (POLL)

Poll Status Byte
POLL (master and slave)
(read only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

INT — — — — L2 L1 L0

Bit
Number

Bit
Mnemonic Function

7 INT Interrupt Pending:

0 = No request pending.
1 = Indicates that a device attached to the 82C59A requires servicing.

6–3 — Reserved. These bits are undefined.

2–0 L2:0 Interrupt Request Level:

When bit 7 is set, these bits indicate the highest-priority IR signal that
requires servicing. When bit 7 is clear, i.e., no request is pending, these
bits are indeterminate.
9-28

INTERRUPT CONTROL UNIT

tion in
 cycle.
l that

 sets

ster’s

the IR
ge

s an
ate
ou
9A
cuit
m

9.4 DESIGN CONSIDERATIONS

The following sections discuss some design considerations.

9.4.1 Interrupt Acknowledge Cycle

When the core receives an interrupt request from the master, it completes the instruc
progress and any succeeding locked instructions, then initiates an interrupt acknowledge
The interrupt acknowledge cycle generates an internal interrupt acknowledge (INTA#) signa
consists of two locked pulses (Figure 9-17). This INTA# signal is connected to the internal
82C59A interrupt acknowledge inputs. On the falling edge of the second INTA#, the 82C59A
its interrupt in-service bit. It then clears its interrupt pending bit on the rising edge of the second
INTA#. On the second INTA# falling edge, the addressed 82C59A (determined by the ma
cascade signals) also drives the interrupt vector number on the data bus.

Figure 9-17. Interrupt Acknowledge Cycle

9.4.2 Interrupt Detection

The processing of an interrupt begins with the assertion of an interrupt request at one of
signals. During system initialization, you can program the IR signals, as a group, to be either ed
or level triggered (using ICW1 described in Figure 9-8).

Edge triggered The 82C59A recognizes a rising edge transition on an IR signal a
interrupt request. A device requesting service must maintain a high st
on an IR signal until after the falling edge of the first INTA# pulse. Y
can reset the edge-detection circuit during initialization of the 82C5
or by deasserting the IR signal. To reset the edge-detection cir
properly, the interrupt source must hold the IR line low for a minimu
time of 10ns.

A2430-01

INTA#

Data Bus

Vector Number

valid
9-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

upt
ge

el-
it is
evice

his is
aking

ntil

 bit for
rmine
pt (the

PLD
nal
atisfy

bes are
Level triggered The 82C59A recognizes a high level on an IR line as an interr
request. A device must maintain the high level until after the falling ed
of the first INTA# pulse. Unlike an edge-triggered IR signal, a lev
triggered IR signal continues to generate interrupts as long as
asserted. To avoid continuous interrupts from the same source, a d
must deassert a level-sensitive IR signal before the interrupt handler
issues an end-of-interrupt (EOI) command.

All internal peripherals interface with their respective 82C59As in edge-triggered mode. T
compatible with the PC/AT bus specification. Each source signal initiates an interrupt by m
a low-to-high transition.

9.4.3 Spurious Interrupts

For both edge and level-triggered interrupts, a high level must be maintained on the IR line u
after the falling edge of the first INTA# pulse (see Figure 9-18). A spurious interrupt request is
generated if this stipulation is not met. A spurious interrupt on any IR line generates the same vec-
tor number as an IR7 request. The spurious interrupt, however, does not set the in-service
IR7. Therefore, an IR7 interrupt service routine must check the in-service register to dete
whether the interrupt source was a valid IR7 (the in-service bit is set) or a spurious interru
in-service bit is cleared).

Figure 9-18. Spurious Interrupts

9.4.4 Cascading Interrupt Controllers

Figure 9-19 is a block diagram showing the connections for two cascaded 82C59As. The
generates READY# (for the second Interrupt Acknowledge Cycle) and INTA# to the exter
82C59A devices. The PLD also generates appropriate timings for the INTA# signals to s
82C59A specifications.

The RD# and WR# strobes are used to read and write to the 82C59A registers. These stro
inactive during Interrupt Acknowledge Cycles.

A2431-01

INTA#

IR (Valid)

IR sampled on this edge.

IR (Spurious)
9-30

INTERRUPT CONTROL UNIT
Figure 9-19. Cascading External 82C59A Interrupt Cont rollers

A2857-01

READY#

W/R#
D/C#

ADS#

CLKOUT
CLK2

INTA#

and

READY#

State

Machine

INTA#

External

CAS

Decode

CAS0

CAS1

CAS2

External

BLE#

RD#

WR#

D7:0

82C59As

Intel386™ EX

Processor PLD

CAS0

CAS1

CAS2

CSx# INTA#
CSy#

D7:0

D7:0

 A0

RD#

WR#

CSy#

CAS0

CAS1

CAS2

A0

RD#

WR#

CSx# INTA#

Latch

 INT

INTy

INTINTx

LBA#

M/IO#

READY#
9-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

rdless
pt is

rom
utine,
o the

 the
k

tates

ed
9.5 PROGRAMMING CONSIDERATIONS

Consider the following when programming the ICU.

• When an 82C59A receives an interrupt request, it sets the request’s pending bit (rega
of whether the IR signal is masked or not). The pending bit remains set until the interru
serviced.

• When the LS bit in ICW1 is set to edge-triggered during initialization, all the interrupt
pending bits will be cleared.

• In special-fully nested mode, care must be taken when processing interrupt requests f
the master’s internal cascade signal (IR2). At the end of the slave’s interrupt service ro
first issue a nonspecific EOI to the slave. Before issuing a nonspecific EOI command t
master, make sure that the slave has no other in-service bits set.

• Systems that use polling as the only method of device servicing must still fully initialize
82C59A modules. Also, the interrupt requests to the core must be disabled using the mas
bits or the CLI instruction.

• The 8259A must be initialized before it can be used. After reset, the 82C59A register s
are undefined. The 82C59A modules must be initialized before the IF flag in the core FLAG
register is set. All peripherals that use interrupts connected to the ICU must be initializ
before initializing the ICU.

9.5.1 Interrupt Control Unit Code Examples

The example code contains these software routines:

InitICU Initializes the Master and Slave 82C59A Interrupt Controllers

InitICUSlave Initializes the Slave 82C59A Interrupt Controllers

Disable8259Interrupt Disables interrupts on the Master and internal Slave

Enable8259Interrupt Enables interrupts on the Master and internal Slave

SetIRQVector Loads the interrupt vector table with the address of the Interrupt
Service Routine

SetInterruptVector Called by SetIRQVector to load vector table

Poll_Command Issues a poll command to read the poll status byte of the ICU

See Appendix C for included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

 /* Globals For information about the ICU */
BYTE _IRQ_SlaveBase_= 0x30;
BYTE _IRQ_MstrBase_ = 0x20;
9-32

INTERRUPT CONTROL UNIT
BYTE _CascadeBits_ = 0x4;

/***
InitICU

Description:
Initialization for both the master and slave Interrupt Control
Units (ICU). tine only initializes the internal interrupt
controllers, external ICUs must be initialized separately. These
should be initialized before interrupts are enabled(i.e., enable()).

Parameters:
MstrMode Mode of operation for Master ICU
MstrBase Specifies the base interrupt vector number for the

Master interrupts.
For example, if IR1 of the master goes active and the
MstrBase = 0x20, the processor uses interrupt
vector table entry 0x21.

MstrCascade Which Master IRQs are used for Slave ICUs.
SlaveMode Mode of operation for Slave ICU
SlaveBase Specifies the base interrupt vector number for the

Slave interrupts.
For example, if IR1 of the slave goes active and the
SlaveBase = 0x40, the processor uses interrupt
vector table entry 0x41.

 MstrPins Defines what EX pins are available externally to the
 chip for the Master.
 SlavePins Defines what EX pins are available externally to the
 chip for the Slave.
Returns:Error Code

E_OK -- Initialized OK, No error.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

#define ICU_TRIGGER_EDGE 0x0
#define MPIN_INT0 0x4
#define MCAS_IR1 0x2
#define SPIN_INT4 0x1

int error_code;

error_code = InitICU(ICU_TRIGGER_EDGE,
0x20,
MCAS_IR1,
ICU_TRIGGER_EDGE,
0x30,
MPIN_INT0,
SPIN_INT4);
9-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Real/Protected Mode
No changes required.

***/

int InitICU(BYTE MstrMode, BYTE MstrBase, BYTE MstrCascade, BYTE SlaveMode,
 BYTE SlaveBase, BYTE MstrPins, BYTE SlavePins)

{
 BYTE icw, cfg_pins;

/* Program Slave ICU */

 _IRQ_SlaveBase_ = SlaveBase & 0xf8;
 _SetEXRegByte(ICW1S, 0x11 | SlaveMode);// Set slave triggering
 _SetEXRegByte(ICW2S, _IRQ_SlaveBase_); // Set slave base interrupt type,
 // least 3-bit must be 0
 _SetEXRegByte(ICW3S, 0x2); // Set slave ID
 _SetEXRegByte(ICW4S, 0x1); // Set bit 0 to guarantee operation

/* Program Master ICU */

 _IRQ_MstrBase_ = MstrBase & 0xf8;
 CascadeBits = MstrCascade | 0x4;
 icw = (MstrMode & ICU_TRIGGER_LEVEL) ? 0x19 : 0x11;
 _SetEXRegByte(ICW1M, icw); // Set master triggering
 _SetEXRegByte(ICW2M, _IRQ_MstrBase_); // Set master base interrupt
 // type, least 3-bit must be 0
 _SetEXRegByte(ICW3M, _CascadeBits_); // Set master cascade pins,
 // Make sure IR2 set for Cascade
 icw = (MstrMode & ~ICU_TRIGGER_LEVEL) | 1;// Set bit 0 and remove
 // Trigger_level bit (in ICW1)
 _SetEXRegByte(ICW4M, icw); // Set slave IDs in master

/* Program chip configuration registers */

 cfg_pins = _GetEXRegByte(INTCFG);
 if((MstrCascade & 0xfb) != 0) // bit 2 (IR2) is internal,
 // external signals not required
 // for just IR2
 cfg_pins |= 0x80; // Using external slaves,
 // therefore enable Cascade signals
 cfg_pins |= SlavePins;
 _SetEXRegByte(INTCFG, SlavePins); // Set Slave external interrupt pins
 cfg_pins = _GetEXRegByte(P3CFG); // Preserve other set bits
 _SetEXRegByte(P3CFG, cfg_pins | MstrPins);// Set Master external
 // interrupt pins

 return E_OK;

}/* InitICU */
9-34

INTERRUPT CONTROL UNIT
/***
InitICUSlave

Description:
Initialization only the internal slave Interrupt Control Units (ICU).
This routine only initializes the internal interrupt controller,
external ICUs must be initialized separately.

Parameters:
SlaveMode Mode of operation for Slave ICU
SlaveBase Specifies the base interrupt vector number for the

Slave interrupts.
For example, if IR1 of the slave goes active and the
SlaveBase = 0x40 the processor uses interrupt
vector table entry 0x41.

 SlavePins Defines what EX pins are available externally to the
 chip for the Slave.

Returns:Error Code
E_OK -- Initialized OK, No error.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

/* ICU Modes */
#define ICU_SFNM 0x10
#define ICU_AUTOEOI 0x2
#define ICU_TRIGGER_LEVEL 0x8
#define ICU_TRIGGER_EDGE 0x0
/* ICU Slave Pins */
#define SPIN_INT4 0x1
#define SPIN_INT5 0x2
#define SPIN_INT6 0x4
#define SPIN_INT7 0x8

int error_code;

error_code = InitICUSlave(ICU_TRIGGER_EDGE, 0x30, SPIN_INT4);

Real/Protected Mode
No changes required.

***/

int InitICUSlave(BYTE SlaveMode, BYTE SlaveBase, BYTE SlavePins)
{
 BYTE cfg_pins;

/* Program Slave ICU */
9-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 _IRQ_SlaveBase_ = SlaveBase & 0xf8;
 _SetEXRegByte(ICW1S, 0x11 | SlaveMode); // Set slave triggering
 _SetEXRegByte(ICW2S, _IRQ_SlaveBase_); // Set slave base interrupt
 // type, least 3-bit must be 0
 _SetEXRegByte(ICW3S, 0x2); // Set slave ID
 _SetEXRegByte(ICW4S, 0x1); // Set bit 0 to guarantee
 // operation
 cfg_pins = _GetEXRegByte(INTCFG);
 cfg_pins |= SlavePins;
 _SetEXRegByte(INTCFG, SlavePins); // Set Slave external interrupt
 // pins

 return E_OK;

}/* InitICUSlave */

/***
Disable8259Interrupt:

Description:
Disables 8259a interrupts for the master and the slave.

Parameters:
MstrMask Mask value for master ICU
SlaveMask Mask value for slave ICU

Each bit location that is set disables the corresponding
interrupt (by setting the bit in the interrupt control register).
For example, to disable master IR3 and IR5 set MstrMask = 0x28
(bits 3 and 5 are set).

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

/* ICU IRQ Mask Values*/
#define IR0 0x1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40
9-36

INTERRUPT CONTROL UNIT
#define IR7 0x80

 Disable8259Interrupt(IR0 | IR1 | IR3 | IR4 | IR5 | IR6 | IR7,

IR1 | IR2 | IR3 | IR4 |IR5 | IR6);

Real/Protected Mode
No changes required.

***/

void Disable8259Interrupt(BYTE MstrMask, BYTE SlaveMask)
{

BYTE Mask;

if(MstrMask != 0)
{

Mask = _GetEXRegByte(OCW1M);
_SetEXRegByte(OCW1M, Mask | MstrMask);

}

if(SlaveMask != 0)
{

Mask = _GetEXRegByte(OCW1S);
_SetEXRegByte(OCW1S, Mask | SlaveMask);

}

}/* Disable8259Interrupt */

/***
Enable8259Interrupt:

Description:
Enables 8259a interrupts for the master and the slave.

Parameters:
MstrMask Enable mask value for master ICU
SlaveMask Enable mask value for slave ICU

Each bit location that is set enables the corresponding
interrupt (by clearing the bit in the interrupt control register).
For example, to enable master IR3 and IR5 set MstrMask = 0x28
(bits 3 and 5 are set).

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:
9-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
/* ICU IRQ Mask Values*/
#define IR0 0x1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40
#define IR7 0x80

 Enable8259Interrupts(IR2, IR0 | IR7); //Enable MasterIR2 for cascading
 //Enable INT4 and WDTOUT on Slave

Real/Protected Mode

No changes required.

***/

void Enable8259Interrupt(BYTE MstrMask, BYTE SlaveMask)
{

BYTE Mask;

if(MstrMask != 0)
{

Mask = _GetEXRegByte(OCW1M);
_SetEXRegByte(OCW1M, Mask & (~MstrMask));

}

if(SlaveMask != 0)
{

Mask = _GetEXRegByte(OCW1S);
_SetEXRegByte(OCW1S, Mask & (~SlaveMask));

}

}/* Enable8259Interrupt */

/**

SetIRQVector:

Description:
Loads the interrupt vector table with the address of the interrupt
routine. The vector table entry number is determined by the vector
number.

Parameters:
InterProc Address of interrupt function, will be loaded into

the interrupt table.
IRQ Hardware Interrupt request number (0-15).
ISR_Type Specifies if the interrupt function should be treated

as a TRAP_ISR or an INTERRUPT_ISR. Real Mode only
9-38

INTERRUPT CONTROL UNIT
supports INTERRUPT_ISR (parameter is ignored).
Protected mode supports both.

Returns:Error Code
E_INVALID_VECTOR -- An IRQ of greater than 15 was passed
E_BADVECTOR -- IRQ is used for cascading to a slave interrupt

controller
E_OK -- Initialized OK, No error.

Assumptions:
Compiler supports far and interrupt keywords

ICU must be configured before this function is call for it to
operate properly

_IRQ_SlaveBase_,_IRQ_MstrBase_,_CascadeBits_ are set before function
is called. These are initialized in the InitICU functions supplied
in this source.

Syntax:

int error_code;

error_code = SetIRQVector(wdtISR,
15, // Slave IR#’s are offset by 8 in

// Vector Table
INTERRUPT_ISR);

Real/Protected Mode
No changes required. Uses SetInterruptVector which is mode
dependant (separate source)

***/

int SetIRQVector(void (far interrupt *IntrProc)(void), int IRQ, int IntrType)
{

int Vector;

if(IRQ > 15) return E_INVALID_VECTOR;

if(IRQ > 7) // Get Vector from Slave
Vector = _IRQ_SlaveBase_ + IRQ - 8;

else // From Master
{

if((1 << IRQ) & _CascadeBits_) return E_BADVECTOR;
Vector = _IRQ_MstrBase_ + IRQ;

}

 SetInterruptVector(IntrProc, Vector, IntrType);
9-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
return E_OK;

}/* SetIRQVector */

/***

SetInterruptVector:

Description:
Loads the interrupt vector table with the address of the interrupt
routine. The vector table entry number is determined by the vector
number.

Parameters:
InterProc Address of interrupt function, will be loaded into

the interrupt table.
ISR_Type Specifies if the interrupt function. Real Mode only

supports INTERRUPT_ISR (the parameter is ignored). The
parameter is kept to maintain compatibility with the
protected mode version of this function.

Returns:
None

Assumptions:
Compiler supports far and interrupt keywords
Compiler may issue a warning about IntrType not used.
IntrType is kept for protected mode compatibility.

Syntax:

SetInterruptVector(wdtISR, INTERRUPT_ISR);

Real/Protected Mode
Real Mode only

***/

void SetInterruptVector(void (far interrupt *IntrProc)(void),
 int Vector, int IntrType)
{
 (void) IntrType; // Reference to avoid compiler warning

 ((unsigned long far *)(0))[Vector] = (unsigned long)IntrProc;

}/* SetInterruptVector */

/***
9-40

INTERRUPT CONTROL UNIT
Poll_Command:

Description:
This routine issues a poll command which reads the poll status byte
of the ICU.

Parameters:
Master_or_Slave Specifies which interrupt controller is polled

Returns:
Current value of poll status byte

Assumptions:
None

Syntax:

in poll_status;

poll_status = Poll_Command();

Real/Protected Mode:
No changes required.

**/

int Poll_Command(int Master_or_Slave)
{

 int poll_status;

 if (Master_or_Slave == Master) {

 _SetEXRegByte(OCW3M, 0x0c); //Initiate polling sequence
 poll_status = _GetEXRegByte(ICW2M);

 }

 else {

 _SetEXRegByte(OCW3S, 0x0c); //Initiate polling sequence
 poll_status = _GetEXRegByte(ICW2S);
 }

 return(poll_status);

} /* Poll_Command */
9-41

10
TIMER/COUNTER
UNIT

2C54
-
rmats
ware
s out-
DMA

o
CHAPTER 10
TIMER/COUNTER UNIT

The Timer/counter Unit (TCU) has the same basic functionality as the industry-standard 8
counter/timer. It contains three independent 16-bit down counters, which can be driven by a pres
caled value of the processor clock or an external clock. The counters contain two count fo
(binary and BCD) and six different operating modes, two of which are periodic. Both hard
and software triggered modes exist, providing for internal or external control. The counter’
put signals can appear at device pins, generate interrupt requests, and initiate
transactions.

This chapter is organized as follows:

• Overview (see below)

• TCU Operation (page 10-5)

• Register Definitions (page 10-20)

• Programming Considerations (page 10-33)

10.1 OVERVIEW

The TCU contains control logic and three independent 16-bit down counters (Figure 10-1). Each
counter has two input signals and one output signal:

CLKIN n You can independently connect each counter’s clock input (CLKINn) signal to
either the internal prescaled clock (PSCLK) signal or the external timer clock
(TMRCLKn) pin. This allows you to use either a prescaled value of the
processor’s internal clock or an external clock to drive each counter.

NOTE
The maximum CLKINn frequency, whether connected internally or externally,
is 8 MHz.

GATEn Each counter has a gate (GATEn) input signal. This signal provides counter
operation control. In some of the counter operating modes, a high level on a
counter’s GATEn signal enables or resumes counting and a low level disables or
suspends counting. In other modes, a rising edge on GATEn loads a new count
value. You can independently connect each counter’s GATEn signal to either VCC
or the external timer gate (TMRGATEn) pin, or you can drive each counter’s
GATEn signal high or low through register bits.

OUTn Each counter contains an output signal called OUTn. You can independently
connect these signals to the external timer clock output (TMROUTn) pins.
OUT0, OUT1, and OUT2 are routed to the interrupt control unit. OUT1 is als
routed to DMA channel 0, and OUT2 is also routed to DMA channel 1.
10-1

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

 count
m the
ount
Therefore, the OUTn signals can drive external devices, generate interrupt
requests, initiate DMA transactions or combinations of the three.

Each counter operates independently. Six different counting modes are available and two
formats: binary (16 bits) or BCD (4 decades). Each operating mode allows you to progra
counter with an initial count and to change this value “on the fly.” You can determine the c
and status of each counter without disturbing its current operation.

Figure 10-1. Timer/Counter Unit Signal Connections

OUT0

OUT1

CLKIN00

1

PSCLK

TMRCLK0

0

1

VCC

TMRGATE0

0

1TMRCLK1

0

1

TMRGATE1

0

1TMRCLK2

0

1

TMRGATE2

GATE0

CLKIN1

GATE1

CLKIN2

GATE2

OUT2

Control Logic

A2317-02

TMRCFG.5

TMRCFG.4

TMRCFG.3

TMRCFG.2

TMRCFG.1

TMRCFG.0

TMRCFG.7

PINCFG.5

TMROUT2

To ICU

(Slave IR3)

To DMA

Ch1 MUX

P3CFG.1

To ICU

(Slave IR2)

To DMA

Ch0 MUX

TMROUT1

P3CFG.0

To ICU

(Master IR0)

TMROUT0

S

y

s

t

e

m

B

u

s

VCC

VCC

PSCLK

PSCLK

PINCFG.5

PINCFG.5

TMRCFG.6

0

1

TMRCFG.6

0

1

0

1

TMRCFG.6
10-2

TIMER/COUNTER UNIT
10.1.1 TCU Signals and Registers

Table 10-1 and Table 10-2 lists the signals and registers associated with the TCU.

Table 10-1. TCU Signals

Signal Device Pin or
Internal Signal Description

PSCLK Internal signal Prescaled Clock:

This is one of the two possible connections for the counter’s CLKINn
signal. PSCLK is an internal signal that is a prescaled value of the
processor internal clock. The clock and power management unit
contains a programmable divider that determines the PSCLK frequency.
See “Controlling the PSCLK Frequency” on page 8-7, for information on
how to program PSCLK’s frequency.

TMRCLK0
TMRCLK1
TMRCLK2

Device pin Timer Clock Input:

This is one of the two possible connections for the counter’s CLKINn
signal. You can drive a counter with an external clock source by
connecting the clock source to the counter’s TMRCLKn pin.

TMRGATE0
TMRGATE1
TMRGATE2

Device pin Timer Gate Input:

This input can be connected to the counter’s GATEn input to control the
counter’s operation. In some of the counter’s operating modes, a high
level on GATEn enables or resumes counting, while a low level disables
or suspends counting. In other modes, a rising edge on GATEn loads a
new count value.

TMROUT0
TMROUT1
TMROUT2

Device pin Timer Output:

The counter’s OUTn signal can be connected to this pin. The operation,
and consequently the waveform, of the output depends on the counter’s
operating mode.
10-3

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
Table 10-2. TCU Associated Registers

Register Expanded
Address

PC/AT*
Address Function

P3CFG
PINCFG

(read/write)

0F824H
0F826H

— Peripheral Pin Selections:

These registers determine whether a counter’s input and output
signals are connected to package pins.

TMRCFG

(read/write)

0F834H — Timer Configuration:

Enables the counter’s CLKINn input signal, selects the CLKINn
connection (PSCLK or TMRCLKn) for each counter, and either
connects TMRGATEn or VCC to each counter’s GATEn input signal,
or sets GATEn high or low through register bits.

TMRCON 0F043H 0043H TMRCON has three formats: control word, counter-latch, and read-
back. When writing to TMRCON, certain bit settings determine which
format is accessed.

Control Word Format:
Programs a specific counter. Selects a counter’s operating mode and
count format. After programming a counter, you can write a count
value to the counter’s TMRn register at any time.

Counter-latch Format:
Issues a counter-latch command to a specific counter. The counter-
latch command allows you to latch the count of a specified counter.
After issuing a counter-latch command, you can check the counter’s
count by reading the counter’s TMRn register.

Read-back Format:
Issues a read-back command to one or more counters. The read-
back command allows you to latch the count and status of one or
more counters. After issuing the read-back command, you can check
the counter’s status by reading the counter’s TMRn register. After
checking a counter’s status, you can read the counter’s TMRn
register again to check its count.

TMR0
TMR1
TMR2

0F040H
0F041H
0F042H

0040H
0041H
0042H

Status Format:
Read this register after issuing a read-back command to check
counter n’s status. Reading TMRn again accesses its read format.

Read Format:
Read this register to check counter n’s count value.

Write Format:
Write this register at any time after initializing counter n to change the
counter’s count value.
10-4

TIMER/COUNTER UNIT

 in sec-
KIN
inary
f the
ent
al count

.

n
counter

 For
dge

TE

TE
rising
r is
ext ris-

e falling

 count
10.2 TCU OPERATION

Each counter can operate in any one of six operating modes. These modes are described
tions 10.2.1 through 10.2.6. In all modes, the counters decrement on the falling edge of CLn.
In modes 0, 1, 4, and 5, the counters roll over to the highest count, either 0FFFFH for b
counting or 9999 for BCD counting, and continue counting down. However, the state o
OUTn is only affected by the first run through the counter and does not change on subsequ
runs. Modes 2 and 3 are periodic modes; in these modes, when the counter reaches termin
it is reloaded with the currently programmed count value.

To specify a counter’s operating mode, write to the TMRCON register’s control word format
Writing to this register initiates counting. To specify a count, write to the counter’s TMRn regis-
ter’s write format. In modes 0 and 4, the count is loaded on the falling edge of CLKINn. Modes
1 and 5 require a rising edge on a counter’s GATEn signal (or gate-trigger) to load the count. I
modes 2 and 3, the count is loaded when the counter reaches terminal count or when the
receives a gate-trigger, whichever is first.

The GATEn signal affects the counting operation for each mode differently (Table 10-3).
modes 0, 2, 3, and 4, GATEn is level sensitive, and the logic level is sampled on the rising e
of CLKINn. The action then occurs on the falling edge of the next CLKINn. In these modes,
GATEn must be high for counting to begin. During a counting sequence, a low level at GAn
suspends counting, while a high level at GATEn resumes counting.

For modes 1, 2, 3, and 5, GATEn is rising-edge sensitive. In these modes, a rising edge at GAn
sets an edge-sensitive flip-flop in the counter. This flip-flop is then sampled on the next
edge of CLKINn; the flip-flop is reset immediately after it is sampled. In this way, a trigge
detected no matter when it occurs - a high level does not have to be maintained until the n
ing edge of CLKINn. Therefore, a rising edge on GATEn that occurs between two rising CLKINn
edges is recognized as a gate-trigger. The operation caused by a gate-trigger occurs on th
CLKINn edge following the trigger. Note that in modes 2 and 3, the GATEn input is both edge-
and level-sensitive. In modes 1, 2, 3, and 5, a gate-trigger causes the counter to load new
values.
10-5

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

h-
nt-
ntil

nter at
 re-
10.2.1 Mode 0 – Interrupt on Terminal Count

This mode allows you to generate a rising edge on a counter’s OUTn signal. Initializing a counter
for mode 0 drives the counter’s OUTn signal low and initiates counting. When the counter reac
es terminal count, OUTn is driven high. At this point, the counter rolls over and continues cou
ing with OUTn high. OUTn stays high and the counter keeps counting down and rolling over u
a new count is written or you reprogram the counter. You can write a new count to the cou
any time to drive OUTn low and start a new counting sequence. Writing a new control word
programs the counter.

Mode 0’s basic operation is outlined below and shown in Figure 10-2.

1. After a control word write, OUTn is driven low.

2. On the CLKINn pulse following a count write, the count is loaded.

3. On each succeeding CLKINn pulse, the count is decremented.

4. When the count reaches terminal count, OUTn is driven high.

NOTE
Writing a count of N causes a rising edge on OUTn in N + 1 CLKINn pulses
(provided GATEn remains high and count was written before the rising edge of
CLKINn).

Table 10-3. Operations Caused by GATE n

Operating
Modes Low or Falling Rising High

0 Disables counting — Enables counting

1 — 1) Initiates counting

2) Resets OUTn after next CLKINn

—

2 1) Disables counting

2) Sets OUTn immediately high

Initiates counting Enables counting

3 1) Disables counting

2) Sets OUTn immediately high

Initiates counting Enables counting

4 Disables counting — Enables counting

5 — Initiates counting —
10-6

TIMER/COUNTER UNIT

on
Figure 10-2. Mode 0 – Basic Operation

Figure 10-3 shows suspending the counting sequence. A low level on GATEn causes the counter
to suspend counting (both the state of OUTn and the count remain unchanged). A high level
GATEn resumes counting.

Figure 10-3. Mode 0 – Disabling the Count

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? 0004 0003 0002 0001 0000 FFFF FFFE

Control

Word = 10H

Count

Count = 4

A2311-01

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? 0003 0002 0002 0002 0001 0000 FFFF

Control

Word = 10H

Count = 3

Count

A2394-02
10-7

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

r loads
ach

t and

-
t. You
 count
Figure 10-4 shows writing a new count before the current count reaches zero. The counte
the new count on the CLKINn pulse after you write it, then decrements this new count on e
succeeding CLKINn pulse. OUTn remains low until the new count reaches zero.

Figure 10-4. Mode 0 – Writing a New Count

10.2.2 Mode 1 – Hardware Retriggerable One-shot

This mode is similar to mode 0; it allows you to generate a rising edge on a counter’s OUTn sig-
nal. Unlike mode 0, however, the counter waits for a gate-trigger before loading the coun
driving its OUTn signal low. When the counter reaches zero, OUTn is driven high. At this point,
the counter rolls over and continues counting with OUTn high. OUTn stays high and keeps count
ing down and rolling over until the counter receives another gate-trigger or you reprogram i
can retrigger the one-shot at any time with a gate-trigger, causing the counter to reload the
and drive OUTn low. Writing a new control word to the counter reprograms it.

Mode 1’s basic operation is outlined below and shown in Figure 10-5.

1. After a control word write, OUTn is driven high.

2. On the CLKINn pulse following a gate-trigger, the count is loaded and OUTn is driven
low.

3. On each succeeding CLKINn pulse, the count is decremented.

4. When the count reaches zero, OUTn is driven high.

NOTE
Writing a count of N causes a rising edge on OUTn in N CLKINn pulses after
the count is loaded (using a gate-trigger).

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? 0003 0002 0001 0002 0001 0000 FFFF

Control

Word = 10H

Count

Count = 2Count = 3

A2395-02
10-8

TIMER/COUNTER UNIT

eeding
Figure 10-5. Mode 1 – Basic Operation

Figure 10-6 shows retriggering the one-shot. On the CLKIN n pulse following the retrigger, the
counter reloads the count. The control logic then decrements the count on each succ
CLKINn pulse; OUTn remains low until the count reaches zero.

Figure 10-6. Mode 1 – Retriggering the One-shot

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? ? 0003 0002 0001 0000 FFFF 0003

Control

Word = 12H

Count 0002

Count = 3

A2312-02

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? ? 0003 0002 0001 0003 0002 0001

Control

Word = 12H

Count 0000

Count = 3

A2396-01
10-9

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

unt.
e

en

t at any
TE
Figure 10-7 shows writing a new count. The counter waits for a gate-trigger to load the new co
The counter loads the new count on the CLKINn pulse following the trigger, then decrements th
count on each succeeding CLKINn pulse. OUTn remains low until the count reaches zero.

Figure 10-7. Mode 1 – Writing a New Count

10.2.3 Mode 2 – Rate Generator

In this periodic mode, a counter’s OUTn signal remains high until the count reaches one, th
goes low for one clock pulse (CLKINn). After this single clock pulse, OUTn goes high and the
count is reloaded. The cycle then repeats. You can use a gate-trigger to reload the coun
time. This provides a way to synchronize the counting cycle. A high level on a counter’s GAn
signal enables counting; a low level on a counter’s GATEn signal disables counting.

Mode 2’s basic operation is outlined below and shown in Figure 10-8.

1. After a control word write, OUTn is driven high.

2. The count is loaded on the CLKIN n pulse following one of these events:

• A write to a control word followed by a write to count

• A gate trigger

• The counter reaches one

3. On each succeeding CLKINn pulse, the count is decremented.

4. When the count reaches one, OUTn is driven low.

5. On the following CLKINn pulse, OUTn is driven high and the count is reloaded.

6. The process is repeated from step 3.

Writes to

Counter n

CLKINn

GATEn

OUTn

? ? ? ? ? 0002 0001 0000 FFFF FFFE 0004

Control

Word = 12H

Count

Count = 4

0003

Count =2

A2397-02
10-10

TIMER/COUNTER UNIT

TE
Figure 10-8. Mode 2 – Basic Operation

Figure 10-9 shows suspending the counting sequence. A low level on GATEn causes the counter
to suspend counting. The count remains unchanged and OUTn is immediately driven (or stays)
high (If the GATEn goes low when OUTn is low, then OUTn is immediately driven high). A ris-
ing edge on the GATEn causes the counter to be reloaded with the count. A high level on GAn
resumes counting.

Figure 10-9. Mode 2 – Disabling the Count

? ? ? ? 0003 0002 0001 0003 0002 0001 0003

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word= 14H

Count

Count = 3

A2313-01

? ? ? ? 0003 0002 0002 0003 0002 0001 0003

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 14H

Count

Count = 3

A2398-01
10-11

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

 reach-
ounter

.

es
of N
a

unts is
Figure 10-10 shows writing a new count. The counter loads the new count after the counter
es one. When the counter receives a gate-trigger after a new count was written to it, the c
loads the new count on the next CLKINn pulse. This allows GATEn to synchronize the counters

Figure 10-10. Mode 2 – Writing a New Count

10.2.4 Mode 3 – Square Wave

In this periodic mode, a counter’s OUTn signal remains high for half a specified count, then go
low for the remainder of the count. A count of N results in a square wave with a period
CLKINn pulses. A high level on a counter’s GATEn signal enables counting; a low level on
counter’s GATEn signal disables counting. The output produced by a counter’s OUTn signal de-
pends on whether a count is odd or even. Mode 3’s basic operation for even and odd co
outlined below and shown in Figure 10-11 and Figure 10-12.

Even count basic operation:

1. After a control word write, OUTn is driven high.

2. The count is loaded on the CLKIN n pulse following one of these events:

• A write to a control word followed by a write to count

• A gate trigger

• The counter reaches terminal count

3. On each succeeding CLKINn pulse, the count is decremented by two.

4. After the count reaches terminal count, OUTn is driven low and the count is reloaded.

5. On each succeeding CLKINn pulse, the count is decremented by two.

6. After the count reaches terminal count, OUTn is driven high and the count is reloaded.

7. The process is repeated from step 3.

? ? ? ? 0004 0003 0002 0001 0005 0004 0003

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 14H

Ccount

Count = 5Count = 4

A2399-01
10-12

TIMER/COUNTER UNIT

us

s
Figure 10-11. Mode 3 – Basic Operation (Even Count)

Odd count basic operation:

1. After a control word write, OUTn is driven high.

2. On the CLKINn pulse following a gate-trigger or when the count rolls over, count min
one is loaded.

3. On each succeeding CLKINn pulse, the count is decremented by two.

4. When the count rolls over, OUTn is driven low and the count minus one is loaded. (Thi
causes OUTn to stay high for one more CLKINn pulse than it stays low.)

5. On each succeeding CLKINn pulse, the count is decremented by two.

6. After the count reaches terminal count, OUTn is driven high and the count minus one is
loaded.

7. The process is repeated from step 3.

? ? ? ? 0004 0002 0004 0002 0004 0002 0004 0002

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 16H

Count 0004 0002

Count = 4

A2314-01
10-13

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
Figure 10-12. Mode 3 – Basic Operation (Odd Count)

NOTE
For an even count of N, OUTn remains high for N/2 counts and low for N/2
counts (provided GATEn remains high). For an odd count of N, OUTn remains
high for (N + 1)/2 counts and low for (N – 1)/2 counts (provided GATEn
remains high).

Figure 10-13 shows suspending the counting sequence. A low level on GATEn causes the counter
to drive OUTn active (When OUTn is low, a falling edge on GATEn causes OUTn to be driven
high immediately) and suspend counting. A rising edge on the GATEn causes the counter to be
reloaded with the count. A high level on GATEn resumes counting.

Figure 10-13. Mode 3 – Disabling the Count

A2400-01

? ? ? ? 0004 0002 0000 0004 0002 0004 0002 0000

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 16H

Count 0004 0002

Count = 5

? ? ? ? 0004 0002 0004 0002 0002 0002 0004 0002

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 16H

Count 0004 0002

Count = 4

A2401-02
10-14

TIMER/COUNTER UNIT

n the
, the
Figure 10-14 and Figure 10-15 shows writing a new count. If the counter receives a gate-trigger
after writing a new count but before the end of the current half-cycle, the count is loaded o
next CLKINn pulse and counting continues from the new count (Figure 10-14). Otherwise
new count is loaded at the end of the current half-cycle (Figure 10-15).

Figure 10-14. Mode 3 – Writing a New Count (With a Trigger)

Figure 10-15. Mode 3 – Writing a New Count (Wit hout a Trigger)

? ? ? ? 8 6 4 2 8 6 4 10

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 16H

Count 8 6

Count = 8 Count = 10

A2407-02

A2406-01

? ? ? ? 4 2 4 2 4 2 8 6

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 16H

Count 4 2

Count = 4 Count = 8
10-15

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

ro,
 does
aches
l

10.2.5 Mode 4 – Software-triggered Strobe

Initializing a counter for mode 4 drives the counter’s OUTn signal high and initiates counting. A
count is loaded on the CLKINn pulse following a count write. When the counter reaches ze
OUTn strobes low for one clock pulse. The counter rolls over and continues counting, but
not strobe low when it reaches zero again. The counter strobes low only the first time it re
zero after a count write. A high level on a counter’s GATEn signal enables counting; a low leve
on a counter’s GATEn signal disables counting.

Mode 4’s basic operation is outlined below and shown in Figure 10-16.

1. After a control word write, OUTn is driven high.

2. On the CLKINn pulse following the count write, the count is loaded.

3. On each succeeding CLKINn pulse, the count is decremented.

4. When the count reaches zero, OUTn is driven low.

5. On the following CLKINn pulse, OUTn is driven high.

NOTE
Writing a count of N causes OUTn to strobe low in N + 1 CLKINn pulses,
provided GATEn remains high. OUTn remains low for one CLKINn pulse,
then goes high.

Figure 10-16. Mode 4 – Basic Operation

? ? ? ? 0003 0002 0001 0000 FFFF FFFE FFFD

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 18H

Count

Count = 3

A2315-01
10-16

TIMER/COUNTER UNIT

on

Figure 10-17 shows suspending the counting sequence. A low level on GATEn causes the counter
to suspend counting (both the state of OUTn and the count remain unchanged). A high level
GATEn resumes counting.

Figure 10-17. Mode 4 – Disabling the Count

Figure 10-18 shows writing a new count. On the CLKINn pulse following the new count write,
the counter loads the new count and counting continues from the new count.

Figure 10-18. Mode 4 – Writing a New Count

A2402-01

? ? ? ? 0003 0003 0003 0002 0001 0000 FFFF

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 18H

Count

Count = 3

? ? ? ? 0003 0002 0001 0002 0001 0000 FFFF

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 18H

Count

Count = 2Count = 3

A2403-01
10-17

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

e.

er
10.2.6 Mode 5 – Hardware-triggered Strobe

Initializing a counter for mode 5 sets the counter’s OUTn signal, starting the counting sequenc
A gate-trigger loads the programmed count. When the counter reaches zero, OUTn strobes low
for one clock pulse. The counter then rolls over and continues counting, but OUTn does not strobe
low when the count reaches zero. The OUTn strobes low only the first time it reaches zero aft
a count is loaded.

Mode 5’s basic operation is outlined below and shown in Figure 10-19.

1. After a control word write, OUTn is driven high.

2. On the CLKINn pulse following a gate-trigger, the count is loaded.

3. On each succeeding CLKINn pulse, the count is decremented.

4. When the count reaches zero, OUTn is driven low.

5. On the following CLKINn pulse, OUTn is driven high.

NOTE
Writing a count of N causes OUTn to strobe low N + 1 CLKINn pulses after
the counter receives a gate-trigger. OUTn remains low for one CLKINn pulse,
then goes high.

Figure 10-19. Mode 5 – Basic Operation

A2316-01

? ? ? ? ? 0003 0002 0001 0000 FFFF 0003

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 1AH

Count 0002 0001 0000

Count = 3
10-18

TIMER/COUNTER UNIT

n each
 for

 load
On the
then
Figure 10-20 shows retriggering the strobe with a gate-trigger. On the CLKINn pulse following
the retrigger, the counter reloads the count. The control logic then decrements the count o
succeeding CLKINn pulse. OUTn remains high until the count reaches zero, then strobes low
one CLKINn pulse.

Figure 10-20. Mode 5 – Retriggering the Strobe

Figure 10-21 shows the writing of a new count value. The counter waits for a gate-trigger to
the new count; it does not affect the current sequence until the counter receives a trigger.
CLKINn pulse following the trigger, the control logic loads the new count. The control logic
decrements the count on each succeeding CLKINn pulse. OUTn remains high until the count
reaches zero, then strobes low for one CLKINn pulse.

Figure 10-21. Mode 5 – Writing a New Count Value

A2404-01

? ? ? ? ? ? 0003 0002 0003 0002 0001 0000

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 1AH

Count FFFF

Count = 3

FFFE

? ? ? ? ? 0003 0002 0001 0000 FFFF FFFE 0005

Writes to

Counter n

CLKINn

GATEn

OUTn

Control

Word = 1AH

Count 0004

Count = 3 Count = 5

0003

A2405-01

VCC
10-19

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

ialize
r, and

’s
l.
 up to
nal
s pro-

ng
10.3 REGISTER DEFINITIONS

The following sections describe how to configure a counter’s input and output signals, init
a counter for a specific operating mode and count format, write count values to a counte
read a counter’s status and count.

10.3.1 Configuring the Input and Output Signals

Each counter is driven by a clock pulse on its CLKINn input. You can connect each counter
CLKINn input to either its timer clock (TMRCLKn) pin or the prescaled clock (PSCLK) signa
The counters can handle up to 1/2 the processor clock (CLK2/4) input frequency but only
a maximum of 8 MHz (CLKINn frequency can never be more than 8 MHz). PSCLK is an inter
signal that is a prescale value of the processor’s internal clock. The frequency of PSCLK i
grammable. See “Controlling the PSCLK Frequency” on page 8-7.

The GATEn signals of the counters can be controlled through hardware or software, as described
in the next two sections.

10.3.1.1 Hardware Control of GATE n

You can connect each counter’s GATEn signal to:

• Its timer gate (TMRGATEn) pin

• VCC

Hardware (through a pin or VCC) control of the GATEn requires that the SWGTEN bit in the
TMRCFG register be reset.

10.3.1.2 Software Control of GATE n

You can also use the TMRCFG register to drive GATEn high or low through register bits. The
SWGTEN and GTnCON bits are used to control the GATEn signal. If SWGTEN is set, then the
value of the GTnCON bit causes the GATEn input of the counter to be driven to the correspondi
voltage level.

The timer configuration register (TMRCFG) enables the counter’s CLKINn signals and deter-
mines each counter’s CLKINn and GATEn signal connections or logical value (Figure 10-22).

Table 10-4. GATE n Connection Options

SWGTEN GTnCON GATEn
connection

0 0 VCC

0 1 TMRGATEn

1 0 0
(Gaten is OFF)

1 1 1
(Gaten is ON)
10-20

TIMER/COUNTER UNIT
.

Figure 10-22. Timer Configuration Register (TMRCFG)

Timer Configuration
TMRCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F834H
—
00H

7 0

TMRDIS SWGTEN GT2CON CK2CON GT1CON CK1CON GT0CON CK0CON

Bit
Number

Bit
Mnemonic Function

7 TMRDIS Timer Disable:

0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.

6 SWGTEN Software GATEn Enable

0 = Connects GATEn to either the VCC pin or the TMRGATEn pin.
1 = Enables GT2CON, GT1CON, and GT0CON to control the

connections to GATE2, GATE1 and GATE0 respectively.

5 GT2CON Gate 2 Connection:

SWGTEN GT2CON

0 0 Connects GATE2 to VCC.
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.

4 CK2CON Clock 2 Connection:

0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.

3 GT1CON Gate 1 Connection:

SWGTEN GT1CON

0 0 Connects GATE1 to VCC.
0 1 Connects GATE1 to the TMRGATE1 pin.
1 0 Turns GATE1 off.
1 1 Turns GATE1 on.

2 CK1CON Clock 1 Connection:

0 = Connects CLKIN1 to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.

1 GT0CON Gate 0 Connection:

SWGTEN GT0CON

0 0 Connects GATE0 to VCC.
0 1 Connects GATE0 to the TMRGATE1 pin.
1 0 Turns GATE0 off.
1 1 Turns GATE0 on.

0 CK0CON Clock 0 Connection:

0 = Connects CLKIN0 to the internal PSCLK signal.
1 = Connects CLKIN0 to the TMRCLK0 pin.
10-21

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

unter’s
s.

signal
2) is
The peripheral pin selection registers (P3CFG and PINCFG) determine whether each co
OUTn signal is connected to its TMROUTn pin. See Figure 10-1 for the TCU signal connection
For details on the P3CFG and PINCFG registers see Figure 10-23 and Figure 10-24. The counter
output signals are automatically connected to the interrupt control unit. Counter 1’s output
(OUT1) is automatically connected to DMA channel 0, and counter 2’s output signal (OUT
automatically connected to DMA channel 1.

Use P3CFG bits 0 and 1 to connect TMROUT0 and TMROUT1 to package pins.

Figure 10-23. Port 3 Configuration Register (P3CFG)

Port 3 Configuration
P3CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INT0).

1 PM1 Pin Mode:

See Table 5-1 on page 5-8 for all the PM1 configuration options.

0 PM0 Pin Mode:

See Table 5-1 on page 5-8 for all the PM0 configuration options.
10-22

TIMER/COUNTER UNIT
Use PINCFG bit 5 to connect TMROUT2, TMRCLK2, and TMRGATE2 to package pins.

Figure 10-24. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
10-23

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

d
n

10.3.2 Initializing the Counters

The timer control register (TMRCON) has three formats: control word, counter-latch, and read-
back. When writing to TMRCON, certain bit settings determine which format is accessed.

Use the TMRCON’s control word format (Figure 10-25) to specify a counter’s count format an
operating mode. Writing the control word forces OUTn to go to an initial state that depends o
the selected operating mode.
10-24

TIMER/COUNTER UNIT
Figure 10-25. Timer Control Register (TMRCON – Cont rol Word Format)

Timer Control (Control Word Format)
TMRCON

Expanded Addr:
ISA Addr:
Reset State:

F043H
0043H
XXH

7 0

SC1 SC0 RW1 RW0 M2 M1 M0 CNTFMT

Bit
Number

Bit
Mnemonic Function

7–6 SC1:0 Select Counter:

Use these bits to specify a particular counter. The selections you make for
bits 5–0 define this counter’s operation.

00 = counter 0
01 = counter 1
10 = counter 2

11 is not an option for TMRCON’s control word format. Selecting 11
accesses TMRCON’s read-back format, which is shown in Figure 10-29.

5–4 RW1:0 Read/Write Select:

These bits select a read/write option for the counter specified by bits 7–6.

01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte

00 is not an option for TMRCON’s control word format. Selecting 00
accesses TMRCON’s counter-latch format, which is shown in Figure
10-27.

3–1 M2:0 Mode Select:

These bits select an operating mode for the counter specified by bits 7–6.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5

X is a don’t care.

0 CNTFMT Count Format:

This bit selects the count format for the counter specified by bits 7–6.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)
10-25

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

byte
).
rating
10.3.3 Writing the Counters

Use the write format of a counter’s Timer n register (TMRn) to specify a counter’s count. The
count must conform to the write selection specified in the control word (least-significant
only, most-significant byte only, or least-significant byte followed by the most-significant byte
You can write a new count to a counter without affecting the counter’s programmed ope
mode. New counts must also conform to the specified write selection.

Figure 10-26. Timer n Register (TMR n – Write Format)

Table 10-5 lists the minimum and maximum initial counts for each mode.

Timer n (Write Format)
TMRn (n = 0–2)

Expanded Addr:

ISA Addr:

Reset State:

F040H, F041H
F042H
0040H, 0041H
0042H
XXH

7 0

CV7 CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic

Function

7–0 CV7:0 Count Value:

Write a count value for the counter to these bits. When writing the
counter’s count value, follow the write selection specified in the counter’s
control word.

Table 10-5. Minimum and Maximum Initial Counts

Mode Minimum Count Maximum Count

0–1 1 0

2–3 2 0

4–5 1 0

NOTE: 0 is equivalent to 216 for binary counting and 104 for BCD counting.
10-26

TIMER/COUNTER UNIT

 to the
idual
 count

re spec-

 (using
e,
s read.
nter can
.

fter the
g the
10.3.4 Reading the Counter

To read the counter you can perform a simple read operation or send a latch command
counter. TMRCON contains two formats that allow you to send latch commands to indiv
counters: the counter-latch and read-back format. The counter-latch command latches the
of a specific counter. The read-back command latches the count and/or status of one or mo
ified counters.

10.3.4.1 Simple Read

To perform a simple read operation in modes 0, 2, 3 and 4, suspend the counter’s operation
the counter’s GATEn signal), then read the counter’s TMRn register. To read an accurate valu
you must disable the counter so that the count is not in the process of changing when it i
However, in modes 1 and 5, where the counter’s operation can not be suspended, the cou
still be read. But since the counter is running, there is a minor inaccuracy in the read value

10.3.4.2 Counter- latch Command

Use the counter-latch format of TMRCON (Figure 10-27) to latch the count of a specific counter.
To issue a counter-latch command to a counter, write to the TMRCON register with bits 5-4 reset
and SC1 and SC0 (bits 7-6) programmed appropriately. A counter continues to run even a
count is latched. The counter-latch command allows reading the count without disturbin
count in progress.
10-27

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

mains
ltiple

 latch-

sig-
Figure 10-27. Timer Control Register (TMRCON – Counter- latch Format)

When a counter receives a counter-latch command, it latches the count. This count re
latched until you either read the count or reconfigure the counter. When you send mu
counter-latch commands without reading the counter, only the first counter-latch command
es the count value.

After issuing a counter-latch command, you can read the counter’s TMRn register. When reading
the counter’s TMRn register you must follow the counter’s programmed read selection (least-sig-
nificant byte only, most-significant byte only, or least-significant byte followed by the most-
nificant byte). If the counter is programmed for two-byte counts, you must read two bytes. You
need not read the two bytes consecutively; you may insert read, write, or programming operations
between the byte reads.

Timer Control (Counter-latch Format)
TMRCON

Expanded Addr:
ISA Addr:
Reset State:

F043H
0043H
XXH

7 0

SC1 SC0 0 0 0 0 0 0

Bit
Number

Bit
Mnemonic Function

7–6 SC1:0 Select Counter:

These bits specify the counter that receives the counter-latch command.

00 = counter 0
01 = counter 1
10 = counter 2

11 is not an option for TMRCON’s counter-latch format. Selecting 11
accesses TMRCON’s read-back format, which is shown in Figure 10-29.

5–4 — Write zeros to these bits to issue a counter-latch command to the
counter specified by bits 7–6.

01, 10, and 11 are not valid options for TMRCON’s counter-latch format.

3–0 — Reserved; for compatibility with future devices, write zeros to these bits.

NOTE: Bits 5–0 serve another function when you select the read-back command (SC1:0 = 11). See
Figure 10-29 for the read-back bit functions.
10-28

TIMER/COUNTER UNIT

s
You can interleave reads and writes of the same counter; for example, if the counter ipro-
grammed for the two-byte read/write selection, the following sequence is valid.

1. Read least-significant byte.

2. Write new least-significant byte.

3. Read most-significant byte.

4. Write new most-significant byte.

Figure 10-28. Timer n Register (TMR n – Read Format)

Timer n (Read Format)
TMRn (n = 0–2)

Expanded Addr:

ISA Addr:

Reset State:

F040H, F041H
F042H
0040H, 0041H
0042H
XXH

7 0

CV7 CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

7–0 CV7:0 Count Value:

These bits contain the counter’s count value. When reading the
counter’s count value, follow the read selection specified in the counter’s
control word.
10-29

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

r
format,
aded.
10.3.4.3 Read-back Command

Use the read-back format of TMRCON (Figure 10-29) to latch the count and/or status of one o
more counters. Latch a counter’s status to check its programmed operating mode, count
and read/write selection and to determine whether the latest count written to it has been lo

Figure 10-29. Timer Control Register (TMRCON – Read-back Format)

Timer Control (Read-back Format)
TMRCON

Expanded Addr:
ISA Addr:
Reset State:

F043H
0043H
XXH

7 0

1 1 COUNT# STAT# CNT2 CNT1 CNT0 0

Bit
Number

Bit
Mnemonic

Function

7–6 — Write ones to these bits to select the read-back command.

00, 01, and 10 are not valid options for TMRCON’s read-back format.

5 COUNT# Count Latch:

0 = Clearing this bit latches the count of each selected counter. Use bits
3–1 to select one or more of the counters.

1 = No effect

4 STAT# Status Latch:

0 = Clearing this bit latches the status of each selected counter. Use bits
3–1 to select one or more of the counters.

1 = No effect

3 CNT2 Counter 2 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 2.
1 = The actions specified by bits 5 and 4 affect counter 2.

2 CNT1 Counter 1 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 1.
1 = The actions specified by bits 5 and 4 affect counter 1.

1 CNT0 Counter 0 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 0.
1 = The actions specified by bits 5 and 4 affect counter 0.

0 — Reserved; for compatibility with future devices, write zero to this bit.
10-30

TIMER/COUNTER UNIT

 com-
tched.
unter.
nters’

the
d
 count.
d, then

d

The read-back command can latch the count and status of multiple counters. This single
mand is functionally equivalent to several counter-latch commands, one for each counter la
Each counter's latched count and status is held until it is read or until you reconfigure the co
A counter’s latched count or status is automatically unlatched when read, but other cou
latched values remain latched until they are read.

After latching a counter’s status and count with a read-back command, reading TMRn accesses
its status format (Figure 10-30). Reading TMRn again accesses its read format. When both
count and status of a counter are latched, the first read of TMRn indicates the counter’s status an
the next one or two reads (depending on the counter’s read selection) indicate the counter’s
Subsequent reads return unlatched count values. When only the count of a counter is latche
the first one or two reads of TMRn return the counter’s count. When the counter is programme
for the two-byte read selection, you must read two bytes.
10-31

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
Figure 10-30. Timer n Register (TMR n – Status Format)

Timer n (Status Format)
TMRn (n = 0–2)

Expanded Addr:

ISA Addr:

Reset State:

F040H, F041H
F042H
0040H, 0041H
0042H
XXH

7 0

OUTPUT NULCNT RW1 RW0 M2 M1 M0 CNTFMT

Bit
Number

Bit
Mnemonic Function

7 OUTPUT Output Status:

This bit indicates the current state of the counter’s output signal.

0 = OUTn is low
1 = OUTn is high

6 NULCNT Count Status:

This bit indicates whether the latest count written to the counter has
been loaded. Some modes require a gate-trigger before the counter
loads new count values.

0 = the latest count written to the counter has been loaded
1 = a count has been written to the counter but has not yet been loaded

5–4 RW1:0 Read/Write Select Status:

These bits indicate the counter’s programmed read/write selection.

00 = Never occurs
01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte

3–1 M2:0 Mode Status:

These bits indicate the counter’s programmed operating mode.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5

X is a don’t care.

0 CNTFMT Counter Format Status:

This bit indicates the counter’s programmed count format.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)
10-32

TIMER/COUNTER UNIT

d; the
nd (see

ake

 off in
is
 is
When a counter receives multiple read-back commands, it ignores all but the first comman
count/status that the core reads is the count/status latched from the first read-back comma
Table 10-6).

10.4 PROGRAMMING CONSIDERATIONS

Consider the following when programming the TCU.

• The 16-bit counters are read and written a byte at a time. The control word format of
TMRCON selects whether you read or write the least-significant byte only, most-significant
byte only, or least-significant byte then most-significant byte (this is called the counter’s
read/write selection). You must read and write the counters according to their programmed
read/write selections.

• When you program a counter for the two-byte read or write selection, you must read or
write both bytes. If you’re using more than one subroutine to read or write a counter, m
sure that each subroutine reads or writes both bytes before transferring control.

• You can program the counters for either an internal or external clock source (to CLKINn).
The internal source is a prescaled value of the processor clock and therefore, is turned
the processor’s powerdown mode (processor clock is off). If an external clock source
used, it is not affected by the processor’s powerdown mode, because the clock signal
provided by an off-chip source. “Controlling Power Management Modes” on page 8-8
describes the processor’s powerdown and idle modes.

Table 10-6. Results of Multiple Read-back Commands Without Reads

Command
Sequence Read-back Command Command Result

1 Latch counter 0’s count and status. Counter 0’s count and status latched.

2 Latch counter 1’s status. Counter 1’s status latched.

3 Latch counter 2 and 1’s status. Counter 2’s status latched; counter 1’s status
command ignored because command 2
already latched its status.

4 Latch counter 2’s count. Counter 2’s count latched.

5 Latch counter 1’s count and status. Counter 1’s count latched; counter 1’s status
command ignored because command 2
already latched its status.

6 Latch counter 0’s count. Counter 0’s count command ignored because
command 1 already latched its count.
10-33

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

e
er

 the

er, the

ts

nter

ad-
• With the readback command:

— If both the status and counter values are latched, the user can read the value of th
Read/Write selection bits from the status register to know what bytes of the count
value are being latched in the TMRn register.

— If only the counter value is latched, you must know the Read/Write selection before
counter value can be read correctly.

• When a read-back command is issued to latch both the counter and the status of a tim
TMRn register holds both of these values. The first read of TMRn accesses the status byte
and the next one or two reads (depending on the R/W format) of TMRn access the timer’s
counter value.

10.4.1 Timer/Counter Unit Code Examples

The example code contains these software routines:

InitTimer Initializes the specified timer’s mode, counter value, inputs, and outpu

SetUp_ReadBack Configures the specified timer(s) for a read-back command

CounterLatch Latches the counter value of the specified timer

ReadCounter Performs a simple read command on the specified timer’s current cou
value

TimerISR Interrupt Service Routine for timer-generated interrupts

Code is also included that demonstrates how to change the timer’s counter value and issue a re
back command. See Appendix C for included header files.

#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

/***
 InitTimer:

Description:
This function initializes a timer’s inputs, outputs, operating mode,
and initial counter value.

 Parameters:
 Unit Unit number of the timer. The processor supports 0, 1 or 2

Mode Defines Counter Mode
Inputs Specifies Input sources
Output Specifies Which Output to drive
InitCount Value to be loaded into count register
Enable Enable (1) or disable (0) Timer

10-34

TIMER/COUNTER UNIT
Returns:Error Codes
E_INVALID_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:
 REMAPCFG register has Expanded I/O space access enabled (ESE bit set);
 This function also initializes the Timer-Counter Unit to be in the
 Read/Write Format of least-significant byte first, then most-significant
 byte

 Syntax:
 int error;

 error = InitTimer (TMR_2,
 TMR_SQWAVE | TMR_CLK_BIN,
 TMR_CLK_INTRN,
 TMR_OUT_ENABLE,
 0xFFFF,
 TMR_ENABLE);

Real/Protected Mode:
No changes required.

***/

int InitTimer(int Unit, WORD Mode, BYTE Inputs, BYTE Output, WORD InitCount,
 int Enable)
{
 BYTE TmpByte;
 WORD TmrCntPort;

 if(Unit > 2)
return E_INVALID_DEVICE;

 TmrCntPort = 0xf040 + Unit;// Set depending on which timer

/* Set Pin configuration */
 if(Unit < 2)
 {
 TmpByte = _GetEXRegByte(P3CFG) | (Output << Unit); // Bit 0 or 1
 _SetEXRegByte(P3CFG,TmpByte);
 }
 else
 {
 TmpByte = _GetEXRegByte(PINCFG) | (Output << 5); // Bit 5
 _SetEXRegByte(PINCFG,TmpByte);
 }

/* Set Timer Config */
 TmpByte = _GetEXRegByte(TMRCFG); // All Timers share this register,
 // Keep previous settings
10-35

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
 if(!Enable)
 TmpByte |= 0x80; // Set Timer Disable Bit

 TmpByte |= (Inputs << (Unit*2)); // Set CKnCON and GTnCON bits
 _SetEXRegByte(TMRCFG,TmpByte);

/* Set Timer Control Register */
 TmpByte = Unit << 6; // Set counter select
 TmpByte |= (0x30 | Mode); // Set R/W low then high byte and Mode bits
 _SetEXRegByte(TMRCON,TmpByte);

/* Set Initial Counter Value */
 TmpByte = HIBYTE(InitCount);
 _SetEXRegByte(TmrCntPort, LOBYTE(InitCount));
 _SetEXRegByte(TmrCntPort, TmpByte);

 return E_OK;

}/* InitTimer */

/***

 SetUp_ReadBack:

 Description:
 This routine configures the Control Word for a Read Back Command.
 After calling this function, the latched status and counter values
 can be read from the TMRn registers. Example code of how to do
 this for Timer2 is included after this function.

 Parameters:
 Timer0 Cleared if Timer0’s values are not to be latched
 Timer1 Cleared if Timer1’s values are not to be latched
 Timer2 Cleared if Timer2’s values are not to be latched
 GetStatus Cleared if Status Byte is not to be latched
 GetCount Cleared if Count Byte(s) is not to be latched

 Returns:
 None

 Assumptions:

 No assumptions have been made for this set-up function. However, if
 a user were to latch only the counter value, the configured R/W
 Format would have to be known. The setting of the R/W format can be
 read from the Status Byte if this value is latched. An example of
 this is included after the SetUp_ReadBack function.

 Syntax:

#define ENABLE 1
10-36

TIMER/COUNTER UNIT
#define DISABLE 0

SetUp_ReadBack(DISABLE, DISABLE, ENABLE, ENABLE, ENABLE);

 Real/Protected Mode:

No changes required

***/

void SetUp_ReadBack(BYTE Timer0, BYTE Timer1, BYTE Timer2, BYTE GetStatus,
 BYTE GetCount)
{
 BYTE rb_control = 0;

 rb_control |= 0xc0; // Set TMRCON to read-back command

 if (GetStatus != 0)
 rb_control &= 0xef;

 if (GetCount != 0)
 rb_control &= 0xdf;

 if (Timer0 != 0)
 rb_control |= 0x02;

 if (Timer1 != 0)
 rb_control |= 0x04;

 if (Timer2 != 0)
 rb_control |= 0x08;

 _SetEXRegByte(TMRCON, rb_control);

} /* SetUp_ReadBack */

/***
 CounterLatch:

Description:
This function invokes a counter-latch command for the specified

 timer and returns the latched counter value.

 Parameters:

Timer Unit number of timer whose counter value is to be latched

10-37

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
Returns:
Counter Value of specified timer

Assumptions:

This function assumes that the R/W format is configured to be LSB
first, then MSB

 Syntax:

 WORD Counter_Value;

 Counter_Value = CounterLatch(TMR_1);

Real/Protected Mode:
No changes required

***/

WORD CounterLatch(BYTE Timer)
{

 BYTE control_word = 0;
 BYTE CounterL, CounterH;
 WORD Counter;

 control_word = Timer << 6;

 control_word &= 0xc0;

 _SetEXRegByte(TMRCON, control_word); //Select which counter

 switch (Timer) {

 case TMR_0:
 CounterL = _GetEXRegByte(TMR0);
 CounterH = _GetEXRegByte(TMR0);
 break;
 case TMR_1:
 CounterL = _GetEXRegByte(TMR1);
 CounterH = _GetEXRegByte(TMR1);
 break;
 case TMR_2:
 CounterL = _GetEXRegByte(TMR2);
 CounterH = _GetEXRegByte(TMR2);
 break;
 }

 Counter = (((WORD)CounterH << 8) + CounterL);

 return(Counter);

}/* CounterLatch */
10-38

TIMER/COUNTER UNIT
/***

 ReadCounter:

Description:
This function performs a simple read operation on the specified
timer. However, because the counter value is not latched, the timer
must be disabled, read, and then re-enabled.

 Parameters:

Timer Unit number of Timer whose count is being read

Returns:
Counter value that was read

Assumptions:
 This function assumes that the R/W format is configured to be LSB
 first, then MSB

 Syntax:

WORD Counter_Value;

Counter_Value = ReadCounter(TMR0);

Real/Protected Mode:
 No changes required

***/

WORD ReadCounter(BYTE Timer)
{

 BYTE CountL, CountH;
 WORD Count = 0;

 DisableTimer();

 switch (Timer) {

 case TMR_0:
 CountL = _GetEXRegByte(TMR0);
 CountH = _GetEXRegByte(TMR0);
 break;
 case TMR_1:
 CountL = _GetEXRegByte(TMR1);
 CountH = _GetEXRegByte(TMR1);
 break;
10-39

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL
 case TMR_2:
 CountL = _GetEXRegByte(TMR2);
 CountH = _GetEXRegByte(TMR2);
 break;
 }

 Count = (((WORD)CountH << 8) + CountL);

 EnableTimer();

 return(Count);

}/* ReadCounter */

/***

TimerISR:

Description:
Interrupt Service Routine for Timer-generated interrupts.

 Parameters:
 None

 Returns:
 None

 Assumptions:
 None

 Syntax:
 Not called by user.

 Real/Protected Mode:
 No changes required

**/

void interrupt far TimerISR(void)
{
 /* Write message out to serial port as an example */

 SerialWriteStr(SIO_0, “In TimerISR\n”);

NonSpecificEOI(); // If this ISR services Timer1 or Timer2,
// an EOI is also needed for the Slave 8259

}/* TimerISR */
10-40

TIMER/COUNTER UNIT
/***

Example of how to write a new initial counter value to a timer
This value can be rewritten at any time without affecting the
Counter’s programmed mode.

Before writing an initial count value, the Control Word must be
configured for the proper R/W and Count formats.

-->This example assumes that Timer1 is in the R/W format of LSB first,
then MSB, and that the Count format is binary.

_SetEXRegByte(TMR1, InitialCountL);
_SetEXRegByte(TMR1, InitialCountH);

***/

/**/

 ***Example of how to issue a Read Back command for Timer2, latching
 both the status and the counter.

 BYTE Status, CountL, CountH, RWmode;
 WORD Count;

 SetUp_ReadBack(0, 0, 1, 1, 1); //Configure Read Back command for timer2,
 latching both status and count
 Status = GetEXRegByte(TMR2);

 RWmode = Status & 0x30; //Mask off bits that correspond to the Read/Write Mode

 switch (RWmode) { //Read Counter Value according to configured R/W format

 case 0x10: //Read/Write least significant byte only
 Count = _GetEXRegByte(TMR2);
 break;
 case 0x20: //Read/Write most significant byte only
 CountH = _GetEXRegByte(TMR2);
 Count = (WORD)CountH << 8;
 break;
 case 0x30: //Read/Write LSB first, then MSB
 CountL = _GetEXRegByte(TMR2);
 CountH = _GetEXRegByte(TMR2);
 Count = (((WORD)CountH << 8) + CountL);
 break;
 }

***/
10-41

11
ASYNCHRONOUS
SERIAL I/O UNIT

ith ex-
ns on

ions on
nnels,

ol unit.

(SER-
ffers.
 to the

shift
or the

request
eceive
e c
quest
is al-
CHAPTER 11
ASYNCHRONOUS SERIAL I/O UNIT

The asynchronous serial I/O (SIO) unit provides a means for the system to communicate w
ternal peripheral devices and modems. The SIO unit performs serial-to-parallel conversio
data characters received from a peripheral device or modem and parallel-to-serial convers
data characters received from the CPU. The SIO unit consists of two independent SIO cha
each of which is compatible with National Semiconductor’s NS16C450.

This chapter is organized as follows:

• Overview (see below)

• SIO Operation (page 11-4)

• Register Definitions (page 11-15)

• Programming Considerations (page 11-32)

11.1 OVERVIEW

Each SIO channel contains a baud-rate generator, transmitter, receiver, and modem contr
These are shown in Figure 11-1 for SIO Unit 1 (see Figure 5-8 on page 5-15 for the SIO Unit 0
configuration). The baud-rate generator can be clocked by either the internal serial clock
CLK) signal or the COMCLK pin. The transmitter and receiver contain shift registers and bu
Data to be transmitted is written to the transmit buffer. The buffer’s contents are transferred
transmit shift register and shifted out via the transmit data pin (TXDn). Data received is shifted
in via the receive data pin (RXDn). When a data byte is received, the contents of the receive
register are transferred to the receive buffer. The modem control logic provides interfacing f
handshaking signals between an SIO channel and a modem or data set.

In addition to the transmit and receive channels, each SIO can generate an interrupt or a
to the DMA unit, or both. An interrupt can be generated when an error has occurred in the r
channel, when the transmit channel is ready to transmit another character, when the receivhan-
nel is full, or when a change in any of the modem control signals has occurred. A DMA re
may be issued any time a channel’s receive buffer is full or its transmit buffer is empty. Th
lows the SIO to run at higher speeds for more efficient processing of serial data.
11-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 11-1. Serial I/O Unit 1 Configuration

A2519-02

BCLKIN

Receive Data

Transmit Data

Request to Send

SIO1

Clear to Send

Data Set Ready

Data Terminal

Ready

Data Carrier

Detect

Ring Indicator

0

1

COMCLK

(P3.7)†To/From I/O Port 3

P3CFG.7

SERCLK

SIOCFG.1

† Alternate pin signals are in parentheses.

RXD1

(DRQ1)To DMA

TXD1

(DACK1#)From DMA

PINCFG.2

0

1

CTS1#

(EOP#)

SIOCFG.7

To/From DMA

RTS1#

(SSIOTX)From SSIO

PINCFG.0

0

1

DSR1#

(STXCLK)To/From SSIO

0

1

DCD1#

(DRQ0)To DMA

PINCFG.3

DTR1#

(SRXCLK)To/From SSIO

PINCFG.1

0

1

RI1#

(SSIORX)To SSIO

VCC

To DMATXEDMA1

To ICUSIOINT1

To DMARBFDMA1

1

0

1

0

1

0

1

0

1

0

11-2

ASYNCHRONOUS SERIAL I/O UNIT
11.1.1 SIO Signals

Table 11-1 lists the SIOn signals.

Table 11-1. SIO Signals

Signal Device Pin or
Internal Signal Description

Baud-rate
Generator
Clock Source

Internal signal

Device pin
(input)

SERCLK:

This internal signal is the processor’s input clock, CLK2, divided by
four.

COMCLK:

An external source connected to this pin can clock the SIOn baud-rate
generator.

TXDn Device pin
(output)

Transmit Data:

The transmitter uses this pin to shift serial data out. Data is
transmitted least-significant bit first.

RXDn Device pin
(input)

Receive Data:

The receiver uses this pin to shift serial data in. Data is received least-
significant bit first.

CTSn# Device pin
(input)

Clear to Send:

Indicates that the modem or data set is ready to exchange data with
the SIOn channel.

DSRn# Device pin
(input)

Data Set Ready:

Indicates that the modem or data set is ready to establish the
communications link with the SIOn channel.

DCDn# Device pin
(input)

Data Carrier Detect:

Indicates that the modem or data set has detected the data carrier.

RIn# Device pin
(input)

Ring Indicator:

Indicates that the modem or data set has detected a telephone ringing
signal.

RTSn# Device pin
(output)

Request to Send:

Indicates to the modem or data set that the SIOn channel is ready to
exchange data.

DTRn# Device pin
(output)

Data Terminal Ready:

Indicates to the modem or data set that the SIOn channel is ready to
establish a communications link.

SIOINTn Internal Signal SIOINT:

This signal is connected to the interrupt control unit and is asserted
(HIGH) when any one of the following interrupt types has an active
condition and is enabled via the IER register: Receiver Error flag,
Received Data Available, Transmitter Holding Register Empty, or
Modem Status. The SIOINT signal is deasserted (LOW) upon the
appropriate interrupt service or reset operation.
11-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ceiver

 1 to
ut on

lects

ws
tor in-
11.2 SIO OPERATION

The following sections describe the operation of the baud-rate generator, transmitter, and re
and discusses the modem control logic, SIO diagnostic mode, and SIO interrupt sources.

11.2.1 Baud-rate Generator

Each SIO channel’s baud-rate generator provides the clocking source for the channel’s transmitter
and receiver. The baud-rate generator can divide its input (BCLKIN) by any divisor from
(216–1). The output frequency is 16 times the desired bit time. The transmitter shifts data o
the rising edge of BCLKIN. The receiver samples input data in the middle of a bit time.

The internal serial clock (SERCLK) signal or the COMCLK pin can be connected to the baud-
rate generator’s BCLKIN signal (Figure 11-2). The SIO configuration register (SIOCFG) se
one of these sources.

Figure 11-2. SIO n Baud-rate Generator Clock Sources

SERCLK provides a baud-rate input frequency (BCLKIN) of CLK2/4. The COMCLK pin allo
an external source with a maximum frequency of CLK2/4 to provide the baud-rate genera
put frequency.

TXEDMAn Internal Signal Transmitter Empty:

When this signal is high, the Transmitter Holding Register is empty
(transmit data has been loaded into the Transmit Shift Register).

RBFDMAn Internal Signal Receiver Full:

When high, this signal indicates that the Receive Buffer has been
loaded with data from the Receive Shift Register.

Table 11-1. SIO Signals

Signal Device Pin or
Internal Signal Description

A2524-02

SIOn

Baud-rate

Generator

BCLKIN
÷� 2÷� 2CLK2

SERCLK

SIOCFG.n

COMCLK

(pin mux)

Baud Rate

Generator

Output

Frequency

1

0

11-4

ASYNCHRONOUS SERIAL I/O UNIT

lows.

isor

 or
es
The baud-rate generator’s output frequency is determined by BCLKIN and a divisor as fol

,

The minimum divisor value is 1, giving a maximum baud rate of BCLKIN. The maximum div
value is 0FFFFH (65535), giving a minimum of BCLKIN/65535. For example, the maximum and
minimum bit-rate frequencies using SERCLK with a 25 MHz device (CLK2 = 50 MHz)
COMCLK with a 12.5 MHz input are shown in Table 11-2. Table 11-3 shows the divisor valu
required for common baud rates.

Table 11-2. Maximum and Minimum Output Bit Rates

Input Clock (BCLKIN) Divisor Output Bit Rate

12.5 MHz 0001H 781.25 KHz (max)

12.5 MHz 0FFFFH 11.921 Hz (min)

Table 11-3. Divisor Values for Common Bit Rates

Divisor Input Clock (BCLKIN) Output Bit Rate % Error

1AEH 16.5 MHz (processor clock = 33 MHz) 2400 b/s – 0.07

6BH 16.5 MHz (processor clock = 33 MHz) 9600 b/s + 0.39

48H 16.5 MHz (processor clock = 33 MHz) 14.4 Kb/s – 0.54

145H 12.5 MHz (processor clock = 25 MHz) 2400 b/s + 0.15

51H 12.5 MHz (processor clock = 25 MHz) 9600 b/s + 0.47

36H 12.5 MHz (processor clock = 25 MHz) 14.4 Kb/s + 0.46

104H 10 MHz (processor clock = 20 MHz) 2400 b/s + 0.15

41H 10 MHz (processor clock = 20 MHz) 9600 b/s + 0.16

2BH 10 MHz (processor clock = 20 MHz) 14.4 Kb/s + 0.94

0D0H 8 MHz (processor clock = 16 MHz) 2400 b/s + 0.16

34H 8 MHz (processor clock = 16 MHz) 9600 b/s + 0.16

23H 8 MHz (processor clock = 16 MHz) 14.4 Kb/s – 0.79

baud-rate generator output frequency
BCLKIN frequency

div isor
--=

bit rate
baud rate generator output frequency

16
---=
11-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

rs,

ut-
 start
 flag.

hen
 bytes.

gister
ation
 PEN
 com-
 Parity

 at the
y
ultiple
he char-

ansmit
hen
nchro-

FG)
11.2.2 SIOn Transmitter

The data frame for transmissions is programmable. It consists of a start bit, 5 to 8 data characte
an optional parity bit, and 1 to 2 stop bits. The transmitter can produce even, odd, forced, or no
parity. The transmitter can also produce break conditions. A break condition forces the serial o
put (TXDn) to the spacing (logic 0) state for longer than a transmission time (the time of the
bit + data bits + parity bit + stop bits). On the receiving end, a break condition sets an error

Forced parity (“sticky bit”) allows the SIO to be used in multiprocessor communications. W
using forced parity the serial port uses the parity bit to distinguish between address and data

Forced parity is enabled in the SIO by setting the PEN and SP bits in the serial line control re
(Figure 11-15). When enabled for forced parity, the bit that is transmitted in the parity bit loc
is the complement of the EPS bit (also in the serial line control register). In the receiver, if
and SP are 1, the receiver compares the bit that is received in the parity bit location with the
plement of the EPS bit. If the values being compared are not equal, the receiver sets the
Error bit in LSR and causes an error interrupt if line status interrupts are enabled.

For example, if forced parity is enabled and EPS is 0, the receiver expects the bit received
parity bit location to be 1. If it is not, the parity error bit is set. By forcing the bit value at the parit
bit location, rather than calculating a parity value, a system with a master transmitter and m
receivers can identify some transmitted characters as receiver addresses and the rest of t
acters as data. If PEN = 0, the SP bit is ignored.

Each SIO channel transmitter contains a transmit shift register, a transmit buffer, and a tr
data pin (TXDn). Data to be transmitted is written to the transmit buffer. The transmitter t
transfers the data to the transmit shift register. The transmitter shifts the data along with asy
nous communication bits (start, stop, and parity) out via the TXDn pin. The TXD0 and TXD1
pins are multiplexed with other functions. The pin configuration registers (PINCFG and P2C
determine whether a TXDn signal or an alternate function is connected to the package pin.
11-6

ASYNCHRONOUS SERIAL I/O UNIT

 flag.
. Writ-
m the
is set

 DMA
Figure 11-3. SIO n Transmitter

The transmitter contains a transmitter empty (TE) flag and a transmit buffer empty (TBE)
At reset, TBE and TE are set, indicating that the transmit buffer and shift register are empty
ing data to the transmit buffer clears TBE and TE. When the transmitter transfers data fro
buffer to the shift register, TBE is set. Unless new data is written to the transmit buffer, TE
when the transmitter finishes shifting out the shift register’s contents.

The transmitter’s transmit buffer empty signal can be connected to the interrupt control and
units. Figure 11-4 shows the process for transmitting data.

TXDn

(pin mux)

Baud-rate

Clock

SIOn Transmit Shift

Register

SIOn Transmit Buffer

A2326-01

S

y

s

t

e

m

B

u

s

Transmit Buffer Empty

(To ICU and DMA)
11-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 11-4. SIO n Data Transmission Process Flow

 A2527-02

Select the BCLKIN source and

the transmitter input baud rate.

Select the data frame. (Word length, number

of stop bits, and type of parity.) Enable interrupts

and/or DMA.

Is

transmit buffer

empty?

Write data to transmit buffer register.

(ISR or DMA cycle)

Transmitter shifts data frame onto

the TXDn pin. Data is transmitted

least-significant bit first.

Transmitter transfers data to shift register

and sets transmit buffer empty flag, causing

an interrupt or DMA request.

End

Yes

No

Transmitter shifts out last stop bit

then sets the transmitter empty flag.

More

Data to

Transmit

?

No

Yes
11-8

ASYNCHRONOUS SERIAL I/O UNIT

nsmis-
p bits.
tects a

run er-

state
stop

ad.

ve data

,

 de-
11.2.3 SIOn Receiver

The data frame for receptions is programmable, and is identical to the data frame for tra
sions. It consists of a start bit, 5 to 8 data characters, an optional parity bit, and 1 to 2 sto
The receiver can be programmed for even, odd, forced, or no parity. When the receiver de
parity condition other than what it was programmed for, it sets a parity error flag. In addition to
detecting parity errors, the receiver can detect break conditions, framing errors, and over
rors.

• A break condition indicates that the received data input is held in the spacing (logic 0)
for longer than a data transmission time (the time of the start bit + data bits + parity +
bits).

• A framing error indicates that the received character did not have a valid stop bit.

• An overrun error indicates that new data overwrote old data before the old data was re

Each SIO channel receiver contains a receive shift register, a receive buffer, and a recei
pin (RXDn). Data received is shifted into the receive shift register via the RXDn pin. Once a data
byte has been received, the receiver strips off the asynchronous communication bits (start, stop
and parity) and transfers the contents of its shift register to the receive buffer.

The RXD0 pin is multiplexed with another function. The pin configuration register (P2CFG)
termines whether the RXD0 signal or the alternate function is connected to the package pin.

Figure 11-5. SIO n Receiver

RXDn

(pin mux)

Baud-rate

Clock

SIOn Receive Shift

Register

SIOn Receive Buffer

A2327-02

S

y

s

t

e

m

B

u

s

Receive Buffer Full

(To ICU and DMA)

Receiver Errors

(To ICU)
11-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

itions
r, indi-
ceived

essary.
n sets

R that

n ser-
the re-
se of

 an

rs, the
The receiver contains a receive buffer full (RBF) flag and flags for each of the error cond
described above. At reset, RBF and each of the error flags (PE, FE, OE, and BI) are clea
cating that the receive buffer is empty, and no error has occurred. When a character is re
the receiver checks for parity, framing or break errors, and sets the appropriate bits, if nec
It then shifts the data into the receive buffer, sets the OE bit if an overrun occurs, and the
the RBF flag. Reading the receive buffer clears the RBF flag and any error flags in the LS
may have been set, except for the OE bit. The OE bit is cleared by reading the LSR.

High speed serial transfers may require using the DMA to eliminate interrupt latency time i
vicing the SIO. Since the SIO unit clears the error bits in the line status register each time
ceive buffer register is read, it would be impossible to detect an error using DMA. Becau
this, two RBF signals are used:

• One RBF signal (RBFDMA) goes directly to the DMA unit. This signal is blocked when
error (parity, overrun, break, or framing) occurs. This prevents a DMA request from being
generated by the RBF.

• The other RBF signal (RBFINT) goes directly to the interrupt priority logic and out on
SIOINT if enabled in the Interrupt Enable Register.

When the Interrupt Enable Register is programmed to generate an SIOINT on receiver erro
error can be serviced as part of the interrupt handler.
11-10

ASYNCHRONOUS SERIAL I/O UNIT
Figure 11-6. SIO n Data Reception Process Flow

A2525-02

Select the BCLKIN source and

the receiver input baud rate.

Select the data frame. (Word length,

number of stop bits, and type of

parity.) Enable interrupts and/or DMA.

Receiver shifts data into shift register

from the RXDn pin.

Was

a break condition

detected?

Was

a framing error

detected?

Was

a parity error

detected?

Receiver sets the

parity error flag.

Receiver sets

the break

interrupt flag.

Is

receive

buffer full flag

set?

Receiver transfers

data to receive

buffer and sets

overrun error flag.

Receiver transfers data to receive

buffer and sets receive buffer full

flag.

End

Receiver sets

the framing

error flag.

No No No

Yes Yes Yes

Yes

No

Service error

interrupt

(if enabled)

Service error

interrupt

(if enabled)

Any

error flags

set?

No

Yes
11-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

sed
al

lish a

he SIO
 pins,

ignals
d state.

s link.
cessor
11.2.4 Modem Control

The modem control logic provides interfacing for four input signals and two output signals u
for handshaking and status indication between the SIOn and a modem or data set. An extern
modem or data set uses the input signals to inform the SIOn when:

• It is ready to establish a communications link (DSRn#)

• It has detected a data carrier signal (DCDn#)

• It has detected a telephone ringing signal (RIn#)

• It is ready to exchange data (CTSn#)

The SIOn uses its output signals to inform the modem or data set when it is ready to estab
communication link (DTRn#), and when it is ready to exchange data (RTSn#).

The modem output signals can be internally connected to the modem input signals using t
configuration register. In this case, the modem input signals are disconnected from the
RTSn# is connected to CTSn#, DTRn# is connected to both DSRn# and DCDn#, and VCC is con-
nected RIn#.

The SIO contains status flags that indicate the current state of the modem control input s
and status flags that indicate whether any of the modem control input signals have change

11.2.5 Diagnostic Mode

The SIO channels provide a diagnostic mode to aid in isolating faults in the communication
In this mode, data that is transmitted is immediately received. This feature allows the pro
to verify the internal transmit and receive data paths of an SIOn channel.

The diagnostic mode connections are as follows:

• The transmitter serial output (TXDn) is set to a logic 1 state.

• The receiver serial input (RXDn) is disconnected from the pin.

• The transmit shift register output is “looped back” into the receive shift register.

• The four modem control inputs (CTSn#, DSRn#, DCDn#, and RIn#) are disconnected from
the pins and controlled by modem control register bits.

• The modem control output pins (RTSn#, DTRn#) are forced to their inactive states.
11-12

ASYNCHRONOUS SERIAL I/O UNIT

 buffer
n can
ster to
m its
ange
odem

mode,
l values

terrupt

y read-
d as
rrupt is

ceiver
ut as

nts the
11.2.6 SIO Interrupt and DMA Sources

11.2.6.1 SIO Interrupt Sources

Each SIO channel has four status signals: receiver line status, receiver buffer full, transmit
empty, and modem status. An overrun error, parity error, framing error, or break conditio
activate the receiver line status signal. When the receiver transfers data from its shift regi
its buffer, it activates the receive buffer full signal. When the transmitter transfers data fro
transmit buffer to its transmit shift register, it activates the transmit buffer empty signal. A ch
on any of the modem control input signals activates the modem status signal. When the m
signals are connected internally either through the configuration register or the diagnostic
changes of state still activate the modem status signal. For these cases, however, the signa
are controlled by register bits rather than by external input signals.

Each of the four status signals can be used as an interrupt request source for the SIOINTn signal.
The Interrupt Enable register (IER) is used to enable any or all of the status signals as in
sources. When an SIOINTn occurs the IP# bit (bit 0) of the Interrupt ID register (IIRn) is cleared
and the interrupt handler must determine which of the status signals caused the interrupt b
ing bits 1 and 2 of the IIRn register (Table 11-4). When more than one status signal is enable
an interrupt source and two or more are active at the same time then the source of the inte
based on a fixed priority scheme (Table 11-4).

11.2.6.2 SIO DMA sources

The transmit and receive channel on each SIO is supported by both DMA channels. The re
buffer full and transmit buffer empty signals of the line status register are brought o
RBFDMAn, and TXEDMAn. The TXEDMAn signal is connected directly to the multiplexers
controlling the source of DREQn for each of the two DMA channels. The RBFDMAn signal is
also connected to the DREQn muxes, but it is qualified by the LSR error conditions so that the
DMA request is blocked if an error has occurred in the reception of a character. This preve
DMA from transferring a character from the SIO with an error.

Table 11-4. Status Signal Priorities and Sources

Interrupt ID Register
Priority Status Signal Activated By

Bit 2 Bit 1 Bit 0

1 1 0 1 (Highest) Receiver Line Status overrun error, parity error, framing error, or
break condition

1 0 0 2 Receive Buffer Full the receiver transferring data from its shift
register to its buffer

0 1 0 3 Transmit Buffer Empty the transmitter transmitting data from its
transmit buffer to its transmit shift register

0 0 0
4 (Lowest) Modem Status a change on any of the modem control

input signals (CTSn#, DCDn#, DSRn#, and
RIn#
11-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ce the
n inter-
IR3
T9

 bit in
2 bit

, com-
 and
G and
IGU-
11.2.7 External UART Support

Many PC compatible applications may need to support COM3 and COM4 serial ports. Sin
integrated serial ports are mapped to I/O addresses that support only COM1 and COM2, a
face to support an external serial I/O unit has been included. The master ICU interrupt inputs
and IR4 may be brought out to package pins as INT8 (muxed with P3.1/TMROUT1) and IN
(muxed with P3.0/TMROUT0), respectively.

In order to select between the internal SIO units and the external SIO units, use the OUT2
the modem control register (MCR). In normal user mode (with no loopback) clear the OUT
to enable external SIO support, and set OUT2 to enable internal SIO support. Doing this
bined with the correct settings of the P3CFG.1:0 and INTCFG.6:5 bits connect the INT8
INT9 pins to IR3 and IR4 of the master ICU, respectively. Note that the reset state of P3CF
INTCFG enables SIOINT and disconnects OUT2 gating. See Chapter 5, “DEVICE CONF
RATION” (Tables 5-1 and 5-2) for more details on how to select this option.
11-14

ASYNCHRONOUS SERIAL I/O UNIT

in bit
11.3 REGISTER DEFINITIONS

Table 11-5 lists the registers associated with the SIO unit and the following sections conta
descriptions for each register.

Table 11-5. SIO Registers (Sheet 1 of 2)

Register Expanded
Address

PC/AT*
Address Function

PINCFG
(read/write)

0F826H — Pin Configuration:

Connects the SIO1 transmit data (TXD1), data terminal ready
(DTR1#), and request to send (RTS1#) signals to package pins.

P1CFG
(read/write)

0F820H — Port 1 Configuration:

Connects the SIO0 ring indicator (RI0#), data set ready (DSR0#),
data terminal ready (DTR0#), request to send (RTS0#), and data
carrier detected (DCD0#) signals to package pins.

P2CFG
(read/write)

0F822H — Port 2 Configuration:

Connects the SIO0 clear to send (CTS0#), transmit data (TXD0),
and receive data (RXD0) signals to package pins.

P3CFG
(read/write)

0F824H — Port 3 Configuration:

Connects COMCLK to the package pin.

SIOCFG
(read/write)

0F836H — SIO and SSIO Configuration:

Connects the SIOn modem input signals internally or to package
pins and connects either the internal SERCLK signal or the
COMCLK pin to the SIOn baud-rate generator input.

DLL0
DLL1
(read/write)

0F4F8H
0F8F8H

03F8H
02F8H

Divisor Latch Low:

Stores the lower 8 bits of the SIOn baud-rate generator divisor.

DLH0
DLH1
(read/write)

0F4F9H
0F8F9H

03F9H
02F9H

Divisor Latch High:

Stores the upper 8 bits of the SIOn baud-rate generator divisor.

TBR0
TBR1
(write only)

0F4F8H
0F8F8H

03F8H
02F8H

Transmit Buffer:

Holds the data byte to transmit.

RBR0
RBR1
(read only)

0F4F8H
0F8F8H

03F8H
02F8H

Receiver Buffer:

Holds the data byte received.

LCR0
LCR1
(read/write)

0F4FBH
0F8FBH

03FBH
02FBH

Line Control:

Specifies the data frame (word length, number of stop bits, and
type of parity) for transmissions and receptions. Allows the
transmitter to transmit a break condition.

LSR0
LSR1
(read only)

0F4FDH
0F8FDH

03FDH
02FDH

Line Status:

Contains the transmitter empty, transmit buffer empty, receive
buffer full, and receive error flags.

IER0
IER1
(read/write)

0F4F9H
0F8F9H

03F9H
02F9H

Interrupt Enable:

Independently connects the four signals (modem status, receive
line status, transmit buffer empty, and receive buffer full) to the
interrupt request output (SIOINTn).
11-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ad
For PC compatibility, the SIO unit accesses its 11 registers through 8 I/O addresses. The RBRn,
TBRn, and DLLn registers share the same addresses and the IERn and DLHn registers share the
same addresses. Bit 7 (DLAB) of the LCRn determines which register is accessed during a re
or write operation (Table 11-6).

IIR0
IIR1
(read only)

0F4FAH
0F8FAH

03FAH
02FAH

Interrupt ID:

Indicates whether the modem status, transmit buffer empty,
receive buffer full, or receiver line status signal generated an
interrupt request.

MCR0
MCR1
(read/write)

0F4FCH
0F8FCH

03FCH
02FCH

Modem Control:

Controls the interface with the modem or data set.

Allows use of external UARTs.

MSR0
MSR1
(read/write)

0F4FEH
0F8FEH

03FEH
02FEH

Modem Status:

Provides the current state of the control lines for the modem or
data set to the CPU.

SCR0
SCR1
(read/write)

0F4FFH
0F8FFH

03FFH
02FFH

Scratch Pad:

An 8-bit read/write register available for use as a scratch pad; has
no effect on SIOn operation.

Table 11-6. Access to Mul tiplexed Registers

Expanded Address PC/AT Address
Register Accessed

DLAB = 0 DLAB = 1

0F4F8H (read) 03F8H (read) RBR0 DLL0

0F4F8H (write) 03F8H (write) TBR0 DLL0

0F4F9H (read/write) 03F9H (read/write) IER0 DLH0

0F8F8H (read) 02F8H (read) RBR1 DLL1

0F8F8H (write) 02F8H (write) TBR1 DLL1

0F8F9H (read/write) 02F9H (read/write) IER1 DLH1

Table 11-5. SIO Registers (Sheet 2 of 2)

Register Expanded
Address

PC/AT*
Address Function
11-16

ASYNCHRONOUS SERIAL I/O UNIT
11.3.1 Pin and Port Configuration Registers (PINCFG and P nCFG [n = 1–3])

Use PINCFG bits 2:0 to connect the SIO1 signals to package pins.

Figure 11-7. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
11-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Use P1CFG bits 4:0 to connect SIO0 signals to package pins.

Figure 11-8. Port 1 Configuration Register (P1CFG)

Port 1 Configuration
P1CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F820H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.

6 PM6 Pin Mode:

0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.

5 PM5 Pin Mode:

0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.

4 PM4 Pin Mode:

0 = Selects P1.4 at the package pin.
1 = Selects RI0# at the package pin.

3 PM3 Pin Mode:

0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.

2 PM2 Pin Mode:

0 = Selects P1.2 at the package pin.
1 = Selects DTR0# at the package pin.

1 PM1 Pin Mode:

0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.

0 PM0 Pin Mode:

0 = Selects P1.0 at the package pin.
1 = Selects DCD0# at the package pin.
11-18

ASYNCHRONOUS SERIAL I/O UNIT
Use P2CFG bits 7–5 to connect SIO0 signals to package pins.

Figure 11-9. Port 2 Configuration Register (P2CFG)

Port 2 Configuration
P2CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F822H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.

6 PM6 Pin Mode:

0 = Selects P2.6 at the package pin.
1 = Selects TXD0 at the package pin.

5 PM5 Pin Mode:

0 = Selects P2.5 at the package pin.
1 = Selects RXD0 at the package pin.

4 PM4 Pin Mode:

0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.

3 PM3 Pin Mode:

0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.

2 PM2 Pin Mode:

0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.

1 PM1 Pin Mode:

0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.

0 PM0 Pin Mode:

0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.
11-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Use P3CFG bit 7 to connect the COMCLK pin to the package pin.

Figure 11-10. Port 3 Configuration Register (P3CFG)

Port 3 Configuration
P3CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INT0).

1 PM1 Pin Mode:

See Table 5-1 on page 5-8 for all the PM1 configuration options.

0 PM0 Pin Mode:

See Table 5-1 on page 5-8 for all the PM0 configuration options.
11-20

ASYNCHRONOUS SERIAL I/O UNIT

 have a
 the in-
#, and
11.3.2 SIO and SSIO Configuration Register (SIOCFG)

Use SIOCFG to select the baud-rate generator clock source for the SIO channels and to
channel’s modem input signals connected internally rather than to package pins. Selecting
ternal modem signal connection option connects RTS# to CTS#, DTR# to DSR# and DCD
VCC to RI#. The modem signal connections for this internal option are shown in Figure 11-20.

Figure 11-11. SIO and SSIO Configuration Register (SIOCFG)

SIO and SSIO Configuration
SIOCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F836H
—
00H

7 0

S1M S0M — — — SSBSRC S1BSRC S0BSRC

Bit
Number

Bit
Mnemonic Function

7 S1M SIO1 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.

6 S0M SIO0 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SIO1 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate

generator.

0 S0BSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate

generator.
11-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
11.3.3 Divisor Latch Registers (DLL n and DLH n)

Use these registers to program the baud-rate generator’s output frequency. The baud-rate gener-
ator’s output determines the transmitter and receiver bit times.

Figure 11-12. Divisor Latch Registers (DLL n and DLH n)

Divisor Latch Low
DLL0, DLL1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

DLL0 DLL1
F4F8H F8F8H
03F8H 02F8H
02H 02H

7 0

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

Divisor Latch High
DLH0, DLH1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

DLH0 DLH1
F4F9H F8F9H
03F9H 02F9H
00H 00H

7 0

UD15 UD14 UD13 UD12 UD11 UD10 UD9 UD8

Bit
Number

Bit
Mnemonic Function

DLLn
(7–0)

LD7:0 Lower 8 Divisor and Upper 8 Divisor Bits:

Write the lower 8 divisor bits to DLLn and the upper 8 divisor bits to
DLHn. The baud-rate generator output is a function of the baud-rate
generator input (BCLKIN) and the 16-bit divisor.

bit rate (shifting rate) = baud-rate generator output frequency/16

DLHn
(7–0)

UD15:8

NOTE: The divisor latch registers share address ports with other SIO registers. Bit 7 (DLAB) of
LCRn must be set in order to access the divisor latch registers.

If DLL = DLH = 00H, baud-rate generator ouput frequency = 0 (stops clock).

baud-rate generator output frequency
 BCLKIN frequency

divisor
---=
11-22

ASYNCHRONOUS SERIAL I/O UNIT

l

11.3.4 Transmit Buffer Register (TBR n)

Write the data words to be transmitted to TBRn. Use the interrupt control or DMA units or pol
the serial line status register (LSRn) to determine whether the transmit buffer is empty.

Figure 11-13. Transmit Buffer Register (TBR n)

Transmit Buffer
TBR0, TBR1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

TBR0 TBR1
F4F8H F8F8H
03F8H 02F8H
XXH XXH

7 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

Bit
Number

Bit
Mnemonic Function

7–0 TB7:0 Transmit Buffer Bits:

These bits make up the next data word to be transmitted. The transmitter
loads this word into the transmit shift register. The transmit shift register
then shifts the bits out, along with the asynchronous communication bits
(start, stop, and parity). The data bits are shifted out least-significant bit
(TB0) first.

NOTE: The transmit buffer register shares an address port with other SIO registers. You must clear
bit 7 (DLAB) of LCRn before you can write to the transmit buffer register.
11-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

l

11.3.5 Receive Buffer Register (RBR n)

Read RBRn to obtain the last data word received. Use the interrupt control or DMA units or pol
the serial line status register (LSRn) to determine whether the receive buffer is full.

Figure 11-14. Receive Buffer Register (RBR n)

Receive Buffer
RBR0, RBR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

RBR0 RBR1
F4F8H F8F8H
03F8H 02F8H
XXH XXH

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit
Number

Bit
Mnemonic Function

7–0 RB7:0 Receive Buffer Bits:

These bits make up the last word received. The receiver shifts bits in,
starting with the least-significant-bit. The receiver then strips off the
asynchronous bits (start, parity, and stop) and transfers the received
data bits from the receive shift register to the receive buffer.

NOTE: The receive buffer register shares an address port with other SIO registers. Bit 7 (DLAB) of
the LCRn must be cleared in order to read the receive buffer register.
11-24

ASYNCHRONOUS SERIAL I/O UNIT

rmine
11.3.6 Serial Line Control Register (LCR n)

Use LCRn to provide access to the multiplexed registers, send a break condition, and dete
the data frame for receptions and transmissions.

Figure 11-15. Serial Line Control Register (LCR n)

Serial Line Control
LCR0, LCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

LCR0 LCR1
F4FBH F8FBH
03FBH 02FBH
00H 00H

7 0

DLAB SB SP EPS PEN STB WLS1 WLS0

Bit
Number

Bit
Mnemonic Function

7 DLAB Divisor Latch Access Bit:

This bit determines which of the multiplexed registers is accessed.

0 = Allows access to the receiver and transmit buffer registers (RBRn and
TBRn) and the interrupt enable register (IERn).

1 = Allows access to the divisor latch registers (DLLn and DLHn).

6 SB Set Break:

0 = No effect on TXDn.
1 = Forces the TXDn pin to the spacing (logic 0) state for as long as bit is

set.

5 SP Sticky Parity, Even Parity Select, and Parity Enable:

These bits determine whether the control logic produces (during
transmission) or checks for (during reception) even, odd, no, or forced
parity.

SP EPS PEN Function
X X 0 parity disabled (no parity option)
0 0 1 produce or check for odd parity
0 1 1 produce or check for even parity
1 0 1 produce or check for forced parity (parity bit = 1)
1 1 1 produce or check for forced parity (parity bit = 0)

4 EPS

3 PEN

2 STB Stop Bits:

This bit specifies the number of stop bits transmitted and received in each
serial character.

0 = 1 stop bit
1 = 2 stop bits (1.5 stop bits for 5-bit characters)

1–0 WLS1:0 Word Length Select:

These bits specify the number of data bits in each transmitted or received
serial character.

00 = 5-bit character
01 = 6-bit character
10 = 7-bit character
11 = 8-bit character
11-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
11.3.7 Serial Line Status Register (LSR n)

Use LSRn to check the status of the transmitter and receiver.

Figure 11-16. Serial Line Status Register (LSR n)

Serial Line Status
LSR0, LSR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

LSR0 LSR1
F4FDH F8FDH
03FDH 02FDH
60H 60H

7 0

— TE TBE BI FE PE OE RBF

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined.

6 TE Transmitter Empty:

The transmitter sets this bit to indicate that the transmit shift register and
transmit buffer register are both empty. Writing to the transmit buffer
register clears this bit.

5 TBE Transmit Buffer Empty:

The transmitter sets this bit after it transfers data from the transmit buffer
to the transmit shift register. Writing to the transmit buffer register clears
this bit.

4 BI Break Interrupt:

The receiver sets this bit whenever the received data input is held in the
spacing (logic 0) state for longer than a full word transmission time.
Reading the receive buffer register or the serial line status register clears
this bit.

3 FE Framing Error

The receiver sets this bit to indicate that the received character did not
have a valid stop bit. Reading the receive buffer register or the serial line
status register clears this bit. If data frame is set for two stop bits the
second stop bit is ignored.

2 PE Parity Error:

The receiver sets this bit to indicate that the received data character did
not have the correct parity. Reading the receive buffer register or the
serial line status register clears this bit.

1 OE Overrun Error:

The receiver sets this bit to indicate an overrun error. An overrun occurs
when the receiver transfers a received character to the receive buffer
register before the CPU reads the buffer’s old character. Reading the
serial line status register clears this bit.

0 RBF Receive Buffer Full:

The receiver sets this bit after it transfers a received character from the
receive shift register to the receive buffer register. Reading the receive
buffer register clears this bit.
11-26

ASYNCHRONOUS SERIAL I/O UNIT

als
11.3.8 Interrupt Enable Register (IER n)

Use IERn to connect the SIOn status signals to the interrupt control unit. All four status sign
can be connected to the interrupt control unit.

Figure 11-17. Interrupt Enable Register (IER n)

Interrupt Enable
IER0, IER1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

IER0 IER1
F4F9H F8F9H
03F9H 02F9H
00H 00H

7 0

— — — — MS RLS TBE RBF

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved; for compatibility with future devices, write zeros to these bits.

3 MS Modem Status Interrupt Enable:

0 = Modem input signal changes do not cause interrupts.
1 = Connects the modem status signal to the interrupt control unit’s

SIOINTn output. A change on one or more of the modem input
signals activates the modem status signal.

2 RLS Receiver Line Status Interrupt Enable:

0 = LSR error conditions do not cause interrupts.
1 = Connects the receiver line status signal to the interrupt control unit’s

SIOINTn output. Sources for this interrupt include overrun error,
parity error, framing error, and break interrupt.

1 TBE Transmit Buffer Empty Interrupt Enable:

0 = Transmit Buffer Empty signal does not cause interrupts.
1 = Connects the transmit buffer empty signal to the interrupt control

unit’s SIOINTn output.

0 RBF Receive Buffer Full Interrupt Enable:

0 = Receive buffer full signal does not cause interrupts.
1 = Connects the receive buffer full signal to the interrupt control unit’s

SIOINTn output.

NOTE: The interrupt enable register is multiplexed with the divisor latch high register. You must clear
bit 7 (DLAB) of the serial line control register (LCRn) before you can access the interrupt
control register.
11-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

rated
11.3.9 Interrupt ID Register (IIR n)

Use the IIRn to determine whether an interrupt is pending and, if so, which status signal gene
the interrupt request.

Figure 11-18. Interrupt ID Register (IIR n)

Interrupt ID
IIR0, IIR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

IIR0 IIR1
F4FAH F8FAH
03FAH 02FAH
01H 01H

7 0

— — — — — IS2 IS1 IP#

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined.

2 IS2:1 Interrupt Source:

If an interrupt is pending (bit 0 = 0), these bits specify which status signal
caused the pending interrupt.

IS2 IS1 Interrupt Source

0 0 modem status signal*
0 1 transmitter buffer empty signal
1 0 receive buffer full signal
1 1 receiver line status signal**

* When one of the modem input signals (CTSn#, DSRn#, RIn#, and
DCDn#) changes state, the modem status signal is activated.

** A framing error, overrun error, parity error, or break interrupt activates
the receiver line status signal.

Reading the modem status register clears the modem status signal.
Reading the IIRn register or writing to the transmit buffer register clears
the transmit buffer empty signal. Reading the receive buffer register
clears the receive buffer full signal. Reading the receive buffer register or
the serial line status register clears the LSRn error bits, which clears the
receiver line status signal.

0 IP# Interrupt Pending:

This bit indicates whether an interrupt is pending.

0 = Interrupt is pending
1 = No interrupt is pending
11-28

ASYNCHRONOUS SERIAL I/O UNIT

nals

ignals.
inter-
nnects
als re-

als are
11.3.10 Modem Control Register (MCR n)

Use MCRn to put the SIOn into a diagnostic test mode. In this mode, the modem input sig
are disconnected from the package pins and controlled by the lower four MCRn bits and the mo-
dem output signals are forced to their inactive states (Figure 11-19). Additionally, the MCRn sig-
nals are also forced into the MSR register bits.

Figure 11-19. Modem Control Signals – Diagnostic Mode Connections

Besides the diagnostic mode, there are two other options for connecting the modem input s
You can connect the signals internally using the SIO configuration (SIOCFG) register. The
nal connection mode disconnects the modem input signals from the package pins and co
the modem output signals to the modem input signals (in this case, the modem output sign
main connected to package pins). See Figure 11-20. In this mode, the values you write to MCRn
bits 0 and 1 control the state of the modem’s internal input signals and output pins.

Figure 11-20. Modem Control Signals – Internal Connections

The other option is standard mode. In standard mode, the modem input and output sign
connected to the package pins. In this mode, the values you write to MCRn bits 0 and 1 control
the state of the modem’s output pins.

A2529-01

CTS#

DSR#

DCD#

RI#

RTS#

DTR#

RTSn#

(forced high)

DTRn#

(forced high)

MCRn.1

MCRn.3

MCRn.0

MCRn.2

Note : MCRn.1 indicates that modem control register bit 1 controls the CTS input, and so on.

A2528-01

CTS#

DSR#

DCD#

RI#

RTS#

DTR#

Vcc

RTSn#

DTRn#
11-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 11-21. Modem Control Register (MCR n)

Modem Control
MCR0, MCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

MCR0 MCR1
F4FCH F8FCH
03FCH 02FCH
00H 00H

7 0

— — — LOOP OUT2 OUT1 RTS DTR

Bit
Number

Bit
Mnemonic Function

7–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 LOOP Loop Back Test Mode:

0 = Normal mode
1 = Setting this bit puts the SIOn into diagnostic (or loop back test) mode. This causes

the SIO channel to:

• set its transmit serial output (TXDn)

• disconnect its receive serial input (RXDn) from the package pin

• loop back the transmitter shift register’s output to the receive shift register’s input

• disconnect the modem control inputs (CTSn#, DSRn#, RIn#, and DCDn#) from the
package pins

• force modem control outputs (RTSn# and DTRn#) to their inactive states

• connects MCRn bits to MSRn bits

3–2 OUT2:1 Test Bits:

In diagnostic mode (bit 4=1), these bits control the ring indicator (RIn) and data carrier
detect (DCDn#) modem inputs. Setting OUT1 activates the internal RIn bit; clearing
OUT1 deactivates the internal RIn bit. Setting OUT2 activates the internal DCDn bit;
clear OUT2 deactivates the internal DCDn bit.

In normal user mode (bit 4=0) OUT1 has no effect and OUT2 in conjunction with
INTCFG.5/6 selects internal SIO interrupt or external interrupt. See Table 5-1 on page
5-8 for the configuration options.

1 RTS Ready to Send:

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal CTSn bit; clearing this bit
deactivates the internal CTSn bit.

In internal connection mode, setting this bit activates the internal CTSn# signal and the
RTSn# pin; clearing this bit deactivates the internal CTSn# signal and the RTSn# pin.

In standard mode, setting this bit activates the RTSn# pin; clearing this bit deactivates
the RTSn# pin. Note that pin is inverted from bit.

0 DTR Data Terminal Ready:

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal DSRn# signal; clearing this bit
deactivates the internal DSRn# signal.

In internal connection mode, setting this bit activates the internal DSRn# and DCDn#
signals and the DTRn# pin; clearing this bit deactivates the internal DSRn# and DCDn#
signals and the DTRn# pin. Note that pin is inverted from bit.

In standard mode, setting this bit activates the DTRn# pin; clearing this bit deactivates
the DTRn# pin. Note that pin is inverted from bit.
11-30

ASYNCHRONOUS SERIAL I/O UNIT

eflect
inputs
er
11.3.11 Modem Status Register (MSR n)

Read MSRn to determine the status of the modem control input signals. The upper four bits r
the current state of the modem input signals and the lower four bits indicate whether the
(except for RI#) have changed state since the last time this register was read. These lowfour
bits are reset to zero when the CPU reads the Modem Status register.

Figure 11-22. Modem Status Register (MSR n)

Modem Status
MSR0, MSR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

MSR0 MSR1
F4FEH F8FEH
03FEH 02FEH
X0H X0H

7 0

DCD RI DSR CTS DDCD TERI DDSR DCTS

Bit
Number

Bit
Mnemonic Function

7 DCD Data Carrier Detect:

This bit is the complement of the data carrier detect (DCDn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.3 (OUT2).

6 RI Ring Indicator:

This bit is the complement of the ring indicator (RIn#) input. In diagnostic
test mode, this bit is equivalent to MCRn.2 (OUT1).

5 DSR Data Set Ready:

This bit is the complement of the data set ready (DSRn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.0 (DTR).

4 CTS Clear to Send:

This bit is the complement of the clear to send (CTSn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.1 (RTS).

3 DDCD Delta Data Carrier Detect:

When set, this bit indicates that the DCDn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

2 TERI Trailing Edge Ring Indicator:

When set, this bit indicates that the RIn# input has changed from a low
to a high state since the last time this register was read. Reading this
register clears this bit.

1 DDSR Delta Data Set Ready:

When set, this bit indicates that the DSRn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

0 DCTS Delta Clear to Send:

When set, this bit indicates that the CTSn# input has changed state
since the last time this register was read. Reading this register clears
this bit.
11-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 SIO

uffer
 unit’s

 IIR
al line
r
est,

is,
cted
et.
11.3.12 Scratch Pad Register (SCR n)

SCRn is available for use as a scratch pad. Writing and reading this register has no effect onn
operation.

Figure 11-23. Scratch Pad Register (SCR n)

11.4 PROGRAMMING CONSIDERATIONS

Consider the following when programming the SIO.

• The divisor latch low register (DLLn) is multiplexed with the receive and transmit buffer
registers (RBRn and TBRn) and the divisor latch high register (DLHn) is multiplexed with
the interrupt enable register (IERn). Bit 7 of the serial line control register (LCRn) controls
which register is accessed.

• The SIO contains four status signals: receiver line status, receive buffer full, transmit b
empty, and modem status. You can connect (OR) these signals to the interrupt control
SIOINTn interrupt request signal using the interrupt enable register (IERn). If you receive
an interrupt request on the SIOINTn signal, read the interrupt ID register (IIRn) to
determine which status signal with the highest priority caused the request.

Several sources can activate the receiver line status and the modem status signals. Ifn
indicates that the receiver line status signal caused an interrupt request, read the seri
status register (LSRn) to determine the receive error condition that activated the receive
line status signal. If IIRn indicates that the modem status signal caused an interrupt requ
read the modem status register (MSRn) to determine which modem input signal activated
the modem status signal.

• DMA can be used for servicing the SIO channels for higher baud rates. When doing th
remember that the isolated RBF and TBE (RBFDMA and TBEDMA) signals are conne
to the DMA DREQ inputs. RBFDMA is blocked if any of the error bits in the LSR are s
Neither signal is gated by the IERn register.

Scratch Pad
SCR0, SCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

SCR0 SCR1
F4FFH F8FFH
03FFH 02FFH
XXH XXH

7 0

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

Bit
Number

Bit
Mnemonic Function

7–0 SP7:0 Writing and reading this register has no effect on SIOn operation.
11-32

ASYNCHRONOUS SERIAL I/O UNIT

ll

e SIO.
11.4.1 Asynchronous Serial I/O Unit Code Examples

The code example contains these software routines:

InitSIO Initializes the SIO for asynchronous transfers

SerialReadStr Polled serial read function that reads a specified number of
characters

SerialReadChar Polled serial read function that reads a single character

SerialWriteChar Polled serial write function that writes a single character

SerialWriteStr Polled serial write function that writes out an entire string of
characters

SerialWriteMem Polled serial write function that writes out a specified number of
characters stored in a buffer

Serial0_ISR Template interrupt service routine for SIO_0 interrupts

Service_RBF Service routine for interrupts generated by the Receive Buffer Fu
signal

SerialWriteStr_Int Interrupt driven serial write function

Service_TBE Service routine for interrupts generated by the Transmit Buffer
Empty signal

The last software routine shows how to use these functions to enable RBF interrupts on th
See Appendix C for the included header files.

#include <conio.h>
#include <stdio.h>
#include “80386ex.h”
#include “ev386ex.h”

/* Variable Declarations */
int Tbuffer_index = 0;
char trans_buffer[1024];
char rec_buffer;

/***
 InitSIO:

Description:
 Initialization routine for Asynchronous Serial I/O Port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
Mode Defines Parity, number of data bits, number of stop bits--

Reference Serial Line Control register for various
11-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
options
ModemCntrl Defines the operation of the modem control lines
BaudRate Specifies baud rate. The baud divisor value is calculated

based on clocking source and clock frequency. The
clocking frequency is set by calling the
InitializeLibrary function.

ClockRate Specifies the serial port clocking rate, for internal
clocking = CLK2, for external = COMCLK

Returns:Error Codes
E_INVAILD_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:
SIOCFG Has already been configured for Clocking source and Modem
control source

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

 Syntax:

#define SIO_0 0x0
#define SIO_8N1 (SIO_8DATA | SIO_1STOPBIT | SIO_NOPARITY)

 #define SIO_MCR_RTS 0x2
#define SIO_MCR_DTR 0x1
#define SIO_8DATA 0x3
#define SIO_1STOPBIT 0x0

 //Clock rate of COMCLK, i.e., External clocking
 #define BAUD_CLKIN 1843200L

int error;

error = InitSIO(SIO_0, // Which Serial Port
SIO_8N1, // Mode, 8-data, no parity, 1-stop
SIO_MCR_RTS+SIO_MCR_DTR, // Modem line controls

 9600, // Baud Rate
 BAUD_CLKIN); // Baud Clocking Rate

Real/Protected Mode:

No changes required.

***/

int InitSIO(int Unit, BYTE Mode, BYTE ModemCntrl, DWORD BaudRate,
 DWORD BaudClkIn)
{

WORD SIOPortBase;
WORD BaudDivisor;

/* Check for valid unit */
if(Unit > 1)
11-34

ASYNCHRONOUS SERIAL I/O UNIT
return E_INVALID_DEVICE;

/* Set Port base based on serial port used */
SIOPortBase = (Unit ? SIO1_BASE : SIO0_BASE);

/* Initialized Serial Port registers */

 /* Calculate the baud divisor value, based on baud clocking */
 BaudDivisor = (WORD)(BaudClkIn / (16*BaudRate));

 /* Turn on access to baud divisor register */
 _SetEXRegByte(SIOPortBase + LCR, 0x80);

/* Set the baud rate divisor register, High byte first */
_SetEXRegByte(SIOPortBase + DLH, HIBYTE(BaudDivisor));
_SetEXRegByte(SIOPortBase + DLL, LOBYTE(BaudDivisor));

 /*** Set Serial Line control register ***/

_SetEXRegByte(SIOPortBase + LCR, Mode);// Sets Mode and
//reset the Divisor latch

/* Set modem control bits */
_SetEXRegByte(SIOPortBase + MCR, ModemCntrl);

return E_OK;
}/* InitSIO */

/***
SerialReadStr

Description:
Is a Polled serial port read function that waits forever or until
count characters are read from the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
str Address of where to place the input data
count Number of characters to read before returning.

Returns: Error Code
E_OK or Error code status (value of Line Status Register (LSR)

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:
11-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
#define SIO_0 0
#define LENGTH 32

 char String_Read[LENGTH];

int error;

error = SerialReadStr (SIO_0,
String_Read,
LENGTH);

Real/Protected Mode
No changes required.

***/

int SerialReadStr(int Unit, char far *str, int count)
{

WORD ReceivePortAddr;
WORD StatusPortAddr;
BYTE Status;
int i;

/* Set Port base, based on serial port used */
ReceivePortAddr = (Unit ? RBR1 : RBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

for(i=0; i < count-1; i++)
{

// Status register is cleared after read, so we must save
// it’s value when read
while(!((Status=_GetEXRegByte(StatusPortAddr)) & SIO_RX_BUF_FULL))

if(Status & SIO_ERROR_BITS) /* Error Bit set then return NULL */
{

str[i+1] = ‘\0’;
return Status & SIO_ERROR_BITS;

}
 str[i] = _GetEXRegByte(ReceivePortAddr);
 }
 str[i] = ‘\0’;
 return E_OK;
}/* SerialReadStr */

/***
SerialReadChar:

Description:
Is a Polled serial port read function that waits forever or
11-36

ASYNCHRONOUS SERIAL I/O UNIT
until a character has been received from the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.

Returns:
BYTE Read from serial port, if zero an error occurred.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

 #define SIO_0 0

 BYTE character;

 character = SerialReadChar (SIO_0);

Real/Protected Mode
No changes required.

***/

BYTE SerialReadChar(int Unit)
{

WORD ReceivePortAddr;
WORD StatusPortAddr;
WORD Status;

/* Set Port base, based on serial port used */
ReceivePortAddr = (Unit ? RBR1 : RBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

// Status register is cleared after read, so we must save
// it’s value when read
while(!((Status=_GetEXRegByte(StatusPortAddr)) & SIO_RX_BUF_FULL))

if(Status & SIO_ERROR_BITS) // Error Bit set then return NULL
{

return 0;
}

return _GetEXRegByte(ReceivePortAddr);
}/* SerialReadChar */

/***
11-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
SerialWriteChar:

Description:
Is a Polled serial port write function that waits forever or
until a character has been written to the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
 ch Character value to be written out

Returns:

None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

 #define SIO_0 0

 char Char_Out = ‘a’;

 SerialWriteChar (SIO_0, Char_Out);

Real/Protected Mode
No changes required.

***/

void SerialWriteChar(int Unit, BYTE ch)
{

WORD TransmitPortAddr;
WORD StatusPortAddr;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;

_SetEXRegByte(TransmitPortAddr,ch);
}/* SerialWriteChar */

/***
SerialWriteStr:
11-38

ASYNCHRONOUS SERIAL I/O UNIT
Description:
Is a Polled serial port write function that waits forever
or until all characters have been written to the serial port.
The NUL character (‘\0’) is used to indicate end of string.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
str Address of a zero terminated string to be transmitted

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

 #define SIO_0 0

 SerialWriteStr (SIO_0,
 HelloString);

Real/Protected Mode
No changes required.

***/

void SerialWriteStr(int Unit, const char far *str)
{

WORD TransmitPortAddr;
WORD StatusPortAddr;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

for(; *str != ‘\0’; str++)
{

/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;
/* Write Character */
_SetEXRegByte(TransmitPortAddr,*str);

}
}/* SerialWriteStr */

11-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
/***
SerialWriteMem:

Description:
Is a Polled serial port write function that waits forever or
until count characters have been written to the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
mem Address of a buffer to be transmitted
count Number of characters in buffer to be transmitted

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

#define SIO_0 0
#define COUNT 32

char Buffer[COUNT];

SerialWriteMem (SIO_0,
Buffer,
COUNT);

Real/Protected Mode
No changes required.

***/

void SerialWriteMem(int Unit, const char far *mem, int count)
{

WORD TransmitPortAddr;
WORD StatusPortAddr;
int i;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBR0);
StatusPortAddr = (Unit ? LSR1 : LSR0);

for(i=0 ; i < count; i++)
{

/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;
/* Write Character */
_SetEXRegByte(TransmitPortAddr,mem[i]);
11-40

ASYNCHRONOUS SERIAL I/O UNIT
}

} /* SerialWriteMem */

/***

Serial0_ISR:

Description:
Template Interrupt Service Routine for Serial Port0 interrupts.
This function identifies the cause of the interrupt and branches
to the corresponding action.

Parameters:
None (Not called by user)

Returns:
None

Assumptions:
None

Syntax:
Not a user function.

Real/Protected Mode:
No changes required.

**/

void interrupt far Serial0_ISR (void)
{

 BYTE iir0, lsr0, msr0;

 iir0 = _GetEXRegByte(IIR0);

 switch ((iir0&0x06) >> 1) {

 case 0:
 /* modem status signal */

 msr0 = _GetEXRegByte(MSR0);

 if ((msr0&0x08) && (msr0&0x80)){

 /* data carrier detect has been set */
 }
11-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 if ((msr0 & 0x04) && (msr0 & 0x40)) {

 /* ring indicator */
 }

 if ((msr0 & 0x02) && (msr0 & 0x20)) {

 /* data set ready bit has been set */
 }

 if ((msr0 & 0x01) && (msr0&0x10)) {

 /* clear to send signal has been set */
 }

 break;
 case 1:
 Service_TBE(); /* Routine for Interrupt driven Serial Writes */
 break;
 case 2:
 /* RBF signal */
 Service_RBF(); /* Routine specific to RBF generated interrupts */
 break;
 case 3:
 /* receive line status signal */

 lsr0 = _GetEXRegByte(LSR0);

 if (lsr0 & 0x10) {
 /* break interrupt */
 }

 if (lsr0 & 0x08) {
 /* framing error */
 }

 if (lsr0 & 0x04) {
 /* parity error */
 }

 if (lsr0 & 0x02) {
 /* overrun error */
 }

 break;

 } /* End of switch */

 NonSpecificEOI(); // Send End-Of-Interrupt Signal to Master

}/* Serial0_ISR */
11-42

ASYNCHRONOUS SERIAL I/O UNIT

/***

Service_RBF:

Description:
Service routine for interrupts generated by RBF signal. This
routine is used for Interrupt-Driven Serial Reads. It echoes
the typed character to the screen, stopping when it receives
an ESC character.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

***/

void Service_RBF (void)
{

 /* Read in contents of RBR0 */
 rec_buffer = _GetEXRegByte(RBR0);

 SerialWriteChar(SIO_0, rec_buffer); // Echo to screen

 if (rec_buffer == 0x1b) {

 /* ESC character received, disable RBF interrupts*/
 _SetEXRegByte(IER0, 0x00);
 }

}/* Service_RBF */

/***

SerialWriteStr_Int:
11-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Description:
Is an interrupt driven serial port write function.
The NUL character (‘\0’) is used to indicate end of string.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,

1 for SIO port 1.
str Address of a zero terminated string to be transmitted

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

 #define SIO_0 0

 SerialWriteStr_Int (SIO_0, HelloString);

Real/Protected Mode
No changes required.

***/

void SerialWriteStr_Int(int Unit, const char far *str)
{
 BYTE PortIntEnable;

 PortIntEnable = (Unit ? IER1 : IER0);

 strcpy (trans_buffer, str); // Copy string into buffer

 /* Enable TBE interrupts */
 _SetEXRegByte(IER0,0x02);

}/* SerialWriteStr_Int */

/***

Service_TBE:

Description:
Service routine for TBE generated interrupts. This function is used
for Interrupt-Driven Serial Transmits.

Parameters:
11-44

ASYNCHRONOUS SERIAL I/O UNIT
None

Assumptions:
None

Syntax:
Not called by user.

Real/Protected Mode:
No changes required.

**/

void Service_TBE(void)
{
 if (trans_buffer[Tbuffer_index] != ‘\0’) {

_SetEXRegByte(TBR0, trans_buffer[Tbuffer_index]);
Tbuffer_index++;

 }
 else {
 /* Disable TBE interrupts */
 _SetEXRegByte(IER0, 0x00);

 }

}/* Service_TBE */

/**

 Example code to show how to set up for a Serial Port interrupt.
 This example is for an interrupt on SIO_0 sourced by the
 Receive Buffer Full Signal. The source code for the functions “SetIRQVector”
 and “Disable8259Interrupt” is included in the Interrupt Control Unit chapter.

 SetIRQVector(Serial0_ISR, 4, INTERRUPT_ISR); // Set vector for Interrupt
 // on Master line 4

 Disable8259Interrupt(IR1+IR5+IR6+IR7, IR0+IR1+IR2+IR3+IR4+IR5+IR6+IR7);
 Enable8259Interrupt(IR2+IR4,0);// Enable slave interrupt to master(IR2),
 // Enable SIO_0 (IR4)
 _enable(); // Enable Interrupts

 _SetEXRegByte(IER0, 0x01); // Enable interrupt on RBF signal

/**/
11-45

12
DMA
CONTROLLER

als
 be-
r 16
le on

 con-
t

t
es. In
ister that
(EOP#).
ransfer
CHAPTER 12
DMA CONTROLLER

The DMA controller improves system performance by allowing external or internal peripher
to directly transfer information to or from the system. The DMA controller can transfer data
tween any combination of memory and I/O, with any combination of data path widths (8 o
bits). It contains two identical channels. The DMA controller has features that are unavailab
an 8237A, but it can be configured to operate in an 8237A-compatible mode.

This chapter is organized as follows:

• Overview (see below)

• DMA Operation (page 12-5)

• Register Definitions (page 12-28)

• Design Considerations (page 12-50)

• Programming Considerations (page 12-50)

12.1 OVERVIEW

Figure 12-1 shows a block diagram of the DMA unit. The DMA channels are independently
figurable. Each channel contains a request input (DREQn) and an acknowledge outpu
(DMAACK n#). An external peripheral (connected to the DRQn pin) or one of the internal pe-
ripherals (asynchronous serial I/O, synchronous serial I/O, or timer control unit) can reques
DMA service. The DMA configuration register is used to select one of the possible sourc
addition to these hardware request sources, each channel contains a software request reg
can be used to initiate software requests. The channels share an end-of-process signal
This signal functions as either an input or an open-drain output. EOP# either terminates a t
(as an input) or signals that a transfer is completed (as an output).
12-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 12-1. DMA Unit Block Diagram

A2531-02

DREQ0

DMAACK0#

DREQ1

DMAACK1#

DMAINT

DMA

Bus Arbiter

HOLD

HLDA

RBFDMA1 (SIO1)
TXEDMA0 (SIO0)
SSRBF (SSIO)

DRQ0

(DCD1#)†

To SIO1

DRQ1

(RXD1)To SIO1

DACK0#

(CS5#)

DMACFG.3

From CSU

DACK1#

(TXD1)

DMACFG.7

From SIO1

DMACFG.6:4

3

DMACFG.2:0

PINCFG.4

PINCFG.2

EOP#

(CTS1#)From SIO1

PINCFG.3

HOLD

(P1.6)To/From I/O Port 1

P1CFG.6

HLDA

(P1.7)To/From I/O Port 1

P1CFG.7

3

† Alternate pin signals are in parentheses.

End of Process

OUT2 (TCU)
RBFDMA0 (SIO0)
TXEDMA1 (SIO1)
SSTBE (SSIO)

0

1

2

3

4

5

6

7

RBFDMA0 (SIO0)
TXEDMA1 (SIO1)
SSTBE (SSIO)
OUT1 (TCU)
RBFDMA1 (SIO1)
TXEDMA0 (SIO0)
SSRBF (SSIO)

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

1

0

To ICU
12-2

DMA CONTROLLER

g

ter.
g a
ay

t is
t

n.
12.1.1 DMA Terminology

This section provides a definition of some of the terms used in this chapter to describe the DMA
controller.

DMA Process A DMA process is the execution of a programmed DMA task from
beginning to end. Each DMA process requires initial programmin
by the Intel386 EX processor.

Buffer A contiguous block of data.

Buffer Transfer The action required by the DMA to transfer an entire buffer.

Data Transfer The DMA action in which a group of bytes or words are moved
between devices by the DMA controller. A data transfer operation
may involve movement of one or many bytes.

Bus Cycle Access by the DMA to a single byte or word.

Requester The Requester is the device which requests service by the DMA
controller. All of the control signals which the DMA monitors or
generates for specific channels are logically related to the reques
Only the requester is considered capable of initiating or terminatin
DMA process. The requester may be either I/O or memory and m
be the Source or the Destination of the transfer or neither.

Target The Target is the device with which the Requester wishes to
communicate. As far as the DMA process is concerned, the Targe
a slave which is incapable of control over the process. The Targe
may be either I/O or memory, and may be either the Source or the
Destination of the transfer.

Source The Source is the memory or I/O from which data is being read.

Destination The Destination is the memory or I/O to which data is being writte
12-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
12.1.2 DMA Signals

Table 12-1 describes the DMA signals.

Table 12-1. DMA Signals

Signal
Device Pin
or Internal

Signal
Description

DRQ0

SIO0 RBFDMA0/TXEDMA0
SIO1 TXEDMA1/RBFDMA1
SSIO Transmitter/Receiver
TCU Counter 1

Device pin
(input)

Internal
signals

DMA Channel 0 Requests:

The SIO channel 0 receiver, SIO channel 0 transmitter,
SIO channel 1 receiver, SIO channel 1 transmitter, SSIO
transmitter, SSIO receiver, TCU counter 1 output, or an
external device can request DMA channel 0 service.
These sources are referred to as channel 0 hardware
requests. You can also issue channel 0 software
requests by writing to the DMA software request register.

DRQ1

SIO1 RBFDMA1/TXEDMA1
SIO0 TXEDMA0/RBFDMA0
SSIO Receiver/Transmitter
TCU Counter 2

Device pin
(input)

Internal
signals

DMA Channel 1 Requests:

The SIO channel 1 receiver, SIO channel 1 transmitter,
SIO channel 0 transmitter, SIO channel 0 receiver, SSIO
receiver, SSIO transmitter, TCU counter 2 output, or an
external device can request DMA channel 1 service.
These sources are referred to as channel 1 hardware
requests. You can also issue channel 1 software
requests by writing to the DMA software request register.

DACKn# Device pin
(output)

DMA Channel n Acknowledge:

Indicates that channel n is ready to service the
requesting device. An external device uses the DRQn
pin to request DMA service; the DMA uses the DACKn#
pin to indicate that the request is being serviced.

EOP# Device pin
(input/open-
drain output)

End-of-process:

As an input:
Activating this signal terminates a DMA transfer.

As an output:
This signal is activated when a DMA transfer completes.
12-4

DMA CONTROLLER

page

rom the
located in
n
 (Very
-

data to

nt, and
r, and the
 target.
to dis-
c

r each
rs and
rement-
sfer is
nt ex-

rget be
em-

ycle
rom the
e

a off the
12.2 DMA OPERATION

The following sections describe the operation of the DMA. See “Register Definitions” on
12-28 for details on implementing DMA Controller options.

12.2.1 DMA Transfers

The DMA transfers data between a requester and a target. The data can be transferred f
requester to target or vice versa. The target addresses and requester addresses can be
either memory or I/O space, and data transfers can be on a byte or word basis. The requester ca
be in external device I/O space, in internal peripheral I/O space, or memory mapped I/O.
simply, the requester is the thing that activated DREQn.) An external device or an internal periph
eral requests service by activating a channel’s request input (DREQn). A requester in memory re-
quests service through the DMA software request register. The requester either deposits
or fetches data from the target.

A channel is programmed by writing to a set of requester address, target address, byte cou
control registers. The address registers specify base addresses for the target and requeste
byte count registers specify the number of bytes that need to be transferred to or from the
Typically, a channel is programmed to transfer a block of data. Therefore, it is necessary
tinguish between the process of transferring one byte or word (data transfer) and the proess of
transferring the entire block of data (buffer transfer).

The byte count determines the number of data transfers that make up a buffer transfer. Afte
data transfer within a buffer transfer, the byte count is decremented (by 1 for byte transfe
by 2 for word transfers) and the requester and target addresses are either incremented, dec
ed, or left unchanged. When the byte count expires (reaches FFFFFFH), the buffer tran
complete. If the channel’s end-of-process (EOP#) signal is activated before the byte cou
pires, the buffer transfer is terminated.

NOTE
Since the buffer transfer is complete when the byte count reaches FFFFFFH,
the number of bytes transferred is the byte count + 1.

12.2.2 Bus Cycle Options for Data Transfers

There are two bus cycle options for transferring data, fly-by and two-cycle. Fly-by allows data to
be transferred in one bus cycle. It requires that the requester be in external I/O and the ta
in memory. The two-cycle option allows data to be transferred between any combination of m
ory and I/O through the use of a four-byte temporary buffer.

12.2.2.1 Fly-By Mode

The fly-by option performs either a memory write or a memory read bus cycle. A write c
transfers data from the requester to the target (memory), and a read cycle transfers data f
target (memory) to the requester. When a data transfer is initiated, the DMA places the mmory
address of the target on the bus and selects the requester by asserting the DACKn# signal. The
requester then either deposits the transfer data on the data bus or fetches the transfer dat
12-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 the
ce all
ransfer,
. If it is
tes the
ry de-
e I/O

en
ion of
a and
mple, it

uffer is
 buff-
 buffer
start-
cles

he
erify.

 Target
e being
cle is
ra-

estina-
m one
 trans-
the
data bus, depending on the transfer direction. Since the requester is selected via the DACKn# sig-
nal the requester address is not meaningful in a fly-by mode transfer.

Support logic (either external or built in to the I/O device) must be designed to monitor
DACKn# signal and accordingly generate the correct control signals to the I/O device, sin
processor signals are used to access memory. This means that if it is an I/O to memory t
this logic generates an I/O read cycle and the processor generates the memory write cycle
a memory to I/O transfer, the logic generates an I/O write cycle and the processor genera
memory read cycle. This way the data is driven by the I/O device and latched by the memo
vice during an I/O to memory transfer, and driven by the memory device and latched by th
device during a memory to I/O transfer.

12.2.2.2 Two-Cycle Mode

The two-cycle option first fills the four-byte temporary buffer with data from the source, th
writes that data to the destination. This method allows transfers between any combinat
memory and I/O with any combination of data path widths (8- or 16-bit). The amount of dat
the data bus widths determine the number of bus cycles required to transfer data. For exa
takes six bus cycles to transfer four bytes of data from an 8-bit source to a 16-bit destination: four
read cycles to fill the temporary buffer from the 8-bit source, and two write cycles to transfer the
data to the 16-bit destination.

A buffer transfer can complete, be terminated, or be suspended before the temporary b
filled from the source. If the buffer transfer completes or is terminated before the temporary
er is filled, the DMA writes the partial data to the destination. When a requester suspends a
transfer, the contents of the partially filled temporary buffer are stored until the transfer is re
ed. At this point, the DMA performs read cycles until the buffer is full, then performs write cy
to transfer the data to the destination.

12.2.2.3 Programmable DMA Transfer Direction

The relationship between Requester, Target, Source, and Destination is determined by tpro-
grammable DMA transfer direction. The transfer directions are defined as Write, Read, or V
The following table describes which operations are being performed by the Requester and
for each transfer direction. In this table, the device being read is the Source, and the devic
written is the Destination. The Verify cycle is used to perform a data read only. No write cy
indicated or assumed in a Verify cycle. The Verify cycle is useful for validating block fill ope
tions. An external comparator must be provided to do any comparisons on the data read.

A special case not indicated in this table is when the Requester is neither the Source nor D
tion. One example of this case would be when the DMA is being used to transfer data fro
memory or I/O location to another, and one of the timer outputs is being used to initiate that
fer. In this case, the timer output would be selected as the DMA request source (using

Table 12-2. Operations Performed During Transfer

Read Write Verify

Requester Read Write Read

Target Write Read Read
12-6

DMA CONTROLLER

 of the
e Tar-

 are
plete
 the
ner-

e data
The fol-
rans-

quest
 is
e
ary

st
e

, the

ur

rred.

cle
r is

ster.

DMACFG register), but the Requester address registers would be programmed with one
memory addresses. It doesn’t really matter which memory is the Requester and which is th
get, as long as the transfer direction is set to provide the correct Source and Destination.

12.2.2.4 Ready Generation For DMA Cycles

DMA cycles are identical to any other type of memory or I/O cycles in terms of how they
completed. A valid READY# must be sampled at the end of the last T2 state in order to com
a DMA Read or Write cycle. This READY# may be generated externally, or internally using
appropriate chip select unit (see Chapter 14, “CHIP-SELECT UNIT” for a description of ge
ating READY# internally).

12.2.2.5 DMA Usage of the 4-Byte Temporary Register

Each DMA channel has a 4-byte temporary FIFO register used for temporary data storageduring
two cycle transfers. The way the DMA channel fills and empties this register depends on th
transfer mode, the bus sizes of the source and destination, and the data transfer direction.
lowing describes how the Temporary Register is filled and emptied for the Read and Write T
fer Directions.

Filling the Temporary Register:

Read Cycle In a Read Cycle data is transferred from the Requester to the Target. Each re
(DREQn) in a Read Cycle results in the DMA transferring a byte (if requester
an 8-bit device) or a word (if the requester is a 16-bit device) from the Sourc
(Requester) to the temporary register. This continues until either the Tempor
Register is full, or until the byte count or terminal count is reached.

Write Cycle In a Write Cycle data is transferred from the Target to the Requester. The fir
request (DREQn) initiates a fill of the temporary register (four byte reads of th
Target if the Target is 8-bit, or two word reads if it is 16-bit). The buffer is
considered full if either four bytes have been stored, or if less than four bytes
byte count or terminal count has been reached.

Emptying the Temporary Register:

Read Cycle Once the Temporary Register has been filled the DMA empties it by doing fo
byte write cycles (if Target is 8-bit), or two word write cycles (if Target is 16-bit).
This is done in a burst-type fashion since all four requests have already occu
The byte counter is decremented after each write has occurred.

Write Cycle Once the Temporary Register has been filled the DMA does a single write cy
transferring the first byte (if Requester is 8-bit), or the first word (if Requeste
16-bit). This first write cycle happens immediately after the buffer has been
filled. Each subsequent request (DREQn) results in another write cycle
transferring another byte or word from the Temporary Register to the Reque
This continues until either the Temporary Register is empty, or byte count or
terminal count has been reached.
12-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ied
Figures 12-2 and 12-3 are simple diagrams of how the Temporary Register is filled and empt
for a Read DMA cycle and a Write DMA cycle.

Figure 12-2. DMA Temporary Buffer Operation for a Read Transfer

Figure 12-3. DMA Temporary Buffer Operation for A Write Transfer

A3381-01

Filling the Temporary Register

DREQn

#1

DREQn

#2

DREQn

#3

DREQn

#4

Emptying the Temporary Register

Write

#1

Write

#1

Write

#1

Write

#1

Four separate requests each with a read

of the requester. Each byte is stored in

the Temporary Register.

Once the Temporary Resister is full, the

DMA does four burst writes to the target

to empty it.

A3382-01

Filling the Temporary Register

DREQn

#1

Emptying the Temporary Register

A single request with four separate reads of

the target. Each read stores a byte in the

Temporary Register.

Once the Temporary Resister is full, the

DMA does a write cycle to transfer the first

byte from the Temporary Register to the

target. On each subsequent request, the

DMA performs a write cycle transferring a

byte from the Temporary Register to the

target. This continues until empty.

DREQn

#2

DREQn

#3

DREQn

#4
12-8

DMA CONTROLLER

s (the
ted

e DMA
quests.

e, and
han-

g-
ntrol
Control
 a bus
12.2.3 Starting DMA Transfers

Internal I/O, external I/O, or memory can request DMA service. The internal I/O requester
asynchronous serial I/O, synchronous serial I/O, and timer control units) are internally connec
to the DMA request inputs. You must connect an external I/O source to the DMA DRQn; when
you are using fly-by mode, you must also connect an external I/O source to the DACKn# signals.
In addition, memory mapped I/O peripherals may use DRQn/DACKn#. DACKn# is active during
the entire fly-by mode transfer, but during a two-cycle mode transfer it is only active during the
access to the requester. These sources make up the DMA hardware request sources. Th
unit also contains a software request register that allows you to generate software DMA re
This allows memory-to-memory transfers. Figure 12-4 shows the timing for the start of a DMA
transfer.

Figure 12-4. Start of a Two-cycle DMA Transfer I nitiated by DRQ n

12.2.4 Bus Control Arbitration

The bus arbiter services bus control requests from the two DMA channels, an external devic
the refresh control unit. The DMA channels interface with the bus arbiter through its DMA c
nel request signals (DREQn) and its DMA channel acknowledge signals (DMAACKn#). Other
external bus masters interface with the bus arbiter through similar request and acknowledge si
nals, the HOLD and HOLDA signals respectively. The refresh control unit gains bus co
through an internal Refresh request. The REFRESH# status pin indicates that the Refresh
Unit has gained bus control and that a valid refresh cycle is being executed. After receiving

A2480-02

CLKOUT

DRQn

A25:1

BHE#, BLE#

M/IO#

DACKn#

ADS#

READY#

Tx Ti T1 T1Tx Ti T2

x Cycle Transition to DMA

Cycle

DMA Cycle
12-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

equest-
 to the
 the re-

 three
y, fol-
ods for
tion.

evel.
fter it
s more
er (see

 byte
nchro-
 end of
puts at
t on the
igure
med in
control request, the bus arbiter services these requests by issuing an internal hold signal r
ing control of the bus from the core. The core returns an internal hold acknowledge signal
arbiter when bus ownership is granted. The arbiter then issues an acknowledge signal to
questing device.

Refresh requests always have the highest priority, while the priority structure of the other
requests is configurable. By default, DMA channel 0 requests have the next highest priorit
lowed by DMA channel 1 requests, and external bus master requests There are two meth
changing the priority of the DMA and external bus requests, low-priority selection or rota
The priority requests are programmed in the DMACMD2 register (see Figure 12-24). The low-
priority selection method allows you to assign a particular request to the lowest priority l
With the rotation method, a request is automatically assigned to the lowest priority level a
gains bus control. The rotation method allows requesting devices to share the system bu
evenly. With both methods, the other request priority levels are adjusted in a circular mann
Figure 12-5).

Figure 12-5. Changing the Priority of the DMA Channel and External Bus Requests

12.2.5 Ending DMA Transfers

When a channel’s byte count expires, the buffer transfer is complete and the end-of-process
(EOP#) output is activated (Figure 12-6). A buffer transfer can be terminated before the
count expires by activating the EOP# input. The channel can sample the EOP# input sy
nously or asynchronously. With synchronous sampling, the channel samples EOP# at the
the last state of every data transfer. With asynchronous sampling, the DMA samples the in
the beginning of every state of requester access, then waits until the end of the state to ac
input. Figure 12-7 illustrates terminating a buffer transfer by activating the EOP# input; the f
shows both asynchronous and synchronous EOP# sampling. EOP# sampling is program
the DMACMD2 register (Figure 12-24).

DMA

Channel 0

Highest

Level

Lowest

Level

DMA

Channel 1

External Bus

Master

Low-priority

Select

Specified

Lowest

Level

Default Rotating

Becomes

Highest

Level

Assigned

Lowest

Level

After Gaining

Bus Control

A2532-01

DMA

Channel 0

DMA

Channel 1

External Bus

Master

DMA

Channel 0

DMA

Channel 1

External Bus

Master

Becomes

Highest

Level
12-10

DMA CONTROLLER

or

pled
e

Terminating a buffer transfer by deasserting DREQn can also be done either synchronously
asynchronously. The effect is identical to that of synchronous or asynchronous sampling of
EOP#. When DREQn is used to terminate a DMA transfer in asynchronous mode, DREQn must
be sampled inactive one CLKOUT before READY#. In synchronous mode it must be sam
inactive at the same time as READY#. When DREQn is sampled active in either of the abov
cases another DMA cycle is executed (depending on operating mode).

Figure 12-6. Buffer Transfer Ended by an Expired Byte Count

Figure 12-7. Buffer Transfer Ended by the EOP# Input

A2483-02

CLKOUT

DRQn

ADS#

EOP#

(As an output)

READY#

T2 T2 Tx TxT1 Ti Tx

DMA Cycle x Cycle

A2482-02

CLKOUT

ADS#

READY#

EOP# (Async)

EOP# (Sync)

T2 T2T2 T2T1 TiT2

DMA Cycle
12-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ire re-
hard-
, and
 or ter-

hen

useful
to re-
r of data

ads
byte
he au-
a be-

y re-
he au-
ffer-

buffer
repares

hen

ode
l were

re then
routine
g reg-
12.2.6 Buffer-transfer Modes

After a buffer transfer is completed or terminated, a channel can either become idle (requ
programming) or reprogram itself and begin another buffer transfer after it is initiated by a
ware or software request. The DMA’s three buffer-transfer modes (single, autoinitialize
chaining) determine whether a channel becomes idle or is reprogrammed after it completes
minates a buffer transfer.

12.2.6.1 Single Buffer-Transfer Mode

By default (single buffer-transfer mode), the DMA transfers a channel’s buffer only once. W
the entire buffer of data has been transferred, the channel becomes idle and must berepro-
grammed before it can perform another buffer transfer. The single buffer-transfer mode is
when you know the exact amount of data to be transferred and you know that there is time
program the channel (requester and target addresses and byte count) before another buffe
needs to be transferred.

12.2.6.2 Autoinitialize Buffer-Transfer Mode

When programmed for the autoinitialize buffer-transfer mode, the DMA automatically relo
the channel with the original transfer information (the requester and target addresses and the
count) when the transfer completes. The channel then repeats the original buffer transfer. T
toinitialize buffer-transfer mode is useful when you need to transfer a fixed amount of dat
tween the same locations multiple times.

12.2.6.3 Chaining Buffer-Transfer Mode

This mode is similar to the autoinitialize buffer-transfer mode, in that the DMA automaticall
programs the channel after the current buffer transfer is complete. The difference is that t
toinitialize buffer-transfer mode uses the original transfer information, while the chaining bu
transfer mode uses new transfer information. While a channel is performing a chaining
transfer, you write new requester and target addresses and a new byte count to it. This p
the channel for the next buffer transfer, without affecting the current buffer transfer. When the
channel completes its current buffer transfer, the channel is automatically programmed with the
new transfer information that you wrote to it. The chaining buffer-transfer mode is useful w
you need to transfer data between multiple requesters and targets.

NOTE
If a channel does not contain new transfer information at the end of its buffer
transfer, the channel becomes idle, ending the chaining process; it must be
reprogrammed before it can perform another buffer transfer.

The Chaining Buffer Transfer Mode is entered from the Single Buffer Transfer Mode. The m
registers should be programmed first, with all of the transfer modes defined as if the channe
to operate in the Single Buffer Transfer Mode. The channel’s base and current registers a
loaded. When the channel has been set up in this way and the chaining interrupt service
is in place, the Chaining Buffer Transfer Mode can be entered by programming the Chainin
ister. “Chaining Register (DMACHR)” on page 12-47 describes this process.
12-12

DMA CONTROLLER

as the
rtant to
e inter-
ed.

rs are
, or the

terrupt
oved.

 Mask

er
 ex-
nnel, if

ytes or
lect a

ed.

fers
this

ffer
The DMAINT signal is active immediately after the Chaining Process has been entered,
channel then perceives the Base Registers to be empty and in need of reloading. It is impo
have the interrupt service routine in place at the time the Chaining Process is entered. Th
rupt request is removed when the most significant byte of the Base Target Address is load

NOTE
Since the most significant byte of the Base Target Address only exists in
0FXXXH I/O address space, the Chaining Buffer Transfer Mode cannot be
used in a DOS Compatible-only mode.

The interrupt occurs again when the first buffer transfer expires and the Current Registe
loaded from the Base Registers. The cycle continues until the Chaining Process is disabled
host fails to respond to DMAINT before the Current Buffer expires.

Exiting the Chaining Process can be done by resetting the Chaining Mode Register. If an in
is pending for the channel when the Chaining Register is reset, the interrupt request is rem
The Chaining Process can be temporarily disabled by setting the channel’s mask bit in the
Register.

The interrupt service routine for DMAINT has the responsibility of reloading the Base Regist
as necessary. It should check the status of the channel to determine the cause of the channel
piration, etc. It should also have access to operating system information regarding the cha
any exists. The DMAINT service routine should be capable of determining whether the chain
should be continued or terminated and act on that information.

NOTE
The chaining buffer-transfer mode is not useful with block transfer mode since
the CPU must be able to get control of the bus before the end of the “block” in
order to reprogram the new values into the DMA registers. Since block
transfer mode locks out any other bus requests (except refresh) the processor
cannot regain control of the bus until the entire block has been transferred.

12.2.7 Data-transfer Modes

There are three data-transfer modes (single, block, and demand) that determine how the b
words that make up a buffer of data are transferred. The DMAMOD1 register is used to se
channel’s data transfer mode.

Single Mode A channel request causes one byte or word (depending on the
selected bus widths) to be transferred. Single mode requires a
channel request for every data transfer within a buffer transfer.

Block Mode A channel request causes the entire buffer of data to be transferr

Demand Mode The amount of buffer data (bytes or words) that the channel trans
depends on how long the channel request input is held active. In
mode, the channel continues to transfer data while the channel
request input is held active; when the signal goes inactive, the bu
12-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

o be

hannel
 and 2
s

r trans-
 trans-

. The
mmed

wing

 and
transfer is suspended and the channel waits for the request input t
reactivated before it continues.

12.2.7.1 Single Data-transfer Mode

In single data-transfer mode, a DMA request causes the channel to gain bus control. The c
transfers data (a byte or a word), decrements the buffer byte count (by 1 for byte transfers
for word transfers), then relinquishes bus control. The channel will then Autoinitialize if it ha
been programmed to do so. The channel continues to operate in this manner until the buffe
fer is complete or terminated. In this mode, the channel gives up bus control after every data
fer and must regain bus control (through priority arbitration) before every data transfer
channel’s buffer-transfer mode determines whether the channel becomes idle or is reprogra
after a buffer transfer completes or is terminated.

The single data-transfer mode is compatible with all of the buffer-transfer modes. The follo
flowcharts show the transfer process flow for a channel programmed for single data-transfer
mode with each buffer-transfer mode: single (Figure 12-8), autoinitialize (Figure 12-9),
chaining (Figure 12-10).
12-14

DMA CONTROLLER
Figure 12-8. Single Data-transfer Mode with Single Buffer-transfer Mode

A2331-02

After initialization, the DMA channel is

programmed with the requester and

target addresses and a byte count.

Buffer transfer is complete, so channel

becomes idle.

Yes

No

DREQn

active?

Yes

No

Byte

count = FFFFFFH

or EOP#

active?

DMA channel relinquishes bus control.

DMA transfers one byte or word of data

and decrements the byte count.

DMA gains bus control.
12-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 12-9. Single Data-transfer Mode with Autoinitialize Buffer-transfer Mode

A2332-02

Yes

No

DREQn

active?

Yes

No

DMA channel is reprogrammed with the

original addresses and byte count.

After initialization, the DMA channel is

programmed with the requester and

target addresses and a byte count.

DMA gains bus control.

DMA transfers one byte or word of data

and decrements the byte count.

DMA channel relinquishes bus control.

Byte

count = FFFFFFH

or EOP#

active?

12-16

DMA CONTROLLER
Figure 12-10. Single Data-transfer Mode with Chaining Buffer-transfer Mode

Is there

a new process

to set up?

No new transfer information, so channel

becomes idle.

Yes

No

A2335-02

Yes

No

Was the

channel set up

for a new

process?

Yes

No

Write new requester and

target addresses and a

new byte count.

DMA is programmed

with the new addresses

and byte count.

DREQn

active?

Yes

No

After initialization, the DMA channel is

programmed with the requester and

target addresses and a byte count.

DMA gains bus control, transfers one byte

or word of data, decrements byte count, and

then relinquishes bus control.

Byte

count = FFFFFFH

or EOP#

active?

12-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ins bus
il

el be-

nsfer
ode

efore
cause
uffer
d for
12.2.7.2 Block Data-transfer Mode

In block data-transfer mode, a channel request initiates a buffer transfer. The channel ga
control, then transfers the entire buffer of data. The DRQn signal only needs to be held active unt
DACKn# is active.

NOTE
Block mode, unlike the single mode, only gives up control of the bus for
DRAM refresh cycles.

As with single mode, the channel’s buffer-transfer mode determines whether the chann
comes idle or is reprogrammed after the buffer transfer completes or is terminated.

The block data-transfer mode is compatible with the single and autoinitialize buffer-tra
modes, but not with the chaining buffer-transfer mode. The chaining buffer-transfer m
requires that the transfer information for the next buffer transfer be written to the channel b
the current buffer transfer completes. This is impossible with block data-transfer mode, be
the channel only relinquishes control of the bus for DRAM refresh cycles during the b
transfer. The following flowcharts show the transfer process flow for a channel programme
the block data-transfer mode with the single (Figure 12-11) and autoinitialize (Figure 12-12)
buffer-transfer modes.
12-18

DMA CONTROLLER
Figure 12-11. Block Data-transfer Mode with Single Buffer-transfer Mode

A2334-02

Buffer transfer is complete, so channel

becomes idle.

DREQn

active?

Yes

No

Yes

No

Byte

count = FFFFFFH

or EOP#

active?

DMA channel relinquishes bus control.

DMA transfers one byte or word of data and

decrements the byte count.

DMA gains bus control.

After initialization, the DMA channel is

programmed with the requester and target

addresses and a byte count.
12-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 12-12. Block Data-transfer Mode with Autoinitialize Buffer-transfer Mode

A2333-02

Yes

No

DREQn

active?

Yes

No

Byte

count = FFFFFFH

or EOP#

active?

DMA channel is reprogrammed with the

original addresses and byte count.

DMA channel relinquishes bus control.

DMA transfers one byte or word of data

and decrements the byte count

DMA gains bus control.

After initiallization, the DMA channel is

programmed with the requester and target

addresses and a byte count.

12-20

DMA CONTROLLER

ins bus

l
. In this
ithout
en the

ed.

RQ

s-
y

llow-
12.2.7.3 Demand Data-transfer Mode

In demand data-transfer mode, a channel request initiates a buffer transfer. The channel ga
control and begins the buffer transfer. As long as the request signal (DRQn) remains active, the
channel continues to perform data transfers. When the DRQn signal goes inactive, the channe
completes its current bus cycle and relinquishes bus control, suspending the buffer transfer
way, the demand mode allows peripherals to access memory in small, irregular bursts w
wasting bus control time. As in other data-transfer modes, a buffer transfer is completed wh
buffer’s byte count expires or is terminated if the EOP# input is activated. At this point, the chan-
nel’s buffer-transfer mode determines whether the channel becomes idle or is reprogramm

Since DRQn going inactive suspends a buffer transfer, the channel continually samples Dn
during a demand buffer transfer. During a buffer transfer, the channel can sample DRQn synchro-
nously or asynchronously (it always samples DRQn asynchronously at the start of a buffer tran
fer). With synchronous sampling, the channel samples DRQn at the end of the last state of ever
data transfer. With asynchronous sampling, the channel samples DRQn at the beginning of every
state, then waits until the end of the state to act on the input. See Figure 12-13. The DRQn sam-
pling is programmed in the DMACMD2 register (Figure 12-24).

Figure 12-13. Buffer Transfer Suspended by the Deactivation of DRQ n

The demand data-transfer mode is compatible with all of the buffer-transfer modes. The fo
ing flowcharts show the transfer process flow for a channel programmed for the demand data-
transfer mode with each buffer-transfer mode: single (Figure 12-14), autoinitialize (Figure
12-15), and chaining (Figure 12-16).

A2481-02

CLKOUT

ADS#

READY#

DRQn (Async)

DRQn (Sync)

T2 T2T2 T2T1 TiT2

DMA Cycle
x

Cycle
12-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 12-14. Demand Data-transfer Mode with Single Buffer-transfer Mode

After initialization, the DMA channel is

programmed with the requester and target

addresses and a byte count.

DMA gains bus control.

DMA transfers one byte or word of data

and decrements the byte count.

DMA channel relinquishes bus control.

Buffer transfer is complete, so channel

becomes idle.

Yes

No

DREQn

active?

Yes

No

DMA channel

relinquishes

bus control.

A2338-02

DREQn

active?

Yes

No

Byte

count = FFFFFFH

or EOP#

active?

12-22

DMA CONTROLLER
Figure 12-15. Demand Data-transfer Mode with Autoinit ialize Buffer-transfer Mode

After initialization, the DMA channel is

programmed with the requester and target

addresses and a byte count.

DMA gains bus control.

DMA transfers one byte or word of data

and decrements the byte count.

DMA channel is reprogrammed with the

original addresses and byte count.

A2339-02

Yes

No

DREQn

active?

Yes

No

DMA channel

relinquishes

bus control.

DREQn

active?

Yes

No

Byte

count = FFFFFFH

or EOP#

active?

DMA channel relinquishes bus control.
12-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 12-16. Demand Data-transfer Mode with Chaining Buffer-transfer Mode

No new transfer information, so channel

becomes idle.

A2336-02

Yes

Was the

channel set up

for a new

process?

Yes

No

DMA is

programmed

with the new

addresses and

byte count.

Yes

Write new

requester

and target

addresses

and a new

byte count.

Is there

a new process

to set up?�Yes

No
DREQn

active?

Yes

No

No

DREQn

active?

No

DMA channel

relinquishes

bus control.

Byte

count = FFFFFFH

or EOP#

active?

DMA channel relinquishes bus control.

DMA transfers one byte or word of data

and decrements the byte count.

DMA gains bus control.

After initialization, the DAM channel is

programmed with the requester and target

addresses and a byte count.
12-24

DMA CONTROLLER

-

trol by

ce must
sponse

ycle,

12.2.8 Cascade Mode

Cascade mode allows an external 8237A or another DMA-type device to gain bus control. A cas
caded device requests bus control by holding a channel’s request input (DRQn) active. Once
granted bus control, the cascaded device remains bus master until it relinquishes bus con
deactivating DRQn.

If a refresh request occurs while a cascaded device has bus control, the cascaded devi
deassert its request or the refresh cycle will be missed. The following steps take place in re
to a refresh request.

1. The channel deasserts its acknowledge signal (DACKn#) to the cascaded device.

— At this point, the cascaded device should relinquish bus control by removing DRQn.

2. As soon as DRQn is removed, the refresh cycle is started.

— At this point, if the cascaded device wants to regain bus control after the refresh c
it must reassert DRQn.

3. If the cascaded device has reasserted DRQn when the refresh cycle is complete, the
channel reasserts DACKn#, giving bus control back to the cascaded device without bus
priority arbitration.

The following flowchart (Figure 12-17) shows this process flow.
12-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

. When
icates
ithout
e until
ble bit.

sfer —
EOP#
C
iting
.

Figure 12-17. Cascade Mode

12.2.9 DMA Interrupts

Each channel contains two interrupt causing signals, chaining status and transfer complete
a channel is configured for the chaining buffer-transfer mode, the chaining status signal ind
that the channel has started its buffer transfer and new transfer information can be written w
affecting the current buffer transfer. Once activated, the chaining status signal remains activ
the most significant byte of the base target address is written, or resetting the chaining ena

The transfer complete status signal indicates that the channel has finished a buffer tran
either the channel’s byte count has expired or the buffer transfer was terminated by an
input. DMACLRTC clears the DMAINT signal going to the Interrupt Control Unit. DMACLRT
is executed by writing to location F01EH; the data written to the location is immaterial — wr
any data to the location causes the DMA to deactivate the transfer complete status signal

Cascade cycle complete.�

A2337-02

DRQn

active?

Yes

No

Refresh

request?

Yes

No

Cascaded

device

deasserts

DRQn,

relinquishing

bus control.

Refresh

cycle is

performed.

DRQn

active?

Yes

No

After initialization, the DMA channel

is programmed.

Cascaded device gains bus control.

Cascaded device relinquishes bus

control.

12-26

DMA CONTROLLER

inter-
ine

in an
st of

d,

 lim-
 target
it byte

-
 when
The four interrupt source signals (two per channel) are internally connected (ORed) to the
rupt request output (DMAINT). When an interrupt from DMAINT is detected, you can determ
which signal caused the request by reading the DMA interrupt status register.

12.2.10 8237A Compatibility

Although the DMA is an enhancement over the 8237A, you can configure it to operate
8237A-compatible mode. A list of the features common to the DMA and 8237A and a li
DMA enhancements follow.

Features common to the DMA and 8237A:

• Data-transfer modes (single, block, and demand)

• Buffer-transfer modes (single and autoinitialize)

• Fly-by data transfer bus cycle option

• Programmed via 8-bit registers

• Transfers between memory and I/O (target must be in memory and requester must be
external)

DMA enhancements:

• Chaining buffer-transfer mode

• Two-cycle data transfer bus cycle option (provides byte assembly and allows memory-to-
memory transfers using only one channel)

• Transfers between any combination of memory and I/O

• Address registers for both the target and the requester; addresses can be incremente
decremented, or left unchanged during a buffer transfer

A channel is configured for 8237A compatibility by enabling only the common features and
iting the byte count and the target address modification capability. The 8237A uses a 16-bit
address and a 16-bit byte count, while the DMA uses a 26-bit target address and a 24-b
count. Therefore, for compatibility, the DMA contains an overflow register that allows you to
configure the target and byte count so that only the lower 16 bits are modified during buffer trans
fers. With this configuration, the upper byte count bits are ignored; the byte count expires
it is decremented from 0000H to FFFFH (16-bit versus 24-bit rollovers).
12-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 bit
12.3 REGISTER DEFINITIONS

Table 12-3 lists the registers associated with the DMA unit, and the following sections contain
descriptions for each register.

Table 12-3. DMA Registers (Sheet 1 of 3)

Register Expanded
Address

PC/AT*
Address Description

PINCFG
(read/write)

F826H — Pin Configuration:

Connects the DMA channel acknowledge
(DMAACK0#, DMAACK1#) and end-of-process
signals to package pins DACK0#, DACK1# and
EOP#, respectively.

DMACFG
(read/write)

F830H — DMA Configuration:

Determines which signal is connected to the DMA
channel request inputs (DREQn). Masks the channel
acknowledge signals (DMAACK0#, DMAACK1#),
which is useful when using internal requesters.

DMACMD1
(write only)

F008H 0008H DMA Command 1:

Simultaneously enables or disables both DMA
channels. Enables the rotating method for changing
the bus control priority structure.

DMA0REQ0
DMA0REQ1
DMA0REQ2
DMA0REQ3

DMA1REQ0
DMA1REQ1
DMA1REQ2
DMA1REQ3
(read/write)

F010H
F010H
F011H
F011H

F012H
F012H
F013H
F013H

—
—
—
—

—
—
—
—

Channel 0 and 1 Requester Address:

Contains channel n’s 26-bit requester address.
During a buffer transfer, this address may be
incremented, decremented, or left unchanged.
Reading these registers returns the current address.

DMA0TAR0
DMA0TAR1
DMA0TAR2
DMA0TAR3

DMA1TAR0
DMA1TAR1
DMA1TAR2
DMA1TAR3
(read/write)

F000H
F000H
F087H
F086H

F002H
F002H
F083H
F085H

0000H
0000H
0087H
—

0002H
0002H
0083H
—

Channel 0 and 1 Target Address:

Contains channel n’s 26-bit target address. During a
buffer transfer, this address may be incremented,
decremented, or left unchanged. Reading these
registers returns the current address.

DMA0BYC0
DMA0BYC1
DMA0BYC2

DMA1BYC0
DMA1BYC1
DMA1BYC2
(read/write)

F001H
F001H
F098H

F003H
F003H
F099H

0001H
0001H
—

0003H
0003H
—

Channel 0 and 1 Byte Count:

Contains channel n’s 24-bit byte count. During a
buffer transfer, this byte count is decremented.
Reading these registers returns the current byte
count.
12-28

DMA CONTROLLER
DMASTS
(read only)

F008H 0008H DMA Status:

Indicates whether a hardware request is pending on
channel 0 and 1. Indicates whether channel 0’s or
channel 1’s byte count has expired.

DMACMD2
(write only)

F01AH — DMA Command 2:

Assigns a bus control requester (DMA channel 0,
DMA channel 1, or external bus master) to the lowest
priority level. Selects the type of sampling for the end-
of-process (EOP#) and the DMA request (DRQn)
inputs. The DMA can sample these signals
asynchronously or synchronously.

DMAMOD1
(write only)

F00BH 000BH DMA Mode 1:

Determines the data-transfer mode. Enables the
autoinitialize buffer-transfer mode. Determines the
transfer direction (whether the target is the
destination or source for a transfer). Determines
whether the DMA increments or decrements the
target address during a buffer transfer (only if the
DMA is set up to modify the target address; see
DMAMOD2).

DMAMOD2
(write only)

F01BH — DMA Mode 2:

Selects the data transfer bus cycle option. Specifies
whether the requester and target are in memory or
I/O. Determines whether the DMA modifies the target
and requester addresses. Determines whether the
DMA increments or decrements the requester
address during a buffer transfer (only if the DMA is set
up to modify the requester address).

DMASRR
(read/write)

F009H 0009H DMA Software Request:

Write Format
Generates a channel 0 and/or a channel 1 software
request.

Read Format
Indicates whether a software request is pending on
DMA channel 0 or 1.

DMAMSK
(write only)

F00AH 000AH DMA Individual Channel Mask:

Individually masks (disables) channel 0’s and 1’s
hardware request input (DREQ0 and DREQ1). This
does not mask software requests.

DMAGRPMSK
(read/write)

F00FH 000FH DMA Group Channel Mask:

Simultaneously masks (disables) both channels’
hardware request inputs (DREQ0 and DREQ1). This
does not mask software requests.

DMABSR
(write only)

F018H — DMA Bus Size:

Determines the requester and target data bus widths
(8 or 16 bits).

Table 12-3. DMA Registers (Sheet 2 of 3)

Register Expanded
Address

PC/AT*
Address Description
12-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
DMACHR
(write only)

F019H — DMA Chaining:

Enables chaining buffer-transfer mode for a specified
channel.

DMAIEN
(read/write)

F01CH — DMA Interrupt Enable:

Connects the channel transfer complete status
signals to the interrupt request output (DMAINT).

DMAIS
(read only)

F019H — DMA Interrupt Status:

Indicates which signal generated an interrupt request:
channel 0 transfer complete, channel 1 transfer
complete, channel 0 chaining, or channel 1 chaining
status.

DMAOVFE
(read/write)

F01DH — DMA Overflow Enable:

Included for 8237A compatibility. Controls whether all
26 bits or only the lower 16 bits of the requester and
target addresses are incremented or decremented
during buffer transfers. Controls whether the byte
count is 24 bits or 16 bits.

Table 12-3. DMA Registers (Sheet 3 of 3)

Register Expanded
Address

PC/AT*
Address Description
12-30

DMA CONTROLLER
12.3.1 Pin Configuration Register (PINCFG)

Use PINCFG to connect DACK0#, EOP#, and DACK1# to package pins.

Figure 12-18. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
12-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

A ac-
12.3.2 DMA Configuration Register (DMACFG)

Use DMACFG to select one of the hardware sources for each channel and to mask the DM
knowledge (DMAACKn#) signals when using internal requesters.

Figure 12-19. DMA Configuration Register (DMACFG)

DMA Configuration
DMACFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F830H
—
00H

7 0

D1MSK D1REQ2 D1REQ1 D1REQ0 D0MSK D0REQ2 D0REQ1 D0REQ0

Bit
Number

Bit
Mnemonic Function

7 D1MSK DMA Acknowledge 1 Mask:

0 = DMA channel 1’s acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1’s acknowledge (DMAACK1#) signal. Useful

when channel 1’s request (DREQ1) input is connected to an internal
peripheral.

6–4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1’s
request input (DREQ1).

000 = DRQ1 pin (external peripheral)
001 = SIO channel 1’s receive buffer full signal (RBFDMA1)
010 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
011 = SSIO receive holding buffer full signal (SSRBF)
100 = TCU counter 2’s output signal (OUT2)
101 = SIO channel 0’s receive buffer full signal (RBFDMA0)
110 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 D0MSK DMA Acknowledge 0 Mask:

0 = DMA channel 0’s acknowledge (DMAACK0#) signal is not masked.
1 = Masks DMA channel 0’s acknowledge (DMAACK0#) signal. Useful

when channel 0’s request (DREQ0) input is connected to an internal
peripheral.

2–0 D0REQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0’s
request input (DREQ0).

000 = DRQ0 pin (external peripheral)
001 = SIO channel 0’s receive buffer full signal (RBFDMA0)
010 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
011 = SSIO transmit holding buffer empty signal (SSTBE)
100 = TCU counter 1’s output signal (OUT1)
101 = SIO channel 1’s receive buffer full signal (RBFDMA1)
110 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
111 = SSIO receive holding buffer full signal (SSRBF)
12-32

DMA CONTROLLER

 DMA
flop to
uires a
 to
and
 the
itten
DMA
12.3.3 Channel Registers

To program a DMA channel’s requester and target addresses and its byte count, write to the
channel registers. Some of the channel registers require the use of a byte pointer (BP) flip-
control the access to the upper and lower bytes. After you write or read a register that req
byte pointer specification, the DMA toggles the byte pointer. For example, writing
DMA0TAR0 with BP=0 causes the DMA to set BP. The clear byte pointer software comm
(DMACLRBP) is available so that you can force BP to a known state (0) before writing to
channel registers. Issue DMACLRBP by writing to location F00CH or 000CH; the data wr
to the location doesn’t matter —writing to the location is all that is necessary to cause the
to clear the byte pointer.

Figure 12-20. DMA Channel Address and Byte Count Registers
(DMAnREQn, DMAnTARn, DMAnBYCn)

DMA Channel 0

DMA Channel 1

24 16 8 0

Requester Address DMA0REQ3 DMA0REQ2 DMA0REQ1 DMA0REQ0

F011H (BP=1) F011H (BP=0) F010H (BP=1) F010H (BP=0)

24 16 8 0

Target Address DMA0TAR3 DMA0TAR2 DMA0TAR1 DMA0TAR0

F086H F087H F000H (BP=1) F000H (BP=0)

16 8 0

Byte Count DMA0BYC2 DMA0BYC1 DMA0BYC0

F098H F001H (BP=1) F001H (BP=0)

24 16 8 0

Requester Address DMA1REQ3 DMA1REQ2 DMA1REQ1 DMA1REQ0

F013H (BP=1) F013H (BP=0) F012H (BP=1) F012H (BP=0)

24 16 8 0

Target Address DMA1TAR3 DMA1TAR2 DMA1TAR1 DMA1TAR0

F085H F083H F002H (BP=1) F002H (BP=0)

16 8 0

Byte Count DMA1BYC2 DMA1BYC1 DMA1BYC0

F099H F003H (BP=1) F003H (BP=0)
12-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ester
ther all
buffer
 from
NOTE
The value you write to the byte count register must be one less than the
number of bytes to be transferred. To transfer one byte, write zero to the byte
count register (byte count = number of bytes – 1). To transfer one word, write
one (byte) to the byte count register (byte count = [number of words X 2] – 1).

12.3.4 Overflow Enable Register (DMAOVFE)

Use DMAOVFE to specify whether all 26 bits or only the lower 16 bits of the target and requ
addresses are incremented or decremented during buffer transfers and to determine whe
24 bits of the byte count or only the lower 16 bits of the byte count are decremented during
transfers. A byte count configured for 16-bit decrementing expires when it is decremented
0000H to 0FFFFH.

Figure 12-21. DMA Overflow Enable Register (DMAOVFE)

DMA Overflow Enable
DMAOVFE
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F01DH
—
0AH

7 0

— — — — ROV1 TOV1 ROV0 TOV0

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

3 ROV1 Channel 1 Requester Overflow Enable:

0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement

2 TOV1 Channel 1 Target & Byte Counter Overflow Enable:

0 = lowest 16 bits of target address and byte count
increment/decrement

1 = all bits of target address and byte count increment/decrement

1 ROV0 Channel 0 Requester Overflow Enable:

0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement

0 TOV0 Channel 0 Target & Byte Counter Overflow Enable:

0 = lowest 16 bits of target address and byte count
increment/decrement

1 = all bits of target address and byte count increment/decrement
12-34

DMA CONTROLLER

e bus
12.3.5 Command 1 Register (DMACMD1)

Use DMACMD1 to enable both channels and to select the rotating method for changing th
control priority structure.

Figure 12-22. DMA Command 1 Register (DMACMD1)

DMA Command 1
DMACMD1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F008H
0008H
00H

7 0

— — — PRE — CE — —

Bit
Number

Bit
Mnemonic Function

7–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 PRE Priority Rotation Enable:

0 = Priority is fixed based on value in DMACMD2.
1 = Enables the rotation method for changing the bus control priority

structure. That is, after the external bus master or one of the DMA
channels is given bus control, it is assigned to the lowest priority
level.

3 — Reserved; for compatibility with future devices, write zero to this bit.

2 CE Channel Enable:

0 = Enables channel 0 and 1.
1 = Disables the channels.

1–0 — Reserved; for compatibility with future devices, write zeros to these bits.
12-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ister
-

12.3.6 Status Register (DMASTS)

Use DMASTS to check the status of the channels individually. The DMA sets bits in this reg
to indicate that a channel has a hardware request pending or that a channel’s byte count has ex
pired.

Figure 12-23. DMA Status Register (DMASTS)

DMA Status
DMASTS
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F008H
0008H
00H

7 0

— — R1 R0 — — TC1 TC0

Bit
Number

Bit
Mnemonic

Function

7–6 — Reserved. These bits are undefined.

5 R1 Request 1:

When set, this bit indicates that channel 1 has a hardware request
pending. When the request is removed, this bit is cleared.

4 R0 Request 0:

When set, this bit indicates that channel 0 has a hardware request
pending. When the request is removed, this bit is cleared.

3–2 — Reserved. These bits are undefined.

1 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC1 in DMAIS.

0 TC0 Transfer Complete 0:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC0 in DMAIS.
12-36

DMA CONTROLLER

us
ling are
12.3.7 Command 2 Register (DMACMD2)

Use DMACMD2 to select the DREQn and EOP# sampling: asynchronous or synchronous. B
timing diagrams that show the differences between asynchronous and synchronous samp
shown in Figure 12-5 on page 12-10 and Figure 12-13 on page 12-21. Also, use DMACMD2 to
assign a particular bus request to the lowest priority level for fixed priority mode.

Figure 12-24. DMA Command 2 Register (DMACMD2)

DMA Command 2
DMACMD2
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F01AH
—
08H

7 0

— — — — PL1 PL0 ES DS

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved; for compatibility with future devices, write zeros to these bits.

3–2 PL1:0 Low Priority Level Set:

Use these bits to assign a particular bus request to the lowest priority
level in fixed priority mode.

00 = Assigns channel 0’s request (DREQ0) to the lowest priority level
01 = Assigns channel 1’s request (DREQ1) to the lowest priority level
10 = Assigns the external bus master request (HOLD) to the lowest

priority level
11 = Reserved

1 ES EOP# Sampling:

0 = Causes the DMA to sample the EOP# input asynchronously.
1 = Causes the DMA to sample the end-of-process (EOP#) input

synchronously.

0 DS DREQn Sampling:

0 = Causes the DMA to sample the DREQn inputs asynchronously.
1 = Causes the DMA to sample the channel request (DREQn) inputs

synchronously.
12-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

nd to
odify
.5 to
12.3.8 Mode 1 Register (DMAMOD1)

Use DMAMOD1 to select a particular channel’s data-transfer mode and transfer direction a
enable the channel’s auto-initialize buffer-transfer mode. You can configure the DMA to m
the target address during a buffer transfer by clearing DMAMOD2.2, then use DMAMOD1
specify how the channel modifies the address.
12-38

DMA CONTROLLER
Figure 12-25. DMA Mode 1 Register (DMAMOD1)

DMA Mode 1
DMAMOD1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F00BH
000BH
00H

7 0

DTM1 DTM0 TI AI TD1 TD0 0 CS

Bit
Number

Bit
Mnemonic Function

7–6 DTM1:0 Data-transfer Mode:

00 = Demand
01 = Single
10 = Block
11 = Cascade

5 TI Target Increment/Decrement:

0 = Causes the target address to be incremented after each data
transfer in a buffer transfer.

1 = Causes the target address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant
(DMAMOD2.2 = 1), this bit is a don’t care.

4 AI Autoinitialize:

0 = Disables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

1 = Enables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

3–2 TD1:0 Transfer Direction:

Determines the transfer direction for the channel specified by bit 0.

00 = Target is read; nothing is written (used for testing)
01 = Data is transferred from the requester to the target
10 = Data is transferred from the target to the requester
11 = Reserved

Note: In cascade mode, these bits become don’t cares.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–2 affect channel 0.
1 = The selections for bits 7–2 affect channel 1.
12-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

er and
uester
rmine
r.
12.3.9 Mode 2 Register (DMAMOD2)

Use DMAMOD2 to select the data transfer bus cycle option, specify whether the request
target are in memory or I/O, and determine whether the DMA modifies the target and req
addresses. If you set up the DMA to modify the requester address, use DMAMOD2 to dete
whether the DMA increments or decrements the requester address during a buffer transfe
12-40

DMA CONTROLLER
Figure 12-26. DMA Mode 2 Register (DMAMOD2)

DMA Mode 2
DMAMOD2
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F01BH
—
00H

7 0

BCO RD TD RH RI TH 0 CS

Bit
Number

Bit
Mnemonic Function

7 BCO Bus Cycle Option:

0 = Selects the fly-by data transfer bus cycle option for the channel specified
by bit 0.

1 = Selects the two-cycle data transfer bus cycle option for the channel
specified by bit 0.

6 RD Requester Device Type:

0 = Clear this bit when the requester for the channel specified by bit 0 is in
memory space.

1 = Set this bit when the requester for the channel specified by bit 0 is in I/O
space.

This bit is ignored if BCO is cleared.

5 TD Target Device Type:

0 = Clear this bit when the target for the channel specified by bit 0 is in
memory space.

1 = Set this bit when the target for the channel specified by bit 0 is in I/O
space.

4 RH Requester Address Hold:

0 = Causes the address to be modified (incremented or decremented,
depending on DMAMOD2.3).

1 = Causes the requester’s address for the channel specified by bit 0 to
remain constant during a buffer transfer.

3 RI Requester Address Increment/Decrement:

0 = Causes the requester address to be incremented after each data transfer
in a buffer transfer.

1 = Causes the requester address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant
(DMAMOD2.4 = 1), this bit is a don’t care.

2 TH Target Address Hold:

0 = Causes the address to be modified (incremented or decremented,
depending on DMAMOD1.5).

1 = Causes the target’s address for the channel specified by bit 0 to remain
constant during a buffer transfer.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–2 affect channel 0.
1 = The selections for bits 7–2 affect channel 1.
12-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

to bus
st ac-
pletes

ansfer
ou can-
cannot
12.3.10 Software Request Register (DMASRR)

Write DMASRR to issue software DMA service requests. Software requests are subject
control priority arbitration with all other software and hardware requests. A software reque
tivates the internal channel request signal. This signal remains active until the channel com
its buffer transfer (either by an expired byte count or an EOP# input). In the demand data-tr
mode, a buffer transfer is suspended by deactivating the channel request signal. Because y
not deactivate the internal channel request signal before the end of a buffer transfer, you
use software requests with demand data-transfer mode.

Figure 12-27. DMA Software Request Register (DMASRR – write format)

DMA Software Request (write format)
DMASRR

Expanded Addr:
ISA Addr:
Reset State:

F009H
0009H
00H

7 0

— — — — — SR 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SR Software Request:

Setting this bit generates a software request for the channel specified by
bit 0. When the channel’s buffer transfer completes, this bit is cleared.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
12-42

DMA CONTROLLER

ch re-
oth
Read DMASRR to see whether a software request for a particular channel is pending. Ea
quest bit is cleared upon Terminal Count or external EOP#. When in auto-initialize mode, b
bits are cleared when a Terminal Count or external EOP# occurs.

Figure 12-28. DMA Software Request Register (DMASRR – read format)

DMA Software Request (read format)
DMASRR

Expanded Addr:
ISA Addr:
Reset State:

F009H
0009H
00H

7 0

— — — — — — SR1 SR0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 SR1 Software Request 1:

When set, this bit indicates that channel 1 has a software request
pending.

0 SR0 Software Request 0:

When set, this bit indicates that channel 0 has a software request
pending.
12-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ware
el at a
nnels
12.3.11 Channel Mask and Group Mask Registers (DMAMSK and DMAGRPMSK)

Use the DMAMSK and DMAGRPMSK registers to disable (mask) or enable channel hard
requests. DMAMSK allows you to disable or enable hardware requests for only one chann
time, while DMAGRPMSK allows you to disable or enable hardware requests for both cha
at once.

NOTE
Each mask bit is set when its associated channel produces an End-of-Process if
the channel is not programmed for Autoinitialize. Software must then clear the
appropriate mask bit to allow further DREQn requests from initiating
transfers.

Figure 12-29. DMA Channel Mask Register (DMAMSK)

DMA Individual Channel Mask
DMAMSK
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F00AH
000AH
04H

7 0

— — — — — HRM 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved; for compatibility with future devices, write zeros to these bits.

2 HRM Hardware Request Mask:

0 = Unmasks (enables) hardware requests for the channel specified by
bit 0.

1 = Masks (disables) hardware requests for the channel specified by
bit 0.

NOTE: When this bit is set, the channel can still receive software
requests.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
12-44

DMA CONTROLLER
Figure 12-30. DMA Group Channel Mask Register (DMAGRPMSK)

DMA Group Channel Mask
DMAGRPMSK
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F00FH
000FH
03H

7 0

— — — — — — HRM1 HRM0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 HRM1 Hardware Request Mask 1:

0 = Channel 1’s hardware requests are not masked.
1 = Masks (disables) channel 1’s hardware requests. When this bit is

set, channel 1 can still receive software requests.

0 HRM0 Hardware Request Mask 0:

0 = Channel 0’s hardware requests are not masked.
1 = Masks (disables) channel 0’s hardware requests. When this bit is

set, channel 0 can still receive software requests.
12-45

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
12.3.12 Bus Size Register (DMABSR)

Use DMABSR to determine the requester and target data bus widths (8 or 16 bits).

Figure 12-31. DMA Bus Size Register (DMABSR)

DMA Bus Size
DMABSR
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F018H
—
X1X10000B

7 0

— RBS — TBS — — 0 CS

Bit
Number

Bit
Mnemonic Function

7 — Reserved; for compatibility with future devices, write zero to this bit.

6 RBS Requester Bus Size:

Specifies the requester’s data bus width for the channel specified by bit
0.

0 = 16-bit bus
1 = 8-bit bus

5 — Reserved; for compatibility with future devices, write zero to this bit.

4 TBS Target Bus Size:

Specifies the target’s data bus width for the channel specified by bit 0.

0 = 16-bit bus
1 = 8-bit bus

3–1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–4 affect channel 0.
1 = The selections for bits 7–4 affect channel 1.
12-46

DMA CONTROLLER

fer in-
d new
 the
12.3.13 Chaining Register (DMACHR)

Use DMACHR to enable or disable the chaining buffer-transfer mode for a selected channel. The
following steps describe how to set up a channel to perform chaining buffer transfers.

1. Set up the chaining interrupt (DMAINT) service routine.

2. Configure the channel for the single buffer-transfer mode.

3. Program the mode registers.

4. Program the target address, requester address, and byte count registers.

5. Enable the channel for the chaining buffer-transfer mode. (This enables the DMAINT
output.)

6. Enable the DMAINT interrupt in the ICU and service it. (The service routine should load
the transfer information for the next buffer transfer.)

7. Enable the channel by unmasking DREQn and setting bit 2 in DMACMD1.

From this point, the chaining interrupt indicates each time the channel requires new trans
formation. The cycle continues as long as the chaining buffer-transfer mode is enabled an
transfer information is written to the channel. New transfer information must be written to
channel before the channel’s current buffer transfer completes.

Figure 12-32. DMA Chaining Register (DMACHR)

DMA Chaining
DMACHR
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F019H
—
00H

7 0

— — — — — CE 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved; for compatibility with future devices, write zeros to these bits.

2 CE Chaining Enable:

0 = Disables the chaining buffer-transfer mode for the channel specified
by bit 0.

1 = Enables the chaining buffer-transfer mode for the channel specified
by bit 0.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
12-47

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 the
12.3.14 Interrupt Enable Register (DMAIEN)

Use DMAIEN to individually connect channel 0’s and 1’s transfer complete signal to
DMAINT interrupt request output.

Figure 12-33. DMA Interrupt Enable Register (DMAIEN)

DMA Interrupt Enable
DMAIEN
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F01CH
—
00H

7 0

— — — — — — TC1 TC0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 TC1 Transfer Complete 1:

0 = Disables Transfer Complete interrupts.
1 = Connects channel 1’s transfer complete signal to the interrupt

control unit’s DMAINT input.

Note: When channel 1 is in chaining mode (DMACHR.2=1 and
DMACHR.0=1), this bit is a don’t care.

0 TC0 Transfer Complete 0:

0 = Disables Transfer Complete interrupts.
1 = Connects channel 0’s transfer complete signal to the interrupt

control unit’s DMAINT input.

Note: When channel 0 is in chaining mode (DMACHR.2=1 and
DMACHR.0=0), this bit is a don’t care.
12-48

DMA CONTROLLER

nsfer
12.3.15 Interrupt Status Register (DMAIS)

DMAIS indicates which source activated the DMA interrupt request signal (channel 0 tra
complete, channel 1 transfer complete, channel 0 chaining, or channel 1 chaining).

Figure 12-34. DMA Interrupt Status Register (DMAIS)

DMA Interrupt Status
DMAIS
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F019H
—
00H

7 0

— — TC1 TC0 — — CI1 CI0

Bit
Number

Bit
Mnemonic Function

7–6 — Reserved. These bits are undefined.

5 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 1 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don’t care.

4 TC0 Transfer Complete 0:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 0 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don’t care.

3–2 — Reserved. These bits are undefined.

1 CI1 Chaining Interrupt 1:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 1. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don’t care.

0 CI0 Chaining Interrupt 0:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 0. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don’t care.
12-49

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

d with it

 must

 a
y
ta

12.3.16 Software Commands

The DMA contains four software commands: clear byte pointer, clear DMA, clear mask register,
and clear transfer complete signal. Each software command has an I/O address associate
(see Table 12-4). To issue a software command, write to its I/O address; the data written doesn’t
matter —writing to the location is all that is necessary.

12.4 DESIGN CONSIDERATIONS

EOP# requires an external pull-up resistor. To determine the maximum value, the rise time
be less than three bus cycles. To determine the minimum value, use the IOL specification from the
Intel386™ EX Embedded Microprocessor datasheet (order number 272420).

12.5 PROGRAMMING CONSIDERATIONS

Consider the following when programming the DMA.

• The DMA transfers data between a requester and a target. The transfer direction is
programmable and determines whether the requester or the target is the source or
destination of a transfer.

• The two-cycle data transfer bus cycle option uses a four-byte temporary buffer. During
buffer transfer, the channel fills the temporary buffer from the source before writing an
data to the destination. Therefore, the number of bus cycles that it takes to transfer da
from the source to the destination depends on the amount of data to transfer and the source
and destination data bus widths.

• Each channel contains a 26-bit requester address, 26-bit target address, and 24-bit byte
count. These values are programmed through the use of 8-bit registers, some of which are
multiplexed at the same addresses. A byte pointer (BP) controls the access to these
multiplexed registers. After you write or read a register that requires a byte pointer
specification, the channel toggles the byte pointer. For example, writing to DMA0TAR0

Table 12-4. DMA Software Com mands

Name
(Address)

Command Functions

DMACLRBP
(0F00CH or
000CH)

Clear byte pointer Resets the byte pointer flip-flop. Perform this
command at the beginning of any access to the
channel registers, to ensure a predictable place in
the register programming sequence.

DMACLR
(0F00DH or
000DH)

Clear DMA Sets all DMA functions to their default states.

DMACLRMSK
(0F00EH or
000EH)

Clear mask register Simultaneously clears the mask bits of all channels
(enabling all channels).

DMACLRTC
(0F01EH)

Clear transfer complete signal Resets the transfer complete signal (DMAINT).
Allows the source of the DMA request (hardware or
software) to acknowledge the completion of a
transfer process.
12-50

DMA CONTROLLER

 and the

lues.

he
r new
t
r
ss

yte
e

size is
ata
e
ords,

t the
rred;

able

s
before

d

A
with BP=0 causes the DMA to set BP. The clear byte pointer software command
(DMACLRBP) allows you to force BP to a known state (0) before writing to the registers.

• The target and requester addresses are incremented, decremented, or left unchanged
byte count is decremented after each data transfer within a buffer transfer. Reading a
register returns the current (or modified) value rather than the original programmed va

• The chaining buffer-transfer mode requires that you write new transfer information to t
channel before the current buffer transfer completes. The channel determines whethe
transfer information was written to it by checking the most-significant byte of the targe
address. Writing to this byte sets an internal flag that tells the channel that new transfe
information was written to it. Therefore, it is only necessary to change the target addre
between chaining buffer transfers. If you want to change the requester address and b
count also, you should write these values before writing the most-significant byte of th
target address.

• If a channel is configured to increment the requester address and the requester’s bus
selected as 16 bits, the channel increments the requester address by two after each d
transfer. However, if the channel is configured to decrement the requester address, th
channel only decrements the address by one. This is true for the target also. In other w
the channels cannot decrement by words. When a channel is configured to decremen
requester or target address and transfer words, the correct number of words is transfe
however, the transfers are on a byte basis.

• Enabling both the autoinitialize and chaining buffer-transfer modes will have unpredict
results.

• The DMA controller does not allow programming one channel while another channel i
active. If both channels are being used, the programmer must mask an active channel
reprogramming the other channel. Failure to do this may result in incorrect DMA transfers.

12.5.1 DMA Controller Code Examples

This section contains these software routines:

EnableDMAHWRequests Enables channel hardware requests for the given
DMA channel

DisableDMAHWRequests Disables channel hardware requests for the specifie
DMA channel

SetDMAReqIOAddr Sets the requester to an I/O port address for the
specified channel

SetDMATargMemAddr Sets the target memory address for the specified DMA
channel

SetDMAXferCount Sets the target memory device for the specified DM
channel

InitDMA Initializes the DMA
12-51

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
InitDMA1ForSSIXmitterToMem Initializes DMA channel1 for transfers between the
SIO transmitter port and memory

DMAInterrupt Interrupt Service Routine for DMA generated
interrupts

See Appendix C for included header files.

#include “80386ex.h”
#include “ev386ex.h”
#include “dma.h”
#include <DOS.h>

#pragma warning(disable:4704) /*Disable optimization warning*/

/***
 EnableDMAHWRequests:
 int EnableDMAHWRequests(int nChannel)

 Description:
 Enables channel hardware requests for the given DMA channel.

 Parameters:
 nChannel --channel to enable hardware requests

 Returns:
Error Code

 Assumptions:
 None

 Syntax:
 int error_code;

 error_code = EnableDMAHWRequests (DMA_Channel0);

 Real/Protected Mode:
 No changes required

***/

int EnableDMAHWRequests(int nChannel)
{
 BYTE regDMAMSK = 0; /*Clear regDMAMSK[HRM]*/

 /*Check input*/
 if ((nChannel != DMA_Channel0) && (nChannel != DMA_Channel1))
 return ERR_BADINPUT;

 regDMAMSK = nChannel; /*Set regDMAMSK[CS] to channel*/
 _SetEXRegByte(DMAMSK, regDMAMSK); /*Clear hardware request mask for*/
12-52

DMA CONTROLLER
 /* given channel*/
}

/***
 DisableDMAHWRequests:

 Description:
 Disables channel hardware requests for the given DMA channel.
 The channel, however, can still receive software requests.

 Parameters:
 nChannel --channel to mask hardware requests

 Returns:
 Error Code

 Assumptions:
 None

 Syntax:
int error_code;

error_code = DisableDMAHWRequests(DMA_Channel0);

Real/Protected Mode:
No changes required

***/

int DisableDMAHWRequests(int nChannel)
{
 WORD regDMAMSK = 0;

 //Check input
 if ((nChannel != DMA_Channel0) && (nChannel != DMA_Channel1))
 return ERR_BADINPUT;

 regDMAMSK = nChannel; //Set regDMAMSK[CS] to channel
 regDMAMSK &= 0x04; //Set regDMAMSK[HRM]
 _SetEXRegByte(DMAMSK, regDMAMSK); //Set hw request mask for given
 //channel
 return ERR_NONE;
}

/***
 SetDMAReqIOAddr:
12-53

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 Description:
 Sets the requester to an I/O port address, wIO, for the DMA
 channel specified by nChannel.

 Parameters:
 nChannel --channel for which to set Requester I/O port address
 wIO --I/O address

 Returns:
 None

 Assumptions:
 None

 Syntax:

 SetDMAReqIOAddr(DMA_Channel1, TBR0); //Sets Req. to Serial Receiver

 Real/Protected Mode:
 No changes required

***/

int SetDMAReqIOAddr(int nChannel, WORD wIO)
{
 WORD addrDMAReq0_1;
 WORD addrDMAReq2_3;
 /*Check input*/
 if ((nChannel != DMA_Channel0) && (nChannel != DMA_Channel1))
 return ERR_BADINPUT;

 /*Set registers to correct channel*/
 addrDMAReq0_1 = (nChannel == DMA_Channel0 ? DMA0REQ0_1 : DMA1REQ0_1);
 addrDMAReq2_3 = (nChannel == DMA_Channel0 ? DMA0REQ2_3 : DMA1REQ2_3);

 _SetEXRegByte(DMACLRBP, 0x0); /* Clear the byte pointer flip-flop */

 /* Write requester I/O address, bits 0-7 */
 _SetEXRegByte(addrDMAReq0_1, (BYTE) (wIO & 0xFF));

 /* Write requester I/O address, bits 8-15 */
 _SetEXRegByte(addrDMAReq0_1, (BYTE) ((wIO >> 8) & 0xFF));
 _SetEXRegByte(addrDMAReq2_3, 0x00); /* Zero requester address bits 16-23 */
 _SetEXRegByte(addrDMAReq2_3, 0x00); /* Zero requester address bits 24-25 */

 return ERR_NONE;
}

/***
 SetDMATargMemAddr:
12-54

DMA CONTROLLER
 Description:
 Sets the target memory address for the DMA channel specified
 by nChannel.

 Parameters:
 nChannel --channel for which to set target address
 ptMemory --pointer to target memory location

 Returns:
 None

 Assumptions:
 Processor is in real mode.

 Syntax:
 static char lpsz[]=”Hello World”;

 SetDMATargMemAddr(DMA_Channel1, lpsz);

 Real/Protected Mode:
 The address calculation from ptMemory assumes the processor is in real
 mode.

***/

int SetDMATargMemAddr(int nChannel, void *ptMemory)
{
 WORD addrDMATar0_1;
 WORD addrDMATar2;
 WORD addrDMATar3;
 WORD wSegment;
 WORD wOffset;
 DWORD lAddress;

 /*Check input*/
 if ((nChannel != DMA_Channel0) && (nChannel != DMA_Channel1))
 return ERR_BADINPUT;

 /*Set registers to correct channel*/
 addrDMATar0_1 = (nChannel == DMA_Channel0 ? DMA0TAR0_1 : DMA1TAR0_1);
 addrDMATar2 = (nChannel == DMA_Channel0 ? DMA0TAR2 : DMA1TAR2);
 addrDMATar3 = (nChannel == DMA_Channel0 ? DMA0TAR3 : DMA1TAR3);

 /*If in tiny, small, or medium model,*/
 #if defined(M_I86TM) || defined(M_I86SM) || defined(M_I86MM)
 _asm
 { /*...then grab our segment from DS*/
 mov ax, ds
 mov wSegment, ds
 }
 wOffset = (WORD) ptMemory; /*...and our offset from the pointer*/
12-55

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 #else /*Else in compact, large, or huge memory model*/
 wSegment = _FP_SEG(ptMemory); /*...grab the segment from the pointer*/
 wOffset = _FP_OFF(ptMemory); /*...and the offset from the pointer*/
 #endif /*Assuming real mode, compute our physical
address*/
 lAddress = ((DWORD) wSegment << 4) + wOffset;

 _SetEXRegByte(DMACLRBP, 0x0); /*Clear the byte pointer flip-flop */

 /* Write target address, bits 0-7 */
 _SetEXRegByte(addrDMATar0_1, (BYTE) (lAddress & 0xFF));

 /* Write target address, bits 8-15 */
 _SetEXRegByte(addrDMATar0_1, (BYTE) ((lAddress >> 8) & 0xFF));

 /* Write target address, bits 16-23 */
 _SetEXRegByte(addrDMATar2, (BYTE) ((lAddress >> 16) & 0xFF));

 /* Write target address, bits 24-25 */
 _SetEXRegByte(addrDMATar3, (BYTE) ((lAddress >> 24) & 0x03));

 return ERR_NONE;
}

/***
 SetDMAXferCount:

 Description:
 Sets the target memory device for the DMA channel specified
 by nChannel

 PARAMETERS:
 nChannel --channel for which to set target address
 ptMemory --pointer to target memory location

 Returns:
 None

 Assumptions:
 Processor is in real mode.

 Syntax:
 static char lpsz[]=”Hello World”;

 SetDMATargMemAddr(DMA_Channel0, lpsz);

 Real/Protected Mode:
 The address calculation from ptMemory assumes the processor is in real

mode.
12-56

DMA CONTROLLER
***/

int SetDMAXferCount(int nChannel, DWORD lCount)
{
 WORD addrDMAByc0_1;
 WORD addrDMAByc2;
 /*Check input*/
 if ((nChannel != DMA_Channel0) && (nChannel != DMA_Channel1))
 return ERR_BADINPUT;

 /*Set registers to correct channel*/
 addrDMAByc0_1 = (nChannel == DMA_Channel0 ? DMA0BYC0_1 : DMA1BYC0_1);
 addrDMAByc2 = (nChannel == DMA_Channel0 ? DMA0BYC2 : DMA1BYC2);

 _SetEXRegByte(DMACLRBP, 0x0); /* Clear the byte pointer flip-flop */

 /* Write count, bits 0-7 */
 _SetEXRegByte(addrDMAByc0_1, (BYTE) (lCount & 0xFF));

 /* Write count, bits 8-15 */
 _SetEXRegByte(addrDMAByc0_1, (BYTE) ((lCount >> 8) & 0xFF));

 /* Write count, bits 16-23 */
 _SetEXRegByte(addrDMAByc2, (BYTE) ((lCount >> 16) & 0xFF));

 return ERR_NONE;
}

/***
 InitDMA:

 Description:
 Enables the DMA and initializes settings independent of the
 two channels:

 bus arbitration--set to no rotation, external bus master
 request(HOLD) assigned to lowest priority level
 EOP# sampling--set to asynch. (no effect when DMA is used
 with internal peripherals)
 DRQn sampling--set to synch. (no effect when DMA is used
 with internal peripherals)

 Parameters:
 None

 Returns:
 None

Assumptions:
None
12-57

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 Syntax:
 InitDMA(); //Initialize DMA peripheral

 Real/Protected Mode:
 No changes required

***/

void InitDMA(void)
{
 _SetEXRegByte(DMACLR, 0x0); /*Resets DMA peripheral*/
 _SetEXRegByte(DMACMD1, 0x0); /*DMACMD1[7:5]=0: reserved*/
 /*DMACMD1[4]=0: disable priority rotation*/
 /* enable*/
 /*DMACMD1[2]=0: enable channel’s 0 and 1*/
 /*DMACMD1[1:0]=0: reserved*/

 _SetEXRegByte(DMACMD2, 0x8); /*DMACMD2[7:4]=0: reserved*/
 /*DMACMD2[3:2]=2: assign HOLD to the lowest*/
 /* priority level*/
 /*DMACMD2[1]=0: EOP# samples input async.*/
 /*DMACMD2[0]=0: DRQn samples input async.*/
}

/***
 InitDMA1ForSSIXmitterToMem:

 Description:
 This function prepares DMA channel 1 for transfers between the async.
 serial port transmitter (channel 0) and memory. After calling this
 function, a DMA transfer can be initiated by setting the Target address,
 setting the transfer count, and clearing the hardware request mask
 for this DMA channel.

 Parameters:
 None

 Returns:
 None

 Assumptions:
 InitDMA() has been called to enable the peripheral.

 Syntax:
 static char lpsz[]=”Hello World”;

 InitDMA(); //Initialize DMA peripheral
 InitDMA1ForSerialXmitter(); //Initialize DMA channel 1
 .
 .
12-58

DMA CONTROLLER
 .
 SetDMATargMemAddr(DMA_Channel1, lpsz); //Set target memory address
 //Set transfer count
 SetDMAXferCount(DMA_Channel1, strlen(lpsz));
 EnableDMAHWRequests(DMA_Channel1); //Begin transfer at SIO request

 Real/Protected Mode:
 No changes required

***/

void InitDMA1ForSerialXmitter(void)
{
 BYTE regDMACfg;
 BYTE regDMAIE;
 BYTE regDMAOvfE;

 DisableDMAHWRequests(DMA_Channel1); /*Disable channel 1 Hardware requests*/

 regDMACfg = (_GetEXRegByte(DMACFG) & 0x0F) | 0xA0;
 _SetEXRegByte(DMACFG, regDMACfg); /*DMACFG[7]=1: mask DMA Acknowledge for*/
 /* channel 1*/
 /*DMACFG[6:4]=3: set channel request to*/
 /* SIO’s channel 0’s transmit buffer*/
 /* empty signal*/
 /*DMAMSK[3:0]=unmodified: channel 0*/
 /* settings*/

 _SetEXRegByte(DMAMOD1, 0x9); /*DMAMOD1[7:6]=0: set to demand data-xfer*/
 /* mode*/
 /*DMAMOD1[5]=0: increment target*/
 /*DMAMOD1[4]=0: disable autoinitialize*/
 /* buffer-xfer mode*/
 /*DMAMOD1[3:2]=2: data is xfer’d from targ.*/
 /* to req.*/
 /*DMAMOD1[1]=0: reserved*/
 /*DMAMOD1[0]=1: selections for bits 7-2*/
 /* affect channel 1*/

 _SetEXRegByte(DMAMOD2, 0xD1); /*DMAMOD2[7]=1: Select 2-cycle data xfer*/
 /*DMAMOD2[6]=1: Requester is in I/O space*/
 /*DMAMOD2[5]=0: Target is in memory space*/
 /*DMAMOD2[4]=1: Requester is held constant*/
 /* thru xfer*/
 /*DMAMOD2[3]=x: Req. Inc/Dec...see*/
 /* DMAMOD2[4]*/
 /*DMAMOD2[2]=0: Target address is*/
 /* modified...see DMAMOD1[5]*/
 /*DMAMOD2[1]=0: reserved*/
 /*DMAMOD2[0]=1: selections for bits 7-2*/
 /* affect channel 1*/

12-59

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 _SetEXRegByte(DMABSR, 0x51); /*DMABSR[7]=0: reserved*/
 /*DMABSR[6]=1: sets req.’s bus size to 8-bit*/
 /*DMABSR[5]=0: reserved*/
 /*DMABSR[4]=1: sets tar.’s bus size to 8-bit*/
 /*DMABSR[3:2]=0: reserved*/
 /*DMABSR[0]=1: selections for bits 7-2*/
 /* affect channel 1*/

 _SetEXRegByte(DMACHR, 0x1); /*DMACHR[7:3]=0: reserved*/
 /*DMACHR[2]=0: disable chaining buffer-xfer*/
 /* mode*/
 /*DMACHR[1]=0: reserved*/
 /*DMACHR[0]=1: selections for bits 7-2 affect*/
 /* channel 1*/

 regDMAIE = _GetEXRegByte(DMAIEN) & 0x1;
 _SetEXRegByte(DMAIEN, regDMAIE); /*DMAIE[7:2]=untouched: reserved*/
 /*DMAIE[1]=0: masks channel 1’s transfer*/
 /* complete signal from interrupt*/
 /* controller*/
 /*DMAIE[0]=untouched: channel 0 setting*/

 regDMAOvfE = _GetEXRegByte(DMAOVFE) | 0xC;
 _SetEXRegByte(DMAOVFE, regDMAOvfE); /*DMAOVFE[7:4]=untouched: reserved*/
 /*DMAOVFE[3]=1: all bits of channel 1
 /* req. address are inc/dec*/
 /* (see DMAMOD[4])*/
 /*DMAOVFE[2]=1: all bits of channel 1*/
 /* target addr. are inc/dec*/
 /*DMAOVFE[1:0]=untouched: channel 0*/
 /* settings*/

 SetDMAReqIOAddr(DMA_Channel1, TBR0); /*Sets Req. I/O address to Serial*/
 /*Receiver*/
}

/***
 DMAInterrupt:

 Description:
 This function is called by the DMA unit when it either completes a
 transfer or (in chaining xfer mode) when a new requester, target, and
 byte count should be written to the device.

 Parameters:
 None

 Returns:
 None

 Assumptions:
12-60

DMA CONTROLLER
 None

 Syntax:
 regDMAIE = _GetEXRegByte(DMAIEN) | 0x2; //Enable tc interrupt for
 // channel 0
 _SetEXRegByte(DMAIEN, regDMAIE);

 //Set interrupt routine
 SetIRQVector(DMAInterrupt, 12, INTERRUPT_ISR);
 Enable8259Interrupt(0, IR4); //Enable slave IR4, DMA interrupt

 NonSpecificEOI(); //Clear all interrupts

 Real/Protected Mode:
 No changes required

***/

void interrupt far DMAInterrupt(void)
{
 WORD regDMAIS;

 regDMAIS = _GetEXRegByte(DMAIS); /*Get interrupt status register*/

 if (regDMAIS & 0x10)
 { /*Transfer Complete, channel 0*/

 _SetEXRegByte(DMACLRTC, 0x00); /*Clear transfer complete signal*/
 }

 if (regDMAIS & 0x20)
 { /*Transfer Complete, channel 1*/
 _SetEXRegByte(DMACLRTC, 0x00); /*Clear transfer complete signal*/
 }

 if (regDMAIS & 0x1)
 { /*Chaining Interrupt, channel 0*/

 }

 if (regDMAIS & 0x2)
 { /*Chaining Interrupt, channel 1*/

 }

 NonSpecificEOI(); /*Send End-Of-Interrupt Signal to Master/Slave*/
}

12-61

13
SYNCHRONOUS
SERIAL I/O UNIT

. The
rovide
xter-

nerator

trans-
rans-
ed is
ntents

de, the
nsmit-
rator’s

l slave
unica-
r. The
and re-
fferent
CHAPTER 13
SYNCHRONOUS SERIAL I/O UNIT

The synchronous serial I/O (SSIO) unit provides 16-bit bidirectional serial communications
transmit and receive channels can operate independently (that is, with different clocks) to p
full-duplex communications. Either channel can originate the clocking signal or receive an e
nally generated clocking signal.

This chapter is organized as follows:

• Overview (see below)

• SSIO Operation (page 13-5)

• Register Definitions (page 13-16)

• Design Considerations (page 13-25)

• Programming Considerations (page 13-26)

13.1 OVERVIEW

The SSIO unit contains a baud-rate generator, transmitter, and receiver. The baud-rate ge
has two possible internal clock sources (PSCLK or SERCLK). The transmitter and receiver are
double buffered. They contain 16-bit holding buffers and 16-bit shift registers. Data to be
mitted is written to the transmit holding buffer. The buffer’s contents are transferred to the t
mit shift register and shifted out via the serial data transmit pin (SSIOTX). Data receiv
shifted in via the serial data receive pin (SSIORX). Once 16 bits have been received, the co
of the receive shift register are transferred to the receive buffer.

Both the transmitter and receiver can operate in either master or slave mode. In master mo
internal baud-rate generator controls the serial communications by clocking the internal tra
ter or receiver. If the transmitter or receiver is enabled in master mode, the baud-rate gene
signal appears on the transmit or receive clock pin, and is available for clocking an externa
transmitter or receiver. In slave mode, an external master device controls the serial comm
tions. An input on the external transmit or receive clock pin clocks the transmitter or receive
transmitter and receiver need not operate in the same mode. This allows the transmitter
ceiver to operate at different frequencies (an internal and an external clock source or two di
external clock sources can be used). Figures 13-1 through 13-4 illustrate the various transmit-
ter/receiver master/slave combinations.
13-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 13-1. Transmitter and Receiver in Master Mode

Figure 13-2. Transmitter in Master Mode, Receiver in Slave Mode

Receiver

Transmitter

Baud-rate

Generator

STXCLK

SRXCLK

(pin mux)

SSIOTX

(pin mux)

SSIORX

Clock Source

(PSCLK or SERCLK)

A2434-02

S

y

s

t

e

m

B

u

s

SSTBE

(to DMA controller)

SSRBF

(to DMA controller)

SSIOINT

(to Slave interrupt

 controller IR1)

SSIOCON.5 (TIE)

SSIOCON.1 (RIE)

Receiver

Transmitter

Baud-rate

Generator

A2435-02

STXCLK

SSIOTX

(pin mux)

SSIORX

Clock Source

(PSCLK or SERCLK)

SRXCLK

(pin mux)

SSTBE

(to DMA controller)

SSRBF

(to DMA controller)

SSIOINT

(to Slave interrupt

 controller IR1)

SSIOCON.5 (TIE)

SSIOCON.1 (RIE)

S

y

s

t

e

m

B

u

s

13-2

SYNCHRONOUS SERIAL I/O UNIT
Figure 13-3. Transmitter in Slave Mode, Receiver in Master Mode

Figure 13-4. Transmitter and Receiver in Slave Mode

Receiver

Transmitter

Baud-rate

Generator

A2436-02

SRXCLK

(pin mux)

SSIOTX

(pin mux)

SSIORX

Clock Source

(PSCLK or SERCLK)

STXCLK

SSTBE

(to DMA controller)

SSRBF

(to DMA controller)

SSIOINT

(to Slave interrupt

 controller IR1)

SSIOCON.5 (TIE)

SSIOCON.1 (RIE)

S

y

s

t

e

m

B

u

s

Receiver

Transmitter

A2437-02

SSIOTX

(pin mux)

SSIORX

STXCLK

SRXCLK

(pin mux)

SSTBE

(to DMA controller)

SSRBF

(to DMA controller)

SSIOINT

(to Slave interrupt

 controller IR1)

SSIOCON.5 (TIE)

SSIOCON.1 (RIE)

S

y

s

t

e

m

B

u

s

13-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
13.1.1 SSIO Signals

Table 13-1 lists the SSIO signals.

Table 13-1. SSIO Signals

Signal
Device Pin or
Internal Signal

Description

STXCLK Device pin
(input or output)

Serial Transmit Clock:

This pin functions as either an output or an input, depending on whether
the transmitter is operating in master or slave mode.

In master mode, STXCLK functions as an output. The baud-rate
generator’s output appears on this pin through the transmitter and can be
used to clock a slave receiver.

In slave mode, STXCLK functions as an input clock for the transmitter.

SRXCLK Device pin
(input or output)

Serial Receive Clock:

This pin functions as either an output or an input, depending on whether
the receiver is operating in master or slave mode.

In master mode, SRXCLK functions as an output. The baud-rate
generator’s output appears on this pin through the receiver and can be
used to clock a slave transmitter.

In slave mode, SRXCLK functions as an input clock for the receiver.

SSIOTX Device pin
(output)

Transmit Serial Data:

The transmitter uses this pin to shift serial data out of the device. Data is
transmitted most-significant bit first.

SSIORX Device pin
(input)

Receive Serial Data:

The receiver uses this pin to shift serial data into the device. Data is
received most-significant bit first.

SSRBF Internal signal
(output)

Receive Buffer Full:

This internal signal is used to indicate that received serial data has been
transferred from the receive shift register to the receive holding buffer.

SSTBE Internal signal
(output)

Transmit Buffer Empty:

This internal signal is used to indicate that serial data has been shifted
from the transmit holding register to the transmit shift register.

SSIOINT Internal signal
(output)

SSIO Interrupt:

This internal signal goes active when either the transmit holding register
is empty or the receive holding register is full.

BCLKIN Internal signal
(input)

Prescaled Clock (PSCLK):

This internal signal is a prescaled value of the internal clock frequency
(CLK2/2). PSCLK is programmable for a range of divide-by values.

Serial Clock (SERCLK):

This internal signal is half the internal clock frequency (CLK2/4).
13-4

SYNCHRONOUS SERIAL I/O UNIT

receiv-

 gen-
ese

ncy
ed by

lue of
13.2 SSIO OPERATION

The following sections describe the operation of the baud-rate generator, transmitter, and
er.

13.2.1 Baud-rate Generator

Either the prescaled clock or the serial clock (PSCLK or SERCLK) can drive the baud-rate
erator (Figure 13-5). The SIO and SSIO configuration register (SIOCFG) selects one of th
sources.

Figure 13-5. Clock Sources for the Baud-rate Generator

OR

SERCLK provides a baud-rate input frequency (BCLKIN) of CLK2/4. The PSCLK freque
depends on the 9-bit programmable divider. The input to the programmable divider is divid
a 9-bit prescale value + 2.

A prescale value of 0 gives the maximum PSCLK frequency (CLK2/4) and a prescale va
1FFH (511) gives the minimum PSCLK frequency (CLK2/1026).

A2443-02

1

0

Baud-rate

Generator

BCLKIN
÷� 2÷� 2

9-bit Programmable Divider

CLK2
SERCLK

PSCLK

SIOCFG.2

CLKPRS

SSIOBAUD

BV6:0

BCLKIN SERCLK
CLK2

4
----------------= =

BCLKIN PSCLK
CLK2/2

prescale value 2+
--= =
13-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 value
s the
-

the

 de-

is en-
gister
ut sig-
t fre-

 mode,
The baud-rate generator contains a seven-bit down counter. A programmable baud-rate
(BV) is the reload value for the counter. The counter counts down from BV to zero, toggle
baud-rate generator output, then reloads the BV and counts down again. The baud-rate genera
tor’s output is a function of BV and BCLKIN as follows.

A BV of 0 gives the maximum output frequency (BCLKIN/2) and a BV of 7FH (127) gives
minimum output frequency (BCLKIN/256).

If you know the desired baud-rate output frequency, you can determine BV as follows.

The maximum and minimum baud-rate output frequencies with a 33MHz (CLK2 = 66MHz)
vice are shown in Table 13-2.

13.2.2 Transmitter

The transmitter contains a 16-bit buffer and a 16-bit shift register. When the transmitter
abled, the contents of the buffer are immediately transferred to the shift register. The shift re
shifts data out via SSIOTX. Either the internal baud-rate generator (master mode) or an inp
nal on the STXCLK pin (slave mode) drives the transmitter. The maximum transmitter inpu
quency is 8.25 MHz with a 33MHz processor clock (CLK2 = 66MHz). In master mode, the baud-
rate generator must be programmed and enabled prior to enabling the transmitter. In slave
the transmitter must be enabled prior to the application of an external clock.

Table 13-2. Maximum and Minimum Baud-rate Output Frequ encies

Baud-rate Value
(BV)

Input Frequency (BCLKIN) Output Fr equency

0 16.5 MHz
(using either SERCLK or PSCLK with a
prescale value of 0)

8.25 MHz

7FH 64.327 KHz
(using PSCLK with a prescale value of
1FFH)

251.277 Hz

baud-rate output frequency
BCLKIN

2BV 2+
----------------------=

BV
BCLKIN

2 baud-rate output frequency×
--- 

  1–=
13-6

SYNCHRONOUS SERIAL I/O UNIT

errun
 the
ister,
 the
hifting

o the
trans-
is can
h time

e
rvice

 Au-
13.2.2.1 Transmit Mode using Enable Bit

The transmitter contains a transmit holding buffer empty (THBE) flag and a transmit und
error (TUE) flag. At reset, THBE is set, indicating that the buffer is empty. Writing data to
buffer clears THBE. When the transmitter transfers data from the buffer to the shift reg
THBE is set. If the transmitter is enabled (TEN bit is set, AUTOTXM is clear), it transfers
new contents of the transmit buffer to the shift register each time the shift register finishes s
its current contents.

If the shift register finishes shifting out its current contents before a new value is written t
transmit buffer, it reloads the old value and shifts it out again. This condition is known as a
mitter underrun error. TUE is set to indicate an underrun error. For high speed transfers th
be a problem, since the Baud-rate generator clock may be too fast; it may not allow enoug
to control the TEN bit for each word transfer. This could cause the same word to be transmitted
more than once. See “Autotransmit Mode” on page 13-12 for a description of how to avoid this
problem.

The transmitter also has a transmit holding buffer empty signal (SSTBE). This signal can bcon-
nected to the interrupt control and DMA units. This allows you to use either an interrupt se
routine or a DMA transfer to load new data in the transmit holding buffer.

Figures 13-6 and 13-7 are simple descriptions of the SSIO transmitter state-machine when
totransmit mode is enabled or disabled.

Figure 13-6. SSIO Transmitter with Autotransmit Mode Enabled

A3400-01

HOLD

THBE = 0

THBE = 1

Initialize

SSIO

AUTOTXM = 1

TH
BE = 1

Data Written Into

SSIOTBUF

Clears THBE

Data In Buffer

Moved To

Shift Register

THBE Set
13-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ugh

using
Figure 13-7. SSIO Transmitter with Autotransmit Mode Disabled

The SSIO Unit can be operated either by using a polling method or through interrupts.

• Figure 13-8 shows a basic flowchart for using the polling method to transmit data thro
the SSIO.

• Figure 13-9 shows a basic flowchart for the Interrupt Service Routine necessary when
interrupts to transmit data through the SSIO. If interrupts are used, follow the below
sequence for initialization:

1. Initialize the SSIO.

2. Initialize the interrupts - ICU initialization, Interrupt Service Routine, etc.

3. Unmask the interrupts on the ICU.

A3399-01

HOLD

Data Written Into

SSIOTBUF

Clears THBE

TEN = 1

THBE = 0

THBE = 1

Initialize

SSIO

TE
N = 0

TUE

Set

TUE = 1

TEN = 1

THBE = 1

Data In Buffer

Moved To

Shift Register

THBE Set
13-8

SYNCHRONOUS SERIAL I/O UNIT
Figure 13-8. Transmit Data by Polling

A3394-01

No

TUE=1

?

Yes Error

Routine

AUTOTXM=1

?

No Yes

AUTOTXM=1

?

Enable Transmitter

TEN=1

THBE=1

?

Yes

Delay To Allow Transmitter

To Shift First Bit Out

Disable Transmitter

TEN=0

No

No

Yes

Write Data to Buffer

(SSIOTBUF)

Initialize SSIO

Write Data to Buffer

(SSIOTBUF)
13-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 13-9. Interrupt Service Routine for Transmitting Data Using Interrupts

A3398-01

THBE=1

?

Error

Routine

SSIO Transmitter

Causes Interrupt

Disable Interrupts While

Transmitting Data

No

Write Data to Buffer

(SSIOTBUF)

Yes

Enable Interrupts

Exit Interrupt Service Routine

Enable Transmitter

TEN=1

Delay To Allow Transmitter

To Shift First Bit Out

Disable Transmitter

TEN=0
13-10

SYNCHRONOUS SERIAL I/O UNIT

tinues
k pins

, it con-

tor
 master
tated
mitter,
ut. For
If the transmitter is disabled while a data value in the shift register is being shifted out, it con
running until the last bit is shifted out. Then the shift register stops and the data and cloc
(SSIOTX and STXCLK) are three-stated; the contents of the buffer register are not loaded into
the shift register.

If the transmitter is disabled then re-enabled before the current value has been shifted out
tinues as if it were never disabled.

If you enable the transmitter while the baud-rate generator clock is high, the data and clock pin
states are as shown in Figure 13-10. If you enable the transmitter while the baud-rate genera
clock is low, the data and clock pin states are as shown in Figure 13-11. These figures show
mode, single word transfers. At the end of transmission, STXCLK and SSIOTX are three-s
and require external pull-up resistors. For single word transfers, you must enable the trans
which starts the shifting process, then disable the transmitter before 16 bits are shifted o
high baud rates use the Autotransmit mode.

Figure 13-10. Transmitter Master Mode, Single Word Transfer
(Enabled when Clock is High)

Figure 13-11. Transmitter Master Mode, Single Word Transfer
(Enabled when Clock is Low)

A2445-01

Baud-rate

Generator Clock

STXCLK

Transmitter Enable

TB15 TB13SSIOTX
Float

Float

Float

Float

TB14 TB1 TB0

A2444-01

Baud-rate

Generator Clock

STXCLK

Transmitter Enable

TB15 TB14SSIOTX
Float

Float

Float

Float

TB1 TB0
13-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ns-
 reg-
red to
 trans-

 data

locked
 cy-
ge of

 shift
tents
aster

 flag
sfers
n the

me the

e new

an be
h the
re the

 read
13.2.2.2 Autotransmit Mode

Set the AUTOTXM bit (SSIOCON2.2) and the TXMM bit (SSIOCON2.1) to enable Autotra
mit mode. When the AUTOTXM bit is set, the word is automatically transferred to the shift
ister and the THBE bit is set. In this mode the TEN bit is ignored. Once the data is transfer
the shift register, the word is shifted out. If no new data has been written into the buffer, the
mitter stops.

The Transmit Underrun Error (TUE) bit is not used in Autotransmit mode.

The Autotransmit mode eliminates the problem of controlling the TEN bit during high-speed
transfers using polling or interrupts to move new data to the transmit buffer (SSIOTBUF).

13.2.2.3 Slave Mode

Operation in transmitter slave mode is similar to master mode, except the transmitter is c
from the STXCLK pin. When the transmitter is enabled any time during the STXCLK clock
cle, TB15 appears on the SSIOTX pin and remains on the pin until the second falling ed
STXCLK.

13.2.3 Receiver

The receiver contains a 16-bit holding buffer and a 16-bit shift register. When enabled, the
register shifts data in via the SSIORX pin. After the receiver shifts in 16 bits of data, the con
of the shift register are transferred to the buffer. Either the internal baud-rate generator (m
mode) or an input signal on the SRXCLK pin (slave mode) can clock the receiver.

The receiver contains a receive holding buffer full flag (RHBF) and a receive overflow error
(ROE). At reset, RHBF is clear, indicating that the buffer is empty. When the receiver tran
data from the shift register to the buffer, RHBF is set. Reading the buffer clears RHBF. Whe
receiver is enabled, it transfers the contents of the shift register to the receive buffer each ti
shift register finishes shifting its current contents. If the shift register finishes shifting in itscur-
rent contents before the old value is read from the receive buffer, the receiver transfers th
value into the buffer, overwriting the old value and sets the ROE flag. This condition is known as
a receive overflow error.

The receiver also has an internal receive holding buffer full signal (SSRBF). This signal c
connected to the DMA unit for DMA initiated transfers. The SSRBF signal is also ORed wit
SSTBE signal to generate the SSIOINT signal which is sent to the interrupt controller. Befo
SSRBF signal is ORed it is masked with the Receive Interrupt Bit (RIE) in the SSIOCON1 reg-
ister. These options allow you to use either an interrupt service routine or a DMA transfer to
data from the receive holding buffer.
13-12

SYNCHRONOUS SERIAL I/O UNIT

ugh

n

The SSIO Unit can be operated either by using a polling method or through interrupts.

• Figure 13-12 shows a basic flowchart for using the polling method to receive data thro
the SSIO.

• Figure 13-13 shows a basic flowchart for the Interrupt Service Routine necessary whe
using interrupts to receive data through the SSIO. If interrupts are used, follow the below
sequence for initialization:

1. Initialize the SSIO.

2. Initialize the interrupts - ICU initialization, Interrupt Service Routine, etc.

3. Unmask the interrupts on the ICU.

Figure 13-12. Receive Data by Polling

A3396-01

ROE=0

?

Yes Error

Routine

Initialize SSIO

RHBF=1

?

Read Data

(SSIORBUF)

No

No

Yes
13-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 13-13. Interrupt Service Routine for Receiving Data Using Interrupts

A3397-01

ROE=0

?

Error

Routine

Disable Interrupts While

Receiving Data

Read Data From Buffer

(SSIORBUF)

No

Enable Interrupts

Yes

Exit Interrupt Service Routine

SSIO Receiver

Causes Interrupt
13-14

SYNCHRONOUS SERIAL I/O UNIT

inues
r, the

tinues

hifting

d from
 data

RX-
If the receiver is disabled while a data value is being shifted into the shift register, it cont
running until the last bit is shifted in. Then the shift register is loaded into the buffer registe
shift register stops and the clock pin (SRXCLK) is three-stated if in the master mode.

If the receiver is disabled then enabled before the current word has been shifted in, it con
as if it were never disabled.

Figure 13-14 shows the serial receive data (SSIORX) pin values for a master mode, singleword
transfer. For single word transfers, it is necessary to enable the receiver thus starting the s
process, then disable the receiver before 16 bits are shifted in.

Figure 13-14. Receiver Master Mode, Single Word Transfer

Operation in receiver slave mode is similar to master mode, except the receiver is clocke
the SRXCLK pin. When the receiver is enabled any time during the SRXCLK clock cycle,
on the SSIORX pin is latched into the shift register at the next rising edge of SRXCLK. The S
CLK and SSIORX pins are three-stated.

Baud-rate

Generator Clock

SRXCLK

Receiver Enable

RB15 RB14SSIORX

Float

Ignored

Float

A2446-01

IgnoredRB1 RB0
13-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 de-
13.3 REGISTER DEFINITIONS

Table 13-3 list the registers associated with the SSIO and the following sections contain bit
scriptions for each register.

Table 13-3. SSIO Registers

Register
Expanded
Address

Function

PINCFG
(read/write)

F826H Pin Configuration:

Connects the serial receive clock signal (SRXCLK) and the transmit serial
data signal (SSIOTX) to the package pin.

SIOCFG
(read/write)

F836H SIO and SSIO Configuration:

Selects the baud-rate generator’s clock source, SERCLK or PSCLK.

CLKPRS
(read/write)

F804H Clock Prescale:

Controls the frequency of PSCLK.

SSIOBAUD
(read/write)

F484H SSIO Baud-rate Control:

Enables the baud-rate generator and determines its baud rate. In master
mode, the transmitter and receiver are clocked by the baud-rate generator.

SSIOCTR
(read only)

F48AH SSIO Baud-rate Count Down:

Indicates whether the baud-rate generator is enabled and reflects the current
value of the baud-rate down-counter.

SSIOCON1
(read/write)

F486H SSIO Control 1:

Enables the transmitter and receiver, indicates when the transmit buffer is
empty and the receive buffer is full. Enables or disables the transmitter or
receiver interrupts. SSIOCON1 also indicates two error conditions: the
transmit underrun and receiver overflow.

SSIOCON2
(read/write)

F488H SSIO Control 2:

Selects whether the transmitter and receiver are in master or slave mode. In
master mode, the baud-rate generator clocks the transmitter or receiver. In
slave mode, an external master clocks the transmitter or receiver. Also
controls the enabling of the Automatic Transmit mode.

SSIOTBUF
(read/write)

F480H SSIO Transmit Buffer:

Holds the 16-bit data word to transmit. Data is transmitted most-significant bit
first.

SSIORBUF
(read only)

F482H SSIO Receive Buffer:

Holds the 16-bit data word received. Data is received most-significant bit first.
13-16

SYNCHRONOUS SERIAL I/O UNIT

 with
13.3.1 Pin Configuration Register (PINCFG)

The serial receive clock (SRXCLK) and transmit serial data (SSIOTX) pins are multiplexed
other functions. Use PINCFG bits 0 and 1 to select the pin functions.

Figure 13-15. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
13-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

input
13.3.2 SIO and SSIO Configuration Register (SIOCFG)

Use SIOCFG bit 2 to connect either PSCLK or SERCLK to the baud-rate generator’s
(BCLKIN).

Figure 13-16. SIO and SSIO Configuration Register (SIOCFG)

SIO and SSIO Configuration
SIOCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F836H
—
00H

7 0

S1M S0M — — — SSBSRC S1BSRC S0BSRC

Bit
Number

Bit
Mnemonic Function

7 S1M SIO1 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.

6 S0M SIO0 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SIO1 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate

generator.

0 S0BSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate

generator.
13-18

SYNCHRONOUS SERIAL I/O UNIT
13.3.3 Prescale Clock Register (CLKPRS)

Use CLKPRS to program the PSCLK frequency.

Figure 13-17. Clock Prescale Register (CLKPRS)

Clock Prescale Register
CLKPRS
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F804H
—
0000H

15 8

— — — — — — — PS8

7 0

PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

Bit
Number

Bit
Mnemonic Function

15–9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

8–0 PS8:0 Prescale Value:

These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).

divisor = PS8:0 + 2
13-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

r’s sev-
13.3.4 SSIO Baud-rate Control Register (SSIOBAUD)

Use SSIOBAUD to enable the baud-rate generator and determine the baud-rate generato
en-bit down counter’s reload value (BV).

Figure 13-18. SSIO Baud-rate Control Register (SSIOBAUD)

SSIO Baud-rate Control
SSIOBAUD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F484H
—
00H

7 0

BEN BV6 BV5 BV4 BV3 BV2 BV1 BV0

Bit
Number

Bit
Mnemonic Function

7 BEN Baud-rate Generator Enable:

Setting this bit enables the baud-rate generator. Clearing this bit disables
the baud-rate generator, clears the baud-rate count value, and forces the
baud rate clock to zero.

6–0 BV6:0 Baud-rate Value:

The baud-rate value (BV) is the reload value for the baud-rate
generator’s seven-bit down counter. The baud-rate generator’s output is
a function of BV and the baud-rate generator’s input (BCLKIN), as
follows.

 (Hz)

If you know the desired output baud-rate frequency, you can determine
BV as follows.

baud-rate output frequency (Hz)
BCLKIN

2BV 2+
----------------------=

BV
BCLKIN

2 baud-rate output frequency×
--- 

  1–=
13-20

SYNCHRONOUS SERIAL I/O UNIT

loaded

 to en-
fer full
pty, a
rred.

 to the
d, you
ull and
13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR)

Read SSIOCTR to determine the status of the baud-rate generator. The down counter is re
when CV6:0 reaches zero or when a new value is written to SSIOBAUD.

Figure 13-19. SSIO Baud-rate Count Down Regi ster (SSIOCTR)

13.3.6 SSIO Control 1 Register (SSIOCON1)

SSIOCON1 contains both transmit and receive control and status bits. Use the control bits
able the receiver and transmitter and to connect the transmit buffer empty and receive buf
signals to the interrupt control unit. The status bits indicate that the transmit buffer is em
transmit underrun error occurred, the receive buffer is full, or a receive overflow error occu

Both the transmit buffer empty and the receive buffer full signals can be connected (ORed)
interrupt request source (SSIOINT). When an interrupt request from this source is detecte
can determine which signal caused the request by reading the SSIOCON1 receive buffer f
transmit buffer empty status bits.

Baud-rate Count Down
SSIOCTR
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F48AH
—
00H

7 0

BSTAT CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

7 BSTAT Baud-rate Generator Status:

0 = The baud-rate generator is disabled.
1 = The baud-rate generator is enabled.

6–0 CV6:0 Current Value:

These bits indicate the current value of the baud-rate down counter.
13-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 13-20. SSIO Control 1 Register (SSIOCON1)

SSIO Control 1
SSIOCON1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F486H
—
C0H

7 0

TUE THBE TIE TEN ROE RHBF RIE REN

Bit
Number

Bit
Mnemonic Function

7 TUE Transmit Underrun Error:

The transmitter sets this bit to indicate a transmit underrun error in the
TEN transfer mode. Clear this bit to clear the error flag. If a one is written
to TUE, it is ignored and TUE retains its previous value.

6 THBE
(read only bit)

Transmit Holding Buffer Empty:

The transmitter sets this bit when the transmit buffer contents have been
transferred to the transmit shift register, indicating that the buffer is now
ready to accept new data. Writing data to the transmit buffer clears
THBE. When this bit is clear, the buffer is not ready to accept any new
data.

5 TIE Transmitter Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the transmit buffer is empty.

1 = Setting this bit connects the transmit buffer empty internal signal to
the Interrupt Control Unit.

4 TEN Transmitter Enable:

0 = Disables the transmitter.
1 = Enables the transmitter.

3 ROE Receive Overflow Error:

The receiver sets this bit to indicate a receiver overflow error. Write zero
to this bit to clear the flag.

If a one is written to ROE, the one is ignored and ROE retains its
previous value.

2 RHBF
(read only bit)

Receive Holding Buffer Full:

The receiver sets this bit when the receive shift register contents have
been transferred to the receive buffer.

Reading the buffer clears this bit.

1 RIE Receive Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the receive buffer is full.

1 = Setting this bit connects the receiver buffer full internal signal to the
Interrupt Control Unit.

0 REN Receiver Enable:

0 = Clearing this bit disables the receiver.
1 = Setting this bit enables the receiver.
13-22

SYNCHRONOUS SERIAL I/O UNIT

-
mit-
13.3.7 SSIO Control 2 Register (SSIOCON2)

Use the control bits TXMM and RXMM in SSIOCON2 to put the transmitter or receiver in mas
ter or slave mode. The AUTOTXM bit is used to determine if the TEN bit controls the trans
ting of the data.

Figure 13-21. SSIO Control 2 Register (SSIOCON2)

SSIO Control 2
SSIOCON2
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F488H
—
00H

7 0

— — — — — AUTOTXM TXMM RXMM

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 AUTOTXM Automatic Transmit off mode for master mode

0 = Clearing this bit puts the TEN bit into normal operation
1 = Setting this bit and the TXMM bit causes TEN to be ignored. Every

time a word is loaded into the transmit shift register from the transmit
holding buffer it is transmitted out and then stops.

1 TXMM Transmit Master Mode:

0 = Clearing this bit puts the transmitter in slave mode. In slave mode, an
external device controls the transmit serial communications. An input
on the STXCLK pin clocks the transmitter.

1 = Setting this bit puts the transmitter in master mode. In master mode,
the internal baud-rate generator controls the transmit serial
communications. The baud-rate generator’s output clocks the
internal transmitter and appears on the STXCLK pin.

0 RXMM Receive Master Mode:

0 = Clearing this bit puts the receiver in slave mode. In slave mode, an
external device controls the receive serial communications. An input
on the SRXCLK pin clocks the receiver.

1 = Setting this bit puts the receiver in master mode. In master mode, the
internal baud-rate generator controls the receive serial
communications. The baud-rate generator’s output clocks the
internal receiver and appears on the SRXCLK pin.
13-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF)

Write the data words to be transmitted to SSIOTBUF. Use the interrupt controller, DMA unit or
polling (read SSIOCON1) to determine when to write to the transmit buffer.

Figure 13-22. SSIO Transmit Holding Buffer (SSIOTBUF)

Transmit Holding Buffer
SSIOTBUF
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F480H
—
0000H

15 8

TB15 TB14 TB13 TB12 TB11 TB10 TB9 TB8

7 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

Bit
Number

Bit
Mnemonic Function

15–0 TB15:0 Transmit Buffer Bits:

These bits make up the next data word to be transmitted. The control
logic loads this word into the transmit shift register. The transmit shift
register shifts the bits out on the falling edge of the tranmitter clock pin.
The word is transmitted out starting with the most-significant bit (TB15).
13-24

SYNCHRONOUS SERIAL I/O UNIT

r

r these

ent a
re the

 the
13.3.9 SSIO Receive Holding Buffer (SSIORBUF)

Read SSIORBUF to obtain the last data word received. Use the interrupt controller, DMA unit o
polling (read SSIOCON1) to determine when to read the receive buffer.

Figure 13-23. SSIO Receive Holding Buffer (SSIORBUF)

13.4 DESIGN CONSIDERATIONS

The transmit buffer empty signal can be connected to the interrupt control and DMA units. How-
ever, at high baud-rates interrupt latency is too long to prevent a transmit underrun error. Fo
cases, use the DMA to load the data to be transmitted into the transmit buffer.

To illustrate this point, assume the maximum input transmit baud-rate of 8.25 MHz. To prev
transmit underrun error, a new 16-bit data word must be written to the transmit buffer befo
transmit shift register shifts out 16 bits.

At 33 MHz, one clock is 30 ns. The transmit buffer must be reloaded within 64 clocks (1939/30),
but interrupt latency is longer than 64 clocks. Therefore, the DMA unit is required to load
transmit buffer.

Receive Holding Buffer
SSIORBUF
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F482H
—
0000H

15 8

RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit
Number

Bit
Mnemonic Function

15–0 RB15:0 Receive Buffer Bits:

This register contains the last word received. The receive shift register
shifts bits in with the rising edge of the receiver clock pin. Data is shifted
in starting with the most-significant bit. The control logic then transfers
the received word from the receive shift register to SSIORBUF.

16 bits
1

8.25 MHz
-------------------------× 16 121 ns× 1939 ns= =
13-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ust
efore

ter is
e is

IO-
 the

xed

n and
13.5 PROGRAMMING CONSIDERATIONS

• When operating the transmitter in Master mode, and not in Autotransmit mode, you m
ensure that the last character to be transmitted is in the process of being shifted out b
disabling the transmitter. If the transmitter is disabled before the character has begun
shifting, the character remains in the shift register and is shifted out when the transmit
re-enabled. At high baud rates this can be a problem and using the Autotransmit mod
recommended.

• The SSIO interrupt line is multiplexed with INT5. When configuring your system for SS
generated interrupts, you must clear INTCFG.1 to connect the SSIO interrupt signal to
ICU.

• The serial receive clock (SRXCLK) and transmit serial data (SSIOTX) pins are multiple
with other functions. Use PINCFG bits 0 and 1 to select the pin functions.

• No register programming is required for the shared signal pairs RI1#/SSIORX and
DSR1#/STXCLK. Both do not have multiplexers since one of the shared signals is a
dedicated input.

13.5.1 SSIO Example Code

This section includes these software routines:

InitSSIO Initializes the SSIO for synchronous transfers

SSerialReadWord Polled serial read function that receives a single character

SSerialWriteWord Polled serial write function that transmits a single character

SSIO_ISR Interrupt Service Routine for interrupts generated by the SSIO

Service_RHBF Service routine for interrupts generated by the RHBF signal

Service_THBE Service routine for interrupts generated by the THBE signal

The final code example shows an SSIO transfer in which the transmitter is interrupt-drive
the receiver is polled. See Appendix C for included header files.

#include <conio.h>
#include “80386EX.h”
#include “EV386EX.h”

WORD value = ‘1’;
BYTE Control;
BYTE poll;

/***
InitSSIO:

Description:
13-26

SYNCHRONOUS SERIAL I/O UNIT
 Initialization routine for Synchronous Serial I/O Port.

 Parameters:
 Mode Enables receiver and transmitter; Enables TBE and RHBF
 interrupts
 MasterTxRx Defines whether Tx and/or Rx are in Master Mode
 BaudValue Enables Baud-rate generator and sets Baud-rate Value
 PreScale 9-bit Clock prescale value

 Returns:
 None

 Assumptions:

PINCFG & SIOCFG should be configured before this is called.
Prescale is only used if SIOCFG.2 is clear.

 Syntax:

#define SSIO_TX_MASTR 0x2 // Transmit Master Mode
#define SSIO_RX_MASTR 0x1 // Receive Master Mode
#define SSIO_TX_SLAVE 0 // Transmit Slave Mode
#define SSIO_RX_SLAVE 0 // Receive Slave Mode
#define SSIO_TX_IE 0x20 // Transmit Interrupt Enable
#define SSIO_TX_ENAB 0x10 // Transmitter Enable
#define SSIO_RX_IE 0x2 // Receive Interrupt Enable
#define SSIO_RX_ENAB 0x1 // Receiver Enable

 #define SSIO_BAUD_ENAB 0x80 // Enable Baud Rate Generator
 #define SSIO_CLK_SERCLK 0x1 // Baud Rate Clocking Source:
 // SERCLK = CLK2/4

#define SSIO_CLK_PSCLK 0x0 // Baud Rate Clocking Source:
// PSCLK = (CLK2/2) /

(CLKPRS+2)

 InitSSIO (SSIO_TX_IE| SSIO_TX_ENAB | SSIO_RX_ENAB,
 SSIO_RX_MASTR | SSIO_TX_SLAVE,
 SSIO_BAUD_ENAB,
 SSIO_CLK_PSCLK);

 Real/Protected Mode:
 No changes required.

***/

void InitSSIO(BYTE Mode, BYTE MasterTxRx, BYTE BaudValue, BYTE PreScale)
{
 /*** Set clocking iff either TX or RX is a master ***/
 if(MasterTxRx != 0)
 {
 /* If 0 using PSCLK, therefore set PreScale */
 if((_GetEXRegByte(SIOCFG) & BIT2MSK) == 0)
 _SetEXRegByte(CLKPRS, PreScale);
13-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
/* Init Baud Rate Generator */
 _SetEXRegByte(SSIOBAUD,BaudValue);

}
_SetEXRegByte(SSIOCON1,Mode);
_SetEXRegByte(SSIOCON2,MasterTxRx);

}/* InitSSIO */

/***

SSerialReadWord:

Description:
Is a Polled serial port read function that will wait forever
or until a character has been received from the serial port.

Parameters:
MasterSlave Defines if receiver is in Master or Slave mode

 Returns:
 Word read from serial port

 Assumptions:
 In Slave Mode, receiver must be enabled prior to this function call.

 Syntax:

 #define SSIO_RX_MASTR 0x1
 #define SSIO_RX_SLAVE 0x0

 WORD character;

 character = SSerialReadWord(SSIO_RX_MASTR);

 Real/Protected Mode:
 No changes required.

**/

WORD SSerialReadWord(BYTE MasterSlave)
{

register BYTE SSControl;
if(MasterSlave == SSIO_RX_MASTR)
{

/* Save Control Register */
SSControl = _GetEXRegByte(SSIOCON1);
/* Get Control Register Ready to disable */
SSControl &= (~SSIO_RX_ENAB);// Clear the bit
/* Enable Receiver */
_SetEXRegByte(SSIOCON1, SSControl | SSIO_RX_ENAB);
/* Wait until Receive Holding Buffer is Full */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_RHBF));
13-28

SYNCHRONOUS SERIAL I/O UNIT
/* Disable Receiver */
_SetEXRegByte(SSIOCON1, SSControl);

}
else { // Slave Receiver, Receiver MUST already be Enabled

/* Wait until Receive Holding Buffer is Full */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_RHBF));

}
return (WORD)_GetEXRegWord(SSIORBUF);

}/* SSerialReadWord */

/***

SSerialWriteWord:

Description:
Is a Polled serial port write function that will wait forever
or until a character has been written to the serial port.

 Parameters:
 Ch Word to be written out to serial port
 MasterSlave Defines whether transmitter is Master or Slave

 Returns:
 None

 Assumptions:
 If transmitter is in Slave mode, it must already be enabled.

 Syntax:

 #define SSIO_TX_MASTR 0x2
 #define SSIO_TX_SLAVE 0x0

char Ch = ‘a’;

SSerialWriteWord((WORD)Ch, SSIO_TX_MASTR);

Real/Protected Mode:
 No changes required.

**/

void SSerialWriteWord(WORD Ch,BYTE MasterSlave)
{

register BYTE SSControl;
unsigned int i;

if(MasterSlave == SSIO_TX_MASTR)
{

/* Save Control Register */
SSControl = _GetEXRegByte(SSIOCON1);
13-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 /* Get Control Register Ready to disable */
SSControl &= (~SSIO_TX_ENAB); // Clear the bit

/* Set Buffer to Character */
_SetEXRegWord(SSIOTBUF,Ch);

 /* Enable Transmitter */

_SetEXRegByte(SSIOCON1, SSControl | SSIO_TX_ENAB);

/* Wait until Transmit Holding Buffer is empty */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_THBE));
for(i=0;i < 4000; i++) { // Delay so transmit begins before disable
 _asm {
 nop
 }
}

/* Disable Transmitter */
_SetEXRegByte(SSIOCON1, SSControl);

}
else // Slave, Transmitter MUST already be Enabled
{

/* Wait until Transmit Holding Buffer is empty */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_THBE));
_SetEXRegWord(SSIOTBUF,Ch);// Write to Buffer

}

}/* SSerialWriteWord */

/**

SSIO_ISR:

Description:
Interrupt Service Routine for SSIO generated interrupts. This ISR
identifies the cause of the interrupt and calls the appropriate
routine.

 Parameters:
 None

 Returns:
 None

 Assumptions:
 It is assumed that the Slave 8259 is operating in Fully Nested Mode.
 If the Slave were in SMM, a Specific EOI would have to be sent to the
13-30

SYNCHRONOUS SERIAL I/O UNIT
 Slave to clear the in-service bit.
 It is also assumed that the Master is not operating in AEOI, SFNM, or
 SMM. If the Master were in SMM or SFNM, a Specific EOI would have to
 be used. On the other hand, if the Master were operating in AEOI mode,
 no EOI signal would have to be sent.

 Syntax:
 Not called by user

 Real/Protected Mode:
 No changes required.

**/

void interrupt far SSIO_ISR (void)
{

 Control = _GetEXRegByte(SSIOCON1);

 /* If THBE is set and Transmitter Interrupts are enabled */
 if ((Control & SSIO_THBE) && (Control & SSIO_TX_IE)) {
 Service_THBE(); // Service routine specific to THBE interrupts
 }

 /* Else if RHBF is set and Receiver Interrupts are enabled */
 else if ((Control & SSIO_RHBF) && (Control & SSIO_RX_IE)) {
 Service_RHBF(); // Service routine specific to RHBF interrupts
 }

 NonSpecificEOI(); // For Slave
 NonSpecificEOI(); // For Master

}/* SSIO_ISR */

/***

Service_RHBF:

Description:
Service Routine for SSIO interrupts generated by the RHBF signal.

Parameters:
None

Returns:
None

Assumptions:
13-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
None

Syntax:
Not called by user

Real/Protected Mode:
 No changes required.

**/

void Service_RHBF(void)
{

 WORD buffer;

 buffer = _GetEXRegWord(SSIORBUF);

 /* Display received character on the screen */
 SerialWriteChar(SIO_0, (BYTE)buffer);

}/* Service_RHBF */

/***

Service_THBE:

Description:
Service routine for SSIO interrupts generated by THBE signal.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

**/

void Service_THBE(void)
{

 int i;

if (value <= ‘9’) {
13-32

SYNCHRONOUS SERIAL I/O UNIT
 _SetEXRegWord(SSIOTBUF, value);
 value++;
 }

 else {
 /* Disable Transmitter and Transmitter interrupts */

 for(i=0;i < 4000; i++) { // Delay so transmit begins before disable
_asm {
 nop
}

 }
 _SetEXRegByte(SSIOCON1,_GetEXRegByte(SSIOCON1) & 0xcf); // Clear TEN, TIE
 }

} /* Service_THBE */

/***

 Example Code showing SSIO transfer in which the transmitter is
 interrupt-driven and the receiver is polled:

 InitSSIO(SSIO_RX_ENAB | SSIO_TX_ENAB | SSIO_TX_IE,
 SSIO_TX_MASTR | SSIO_RX_SLAVE, 0xF0, 0);

 // Setup SSIO interrupts
 _SetEXRegByte(INTCFG, _GetEXRegByte(INTCFG) & 0xfd); // Slave IR1 is
 // multiplexed
 SetIRQVector(SSIO_ISR, 9, INTERRUPT_ISR); // SSIO IR will be generated
 // on Slave IR1

Disable8259Interrupt(IR1+IR3+IR4+IR5+IR6+IR7, IR0+IR2+IR3+IR4+IR5+IR6+IR7);
 Enable8259Interrupt(IR2,IR1); // Enable slave interrupt to master(IR2),
 // Enable slave IR1
 _enable(); // Enable Interrupts

 // Initialize SSIO Ports
 _SetEXRegByte(PINCFG, _GetEXRegByte(PINCFG) & 0xfc);
 _SetEXRegByte(SIOCFG, _GetEXRegByte(SIOCFG) & 0xfb);

 // Fill up transmit buffer with first character
 _SetEXRegWord(SSIOTBUF, ‘a’);

 // Use Polled SSIO receiver function to receive character
 while (input < ‘z’) {
 input = SSerialReadWord(SSIO_RX_SLAVE);
 SerialWriteChar(SIO_0, (BYTE)input); // Print to screen
 }
**/
13-33

14
CHIP-SELECT
UNIT

nd
l “glue
rnal

enable
 to that
al and

-
a va-
 to 31
nal.

 address
u also
 man-

ates the
lifies
rnally.
CHAPTER 14
CHIP-SELECT UNIT

The Chip-select Unit (CSU) of the processor can be used to eliminate external address abus-
cycle decoders in your system. The chip-selects generated by this unit can simplify externa
logic” by providing signals that can be connected directly to the chip-enable inputs of exte
memory and I/O devices. If a particular device or address region does not require a chip-
signal, a chip-select region can be programmed only to enable termination of accesses
region. A chip-select region can also be programmed to generate a chip-enable sign
terminate accesses to that region.

The chip-select unit provides eight signals, or channels, allowing direct access to up to eight de
vices or address regions. You can individually configure the channels for compatibility with
riety of devices. Each channel can operate in either 16-bit or 8-bit bus mode, generate up
wait states, and either terminate a bus cycle automatically or wait for an external ready sig

This chapter is organized as follows:

• Overview (see below)

• CSU Operation (page 14-2)

• Register Definitions (page 14-13)

• Design Considerations (page 14-21)

• Programming Considerations (page 14-22)

14.1 OVERVIEW

Each chip-select channel consists of address and mask registers and an output signal. The
and mask registers allow you to define memory or I/O address blocks for each channel. Yo
specify whether or not the chip-select is activated when the processor is operating in system
agement mode. When the processor accesses a channel’s address block, the CSU activ
channel’s output signal. Connecting a channel’s output to a memory or I/O device simp
memory and I/O interfacing by removing the need for and delay of decoding addresses exte

NOTE
Chip-select channels are not activated during interrupt acknowledge cycles
and halt and shutdown cycles.
14-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

re dis-

 during
 and

truction
ed in
pace (a
el does

select
bus size

. When
ompared
e CSU
ses and
ddress
14.2 CSU UPON RESET

Upon reset of the processor, only the UCS channel is enabled and all other chip-selects a
abled. UCS is enabled for the entire memory space of the processor.

The UCS region is initialized upon reset with the following settings:

• Mask set to 7FFFH (CM25:11 in UCSMSKH and UCSMSKL registers)

• CMSMM set

• 16-bit bus size

• Memory access

• External READY# ignored

• 15 wait states

With all the UCS mask bits set to 1, the UCS# pin is active for the entire 64 MBytes of thepro-
cessor’s memory address space. The UCS region can be programmed for a smaller size
initialization. Normally, UCS# is used to select non-volatile memory devices, such as ROM
FLASH, at the top of the memory address space so that the processor can fetch the first ins
from address 3FFFFF0H after RESET. If the Port92 CPU-only RESET is used (describ
Chapter 5), the UCS channel must remain enabled for the top of the memory address s
CPU-only RESET does not affect the chip-select registers) and therefore, the UCS chann
not re-initialize to its reset state.

14.3 CSU OPERATION

Each chip-select channel functions independently. The following sections describe chip-
channel address blocks, system management mode support, and bus cycle length and
control.

14.3.1 Defining a Channel’s Address Block

A 15-bit channel address and mask are used to specify a channel’s active address block
the processor accesses an address in memory or I/O, the upper 15 bits of the address are c
to the chip-select channel address and OR’d with the channel mask. This means that th
compares the channel address and ORs the channel mask to A25:11 for memory addres
A15:1 for I/O addresses. Ones in the channel’s mask exclude the corresponding bits from a
comparisons. Figure 14-1 shows the logic for determining address equality.
14-2

CHIP-SELECT UNIT

d). For
ize is 2
ze is 2

arisons,
ry ad-

most
Figure 14-1. Channel Address Comparison Logic

The lower address bits are excluded from address comparisons (only 15 bits are compare
memory addresses which have 26-bit addresses, the minimum channel address block s
Kbytes; for I/O addresses with 16-bit addresses, the minimum channel address block si
bytes.

NOTE
The starting address of any channel address block must be a multiple of the
block size. For example, a 256 Kbyte block can only start at an address that is
a multiple of 256 Kbytes (0H, 4000H, 8000H, etc.).

Because you can set ones in the channel mask to exclude certain address bits from comp
you can increase the size of a channel’s address block (by powers of 2 in Kbytes for memo
dresses and by powers of 2 in bytes for I/O addresses). Figure 14-2 illustrates how memory ad-
dress block sizes are determined from the channel’s mask; the concept is the same for I/O address
block sizes (replace Kbyte with byte). As shown in Figure 14-2, the bit location of the right-
zero in the channel mask determines the channel’s active address block size.

A2533-01

15-bit Channel Address

15-bit Channel Mask

Address

bit x

bit x

bit x

Chip-select

Channel Output
14-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 loca-
s. The
pts dis-
Figure 14-2. Determining a Channel’s Address Block Size

Any ones that are to the left of the right-most zero determine the number of blocks and the
tions where the blocks are repeated. This is best illustrated by the following four example
examples assume the channel is configured for memory addresses; however, the conce
cussed also apply to I/O-configured channels.

A2534-01

X X XX X X X XX X X X X 0 1

X X XX X X X XX X X X X X 0

X X XX X X X XX X X X 0 1 1

0 1 11 1 1 1 11 1 1 1 1 1 1

1 1 11 1 1 1 11 1 1 1 1 1 1

15 1

2 = 2 Kbyte
1

2 = 4 Kbyte
2

2 = 8 Kbyte
3

2 = 32768 Kbyte
15

2 = 65536 Kbyte
16

15-bit Channel Mask Block Size
14-4

CHIP-SELECT UNIT

el’s ac-
 channel

ve ad-
 the
Example 1

This example establishes a single 32-Kbyte address block starting at 1340000H (a 32-Kbyte
boundary). In this example, the 15-bit channel address is the starting address of the chann
tive address block (because there are no 1’s in the channel mask where there are 1’s in the
address)
.

Because the least-significant 0 in the channel’s mask is in bit position 5, this channel’s acti
dress block size is 25 = 32 Kbytes. Because there are no 1’s to the left of the right-most 0 in
channel’s mask, the block is not repeated.

15 1

15-bit Channel Address 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

15-bit Channel Mask 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

25 0

Channel Active Address 0 1 0 0 1 1 0 1 0 0 0 X X X X X X X X X X X X X X X

Active

1347FFFH

1340000H
14-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ve ad-
 the
nel
ss of the
 is fol-
Example 2

This example establishes four 4-Kbyte address blocks starting at 0000000H, 0002000H,
0004000H, and 0006000H (4-Kbyte boundaries).

Because the least-significant 0 in the channel’s mask is in bit position 2, this channel’s acti
dress block size is 22 = 4 Kbytes. Because there are two 1’s to the left of the right-most 0 in
channel’s mask, the block is repeated 22 = 4 times. Also, because there are no 1’s in the chan
mask where there are 1’s in the channel address, the channel address is the starting addre
lowest active address block. In this example, each active 4-Kbyte address block in memory
lowed by an inactive 4-Kbyte address block and each active address block starts on a 4-Kbyte
address boundary.

15 1

15-bit Channel Address 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15-bit Channel Mask 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

25 0

Channel Active Address 0 0 0 0 0 0 0 0 0 0 0 X X 0 X X X X X X X X X X X X

Maximum
Memory Address

0007000H

Active 0006FFFH

0006000H

0005FFFH

0005000H

Active 0004FFFH

0004000H

0003FFFH

0003000H

Active 0002FFFH

0002000H

0001FFFH

0001000H

Active 0000FFFH

0000000H
14-6

CHIP-SELECT UNIT

ve ad-
 the
he
rting ad-

tarts at
Example 3

This example establishes four 2-Kbyte address blocks starting at 2413000H, 2433000H,
2613000H, and 2633000H.

Because the least-significant 0 in the channel’s mask is in bit position 1, this channel’s acti
dress block size is 21 = 2 Kbytes. Because there are two 1’s to the left of the right-most 0 in
channel’s mask, the address block is repeated 22 = 4 times. Also, because there are no 1’s in t
channel mask where there are 1’s in the channel address, the channel address is the sta
dress of the lowest active address block. In this example, each active 2-Kbyte address block in
memory is followed by an inactive 2-Kbyte address block and each active address block s
a 2-Kbyte boundary.

15 1

15-bit Channel Address 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0

15-bit Channel Mask 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

25 0

Channel Active Address 1 0 0 1 X 0 0 0 X 1 0 0 1 1 0 X X X X X X X X X X X
14-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Maximum Memory

Address

2633800H

Active 26337FFH

2633000H

2613FFFH

2613800H

Active 26137FFH

2613000H

2433FFFH

2433800H

Active 24337FFH

2433000H

2432FFFH

2413800H

Active 24137FFH

2413000H
14-8

CHIP-SELECT UNIT

ve ad-
 the
 1
l address
ve 16-
arts at
Example 4

This example establishes two 16-Kbyte address blocks starting at 0E08000H and 0E28000H (16-
Kbyte boundaries).

Because the least-significant 0 in the channel mask is in bit position 4, this channel’s acti
dress block size is 24 = 16 Kbytes. Because there is one 1 to the left of the right-most 0 in
channel mask, the address block is repeated 21 = 2 times. Unlike the other examples, there is a
in the channel mask where there is a 1 in the channel address. For this reason, the channe
is not the starting address of the lowest active address block. In this example, each acti
Kbyte address block is followed by an inactive 16-Kbyte address block and each block st
a 16-Kbyte address boundary.

15 1

15-bit Channel Address 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0

15-bit Channel Mask 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1

25 0

Channel Active Address 0 0 1 1 1 0 0 0 X 0 1 0 X X X X X X X X X X X X X X

Maximum
Memory Address

0E2C000H

Active

0E2BFFFH

0E28000H

0E0C000H

Active

0E0BFFFH

0E08000H
14-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

al
ral re-

 the

t is ac-
ac-
ld state.

f
14.3.2 System Management Mode Support

The processor supports four operating modes: system management mode (SMM), protected, re
and virtual-86 mode. In order for a system to operate correctly in SMM, it must meet seve
quirements. The CSU provides support for some of these requirements. To use SMM, you must
set aside a partition of memory, called SMRAM, for the SMM driver. SMRAM must meet
following conditions:

• Located at 38000H–3FFFFH (32 Kbytes)

• Accessible only when the processor is in SMM during normal operation

• Accessible during system initialization when the processor is not in SMM

The CSU allows you to specify an address block and control whether or not the chip-selec
tivated while the processor is in SMM. While in SMM (with CASMM=1), the chip-select is
tive only when the processor is the bus master, such as when the processor is not in a ho

Refer to Chapter 7 (“Programming Considerations” on page 7-16) for a code example opro-
gramming chip-selects to support SMM.
14-10

CHIP-SELECT UNIT

nel can

s
lly, and

nless the
dressed

bit de-
el.

 over-
U must
the case

 does
eces-
14.3.3 Bus Cycle Length Control

Each chip-select channel controls how bus cycles to its address block terminate. Each chan
generate up to 31 wait states and then unconditionally terminate or wait for an external bus ready
signal to terminate. If the channel is programmed for wait states and to sample external READY#,
the external READY# is ignored until the programmed number of wait states has been inerted
into the cycle. If greater than 31 wait states are required, ready must be generated externa
the external READY# option must be selected.

NOTE
When a chip-select region overlaps on-chip peripheral addresses, the on-chip
peripheral always generates READY# and overrides the channel’s
configuration.

14.3.4 Bus Size Control

The processor assumes that the currently addressed device requires a 16-bit data bus u
bus size control pin (BS8#) is asserted. When asserted, BS8# tells the processor that the ad
device requires an 8-bit data bus. You can program a chip-select channel specifically for 8-
vices. This causes the CSU to assert BS8# automatically each time it activates the chann

14.3.5 Overlapping Regions

You can configure CSU channels to have overlapping address blocks. When channels with
lapping address blocks have different bus cycle length and bus size configurations, the CS
adjust these parameters. Figure 14-3 shows how the CSU adjusts the bus cycle length. In
of different bus sizes, the CSU defaults to an 8-bit bus size.

If one overlapping chip-select region has the RDY bit set and the other overlapping region
not, the CSU defaults to the ‘RDY Bit Set’ operation; in this case an external READY# is n
sary to terminate accesses to the address locations in which the two chip-selects overlap.

NOTE
If a bus cycle address activates multiple overlapping CSU channels, all the
enabled chip-select signals of those channels go active. To avoid contention on
the data bus, care must be taken when using these chip-select signals
externally.
14-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 14-3. Bus Cycle Length Adjustments for Overlapping Regions

 A2392-02

Complete bus cycle.

READY#

asserted?

Yes

No

Is any

channel

dependent on

external

ready?

Wait for largest number of

all overlapping regions'

wait state values.

Wait for smallest number

of all overlapping regions'

wait state values.

No

Yes

Wait

State
14-12

CHIP-SELECT UNIT

There
).

address
s space
14.4 REGISTER DEFINITIONS

Table 14-1 and Table 14-2 list the signals and registers associated with the chip-select unit.
are seven general-purpose chip-select channels (CSn) and one upper chip-select channel (UCS
Upon reset, the UCS is enabled with the entire 64 Mbyte memory address space as its
block. The UCS can be used to select a memory device at the top of the memory addres
so that the processor can fetch the first instruction from address 3FFFFF0H after reset.

Table 14-1. CSU Signals

Signal
Device Pin or Internal

Signal
Description

CS6:0#
UCS#

Device pins
(output)

Chip-select Signals:

Indicates that the memory or I/O address that the
processor is accessing is in channel n’s active address
region.
14-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table 14-2. CSU Registers

Register
Expanded
Address

Description

PINCFG

(read/write)

0F826H Pin Configuration:

Connects the CS6:5# signals to package pins.

P2CFG

(read/write)

0F822H Port 2 Configuration:

Connects the CS4:0# signals to package pins.

CS0ADH
CS1ADH
CS2ADH
CS3ADH
CS4ADH
CS5ADH
CS6ADH
UCSADH
(read/write)

0F402H
0F40AH
0F412H
0F41AH
0F422H
0F42AH
0F432H
0F43AH

Chip-select High Address:

Defines the upper 10 bits of the chip-select channel address. The
processor uses a chip-select’s channel address to determine the starting
location of the channel’s active address block.

CS0ADL
CS1ADL
CS2ADL
CS3ADL
CS4ADL
CS5ADL
CS6ADL
UCSADL
(read/write)

0F400H
0F408H
0F410H
0F418H
0F420H
0F428H
0F430H
0F438H

Chip-select Low Address:

Defines the lower 5 bits of the chip-select channel address. Configures
the channel for memory or I/O addresses, determines whether or not the
channel is activated when the processor is operating in system
management mode, configures the channel’s bus size, defines the
minimum number of wait states inserted into the bus cycle, and defines
whether an external READY# is required to terminate the bus cycle.

CS0MSKH
CS1MSKH
CS2MSKH
CS3MSKH
CS4MSKH
CS5MSKH
CS6MSKH
UCSMSKH
(read/write)

0F406H
0F40EH
0F416H
0F41EH
0F426H
0F42EH
0F436H
0F43EH

Chip-select High Mask:

Defines the upper 10 bits of the chip-select channel mask. The processor
uses a chip-select’s channel mask to determine the size of the channel’s
active address block and if the address block is repeated.

CS0MSKL
CS1MSKL
CS2MSKL
CS3MSKL
CS4MSKL
CS5MSKL
CS6MSKL
UCSMSKL
(read/write)

0F404H
0F40CH
0F414H
0F41CH
0F424H
0F42CH
0F434H
0F43CH

Chip-select Low Mask:

Defines the lower 5 bits of the chip-select channel mask and enables the
channel’s output pin.
14-14

CHIP-SELECT UNIT
14.4.1 Pin Configuration Register (PINCFG)

Use PINCFG bits 6 and 4 to connect the CS6# and CS5# signals to package pins.

Figure 14-4. Pin Configuration Register (PINCFG)

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
14-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
14.4.2 Port 2 Configuration Register (P2CFG)

Use P2CFG bits 4–0 to connect the CS4:0# signals to package pins.

Figure 14-5. Port 2 Configuration Register (P2CFG)

Port 2 Configuration
P2CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F822H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.

6 PM6 Pin Mode:

0 = Selects P2.6 at the package pin.
1 = Selects TXD0 at the package pin.

5 PM5 Pin Mode:

0 = Selects P2.5 at the package pin.
1 = Selects RXD0 at the package pin.

4 PM4 Pin Mode:

0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.

3 PM3 Pin Mode:

0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.

2 PM2 Pin Mode:

0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.

1 PM1 Pin Mode:

0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.

0 PM0 Pin Mode:

0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.
14-16

CHIP-SELECT UNIT

nnel re-
us
atches

r
 address
’s SMM
EN).

d by the
14.4.3 Chip-select Address Registers

The Address Register of each chip-select channel defines the address block that the cha
sponds to during an access. The value in this register is compared to A25:11 of the processor b
during a memory access and to A15:1 during an I/O access. A bus cycle whose address m
the non-masked (see “Chip-select Mask Registers” on page 14-19) bits of the Address Registe
causes the respective chip-select channel to have an address match. Even if there is an
match, whether or not the CSU activates the channel depends on the values of the channel
address and mask bits (CASMM and CMSMM) and the chip-select channel enable bit (CS
The CASMM and CMSMM bits determine whether or not the channel is activated when thepro-
cessor is operating in SMM.

Write a channel’s 15-bit address to the chip-select address registers. These bits are maske
channel’s 15-bit mask.

NOTE
When a chip-select channel is activated, it either asserts a chip-select signal,
controls wait states and READY# generation, or both.

Figure 14-6. Chip-select High Address Register (CS nADH, UCSADH)

Chip-select High Address
CSnADH (n = 0–6), UCSADH
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F402H, F40AH
F412H, F41AH
F422H, F42AH
F432H, F43AH
—
0000H (CSnADH)
FFFFH (UCSADH)

15 8

— — — — — — CA15 CA14

7 0

CA13 CA12 CA11 CA10 CA9 CA8 CA7 CA6

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved; for compatibility with future devices, write zeros to these bits.

9–0 CA15:6 Chip-select Channel Address Upper Bits:

Defines the upper 10 bits of the channel’s 15-bit address. The address
bits CA15:6 and the mask bits CM15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.
14-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 14-7. Chip-select Low Address Register (CS nADL, UCSADL)

Chip-select Low Address
CSnADL (n = 0–6), UCSADL
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F400H, F408H
F410H, F418H
F420H, F428H
F430H, F438H
—
0000H (CSnADL)
FF6FH (UCSADL)

15 8

CA5 CA4 CA3 CA2 CA1 CASMM BS16 MEM

7 0

RDY — — WS4 WS3 WS2 WS1 WS0

Bit
Number

Bit
Mnemonic Function

15–11 CA5:1 Chip-select Address Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit address. The address bits
CA5:1 and the mask bits CM5:1 form a masked address that is compared to
memory address bits A15:11 or I/O address bits A5:1.

10 CASMM SMM Address Bit:

If this bit is set (and unmasked), the CSU activates the chip-select channel
only while the processor is in SMM (and not in a hold state). Otherwise, the
CSU activates the channel only when processor is operating in a mode
other than SMM.

Setting the SMM mask bit in the channel’s mask low register masks this bit.
When this bit is masked, an address match activates the chip-select,
regardless of whether the processor is in SMM or not.

9 BS16 Bus Size 16-bit:

0 = All bus cycles to addresses in the channel’s address block are byte-
wide.

1 = Bus cycles are 16 bits unless the bus size control pin (BS8#) is
asserted.

8 MEM Bus Cycle Type:

0 = Configures the channel for an I/O addresses
1 = Configures the channel for memory addresses

7 RDY Bus Ready Enable:

0 = External READY# is ignored. READY# generated by CSU to terminate
the bus cycle.

1 = Requires that external READY# be active to complete a bus cycle. This
bit must be set to extend wait states beyond the number determined by
WS4:0 (see “Bus Cycle Length Control” on page 14-11).

6–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4–0 WS4:0 Wait State Value:

WS4:0 defines the minimum number of wait states inserted into the bus
cycle. A zero value means no wait states.
14-18

CHIP-SELECT UNIT

d with
pecify

address

ct low
e c
erating
14.4.4 Chip-select Mask Registers

The Mask Register of each chip-select region is used to prevent bits from being compare
the starting address, thus masking them from the comparison. This masking allows you to s
the size of the region being defined. The mask should be set such that it masks the lower
bits being compared, up to the size that you would like the block to be.

Write a channel’s 15-bit mask to the chip-select mask registers. Also, use the chip-sele
mask register to enable the channel and to mask the channel’s SMM address bit. When thhan-
nel’s SMM address bit is masked, the CSU activates the channel even if the channel is op
in SMM.

Figure 14-8. Chip-select High Mask Registers (CS nMSKH, UCSMSKH)

Chip-select High Mask
CSnMSKH (n = 0–6), UCSMSKH
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F406H, F40EH
F416H, F41EH
F426H, F42EH
F436H, F43EH
—
0000H (CSnMSKH)
FFFFH (UCSMSKH)

15 8

— — — — — — CM15 CM14

7 0

CM13 CM12 CM11 CM10 CM9 CM8 CM7 CM6

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved; for compatibility with future devices, write zeros to these bits.

9–0 CM15:6 Mask Value Upper Bits:

Defines the upper 10 bits of the channel’s 15-bit mask. The mask bits
CM15:6 and the address bits CA15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.
14-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 14-9. Chip-select Low Mask Registers (CS nMSKL, UCSMSKL)

Chip-select Low Mask
CSnMSKL (n = 0–6), UCSMSKL
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F404H, F40CH
F414H, F41CH
F424H, F42CH
F434H, F43CH
—
0000H (CSnMSKL)
FFFFH (UCSMSKL)

15 8

CM5 CM4 CM3 CM2 CM1 CMSMM — —

7 0

— — — — — — — CSEN

Bit
Number

Bit
Mnemonic Function

15–11 CM5:1 Chip-select Mask Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit mask. The mask bits
CM5:1 and the address bits CA5:1 form a masked address that is
compared to memory address bits A15:11 or I/O address bits A5:1.

10 CMSMM SMM Mask Bit:

0 = The SMM address bit is not masked.
1 = Masks the SMM address bit in the channel’s Chip-Select Low

Address register. When the SMM address bit is masked, an address
match activates the chip-select, regardless of whether the processor
is in SMM.

9–1 — Reserved; for compatibility with future devices, write zeros to these bits.

0 CSEN Chip-select Enable:

0 = Disables the chip-select channel.
1 = Enables the chip-select channel.
14-20

CHIP-SELECT UNIT

ly an
nnel

g the

to

st
ot
o its

s and

dary

-

14.5 DESIGN CONSIDERATIONS

When designing with the CSU, consider the following:

• Upon reset, UCS# is configured as a 16-bit chip-select signal. If the Boot device is on
8-bit device, then BS8# must be asserted whenever UCS# is active (until the UCS cha
can be reprogrammed to reflect an 8-bit region). One way of doing this is by connectin
UCS# pin directly to the BS8# pin, if there are no other devices that need to use the BS8#
pin. If UCS# is tied directly to BS8#, then the UCS channel need not be programmed
reflect an 8-bit region.

• If the Port92 CPU-only RESET is used (described in Chapter 5), the UCS channel mu
remain enabled for the top of the memory address space (a CPU-only RESET does n
affect the chip-select registers) and therefore, the UCS channel does not re-initialize t
reset state.

• If arbitrary chip-select regions are required to access external memory and I/O device
a single channel can not be programmed to accommodate the address space of these
regions, multiple chip-select signals can be “ORed” to create a single chip-enable to a
device. For example a 512 Kbyte region chip-select signal starting on a 256 Kbyte boun
can be created by “ORing” two 256 Kbyte chip-select signals.

• Refer to Chapter 6 (“Design Considerations” on page 6-38) for examples of using chip
select signals to access external devices.
14-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

t.
n

nd

res

 for

I/O

dix C
14.6 PROGRAMMING CONSIDERATIONS

When programming the CSU, consider the following:

• When programming a chip-select channel, always program the Low Mask Register las
This ensures that all other bits are properly programmed before the region is enabled. Whe
reprogramming the channel, always disable the channel before changing anything else.

• A chip-select channel is enabled by setting bit 0 of its Chip-Select Low Mask register a
its output signal is connected to the package pin by setting or clearing the appropriate
PINCFG or P2CFG register bit. The PINCFG and P2CFG registers are shown in Figu
14-4 and 14-5.

• The minimum address block for memory address-configured channels is 2 Kbytes and
I/O address-configured channels is 2 bytes. The size of these address blocks can be
increased by powers of 2 Kbytes for memory addresses and by powers of 2 bytes for
addresses.

• A channel’s address block of size n always starts on an n address boundary.

14.6.1 Chip-Select Unit Code Example

This following code example initializes the UCS and CS4 channels of the CSU. See Appen
for the included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

/*
Description:

Initialize Chip Select Unit for:
 UCS: Start address is 00H.
 Region size is 512 Kbytes.
 0 wait states.
 Upper chip select is Enabled.
 16 bit data bus size in memory space.
 External bus ready is Disabled.
 SMM region is accessible during SMI access and memory access.

 CS4: Start address is 080000H.
 Region size is 512 Kbytes.
 0 wait states.
 Chip select 4 is Enabled.
 16 bit data bus size in memory space.
 External bus ready is Disabled.
 SMM region is accessible during SMI access only.

Parameters:
 None
14-22

CHIP-SELECT UNIT
Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

*/

void Init_CSU(void)
{

 _SetEXRegWord(UCSADL, 0x700); /* Configure the upper chip select */
 _SetEXRegWord(UCSADH, 0x0);
 _SetEXRegWord(UCSMSKL, 0xFC01);
 _SetEXRegWord(UCSMSKH, 0x7);

 _SetEXRegWord(CS4ADL, 0x300); /* Configure chip select 4 */
 _SetEXRegWord(CS4ADH, 0x8);
 _SetEXRegWord(CS4MSKL, 0xF801);
 _SetEXRegWord(CS4MSKH, 0x7);

}
14-23

15
REFRESH
CONTROL UNIT

quests
n external

nerate

RAM).
ut re-

. The
quire-

w and
M de-
ess
(or
 row.
CHAPTER 15
REFRESH CONTROL UNIT

The Refresh Control Unit (RCU) simplifies the interface between the processor and a dynamic
random access memory (DRAM) device by providing a way to generate periodic refresh re
and refresh addresses. These refresh requests and addresses can then be used by a
DRAM controller to generate the appropriate DRAM signals and addresses needed to perform
refresh operations. The RCU can be used in conjunction with the Chip-select Unit to ge
chip select signals for DRAM regions; these signals can be used by the external DRAM controller
to initiate refresh cycles.

The RCU can also be used when interfacing to pseudo-static random access memory (PS
This type of memory has an interface similar to a static random access memory (SRAM), b
quires a periodic refresh similar to DRAM.

This chapter is organized as follows:

• Dynamic Memory Control (see below)

• Refresh Control Unit Overview (page 15-2)

• RCU Operation (page 15-5)

• Register Definitions (page 15-6)

• Design Considerations (page 15-11)

• Programming Considerations (page 15-14)

15.1 DYNAMIC MEMORY CONTROL

Typical DRAM devices require control logic to enable read, write, and refresh operations
RCU simplifies control logic design requirements by providing the necessary cell access re
ments for refresh operations.

DRAM devices are built as matrices of memory cells. Therefore, each memory cell has a ro
column address associated with it. A typical controller design strobes addresses into a DRA
vice through the use of two control lines: a row address strobe (RAS#) and a column addr
strobe (CAS#). The controller presents lower (or row) address bits during RAS# and upper
column) address bits during CAS#. Activating RAS# accesses all cells within the specified
Accessing a cell refreshes it; therefore, cycling through the row addresses refreshes a DRAM de-
vice.

15.1.1 Refresh Methods

There are two common methods for refreshing a DRAM device: RAS#-only and CAS#-before-
RAS#. The DRAM controller design requirements are simpler for RAS#-only than for CAS#-be-
fore-RAS#.
15-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 the
s gen-
 this

active.

ter to
RAS#
 RCU
fresh

a re-
wn in

an be

igure
unter
sh
t address
s as row
-

The RAS#-only method requires that the DRAM controller activate its RAS# signal when
RCU activates its REFRESH# signal. This causes the controller to drive the refresh addres
erated by the RCU onto the DRAM address inputs, refreshing the specified DRAM row. With
method, the controller need not assert the CAS# signal whenever the REFRESH# signal is

The CAS#-before-RAS# method requires that the DRAM device contain an internal coun
determine the DRAM row addresses. To perform a refresh cycle using the CAS#-before-
method, the controller must generate a CAS# signal followed by a RAS# signal when the
activates its REFRESH# signal. With this method, the DRAM device generates its own re
addresses and the RCU provides the REFRESH# signal.

If the CS6#/REFRESH# pin is being used for its CS6# function, another way of identifying
fresh cycle is to look at the states of the bus status signals, M/IO#, D/C# and W/R#, (sho
Table 6-2 on page 6-5) and the byte-enable signals (BHE# and BLE#). M/IO# and D/C# are high,
W/R# is low, and both BHE# and BLE# are inactive during a refresh cycle. These signals c
used by the DRAM controller to initiate a DRAM refresh cycle.

15.2 REFRESH CONTROL UNIT OVERVIEW

The RCU includes an interval timer unit, a control unit, and an address generation unit (F
15-1). The interval timer unit uses a refresh clock interval register and a 10-bit interval co
to create a periodic signal (timeout). The control unit uses this signal to initiate periodic refre
requests. The address generation unit uses a refresh base address register and a 13-bi
counter to generate DRAM refresh addresses. The DRAM device can use these addresse
addresses during RAS-only refresh cycles. Each time the interval timer unit times out, a new re
fresh address is generated.
15-2

REFRESH CONTROL UNIT
Figure 15-1. Refresh Control Unit Connections

S

y

s

t

e

m

B

u

s

Interval Timer Unit

Refresh Clock Interval Register

10-bit Interval Counter

Control Unit

Address Generation Unit

Refresh Base Address Register

13-bit Address Counter

REFRESH#

(pin mux)

Refresh

Request

Refresh

Acknowledge

A25:14

A13:1

Refresh Control Register

Refresh Address Register

A2341-01

Timeout

Processor Clock

(CLK2/2)
15-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ts. Re-
IR)
 CLK-
r from
itiate a
present
gnores

ess bits
ddress
15.2.1 RCU Signals

Table 15-1 describes the signals associated with the RCU.

15.2.2 Refresh Intervals

The interval timer unit controls the rate at which the control unit generates refresh reques
fresh intervals are programmable through the use of a refresh control interval register (RFSC
and a 10-bit down counter. The counter is loaded from RFSCIR, then decremented on each
OUT falling edge. When the counter reaches one, the interval timer unit reloads the counte
the RFSCIR and asserts its timeout signal. The timeout signal causes the control unit to in
refresh request, provided there is not one already pending. (The RCU must complete the
refresh cycle before the control logic can generate a new refresh request). The control unit i
the timeout signal if it already has a refresh request pending.

15.2.3 Refresh Addresses

The physical address generated during a refresh bus cycle has two components: addr
A25:14 (from the refresh base address register) and address bits A13:1 (from the 13-bit a
counter).

Table 15-1. RCU Signals

Signal
Device Pin or Internal

Signal
Description

CLKOUT Device Pin
(from Clock and Power
Management Unit)

Processor Clock:

Provides the clocking signal for the interval counter. The
interval timer unit loads and decrements the counter on
the falling edges of the processor clock.

Timeout Internal signal
(from the interval counter to
the control unit)

Timeout:

Indicates that the interval counter has reached one. The
control unit initiates a refresh request when it detects
this signal, unless a refresh request is pending, in which
case it ignores this signal.

REFRESH# Device pin
(output)

External Refresh:

Indicates that a refresh bus cycle is in progress and that
the refresh address is on the bus.

Refresh
Request

Internal signal Refresh Request:

Indicates that the control unit is requesting bus
ownership.

Refresh
Acknowledge

Internal signal Refresh Acknowledge:

Indicates that the refresh control unit is being granted
bus ownership.

A25:1 Device pins
(output)

Address Bus:

Contains the refresh address during refresh cycles. This
address can be used by the DRAM device to refresh a
single row.
15-4

REFRESH CONTROL UNIT

k shift

r

ss re-

ontrol
lways

cture

us cy-
signal
signal
 (HOLD
il the
fore the

refresh

erval

h the
eding

either

ce.

e

occurs,
The 13-bit address counter is a combination of a binary counter and a 7-bit linear-feedbac
register. The binary counter produces address bits A13:8 and the linear-feedback shift register
produces address bits A7:1. The shift register nonsequentially produces all 128 (27) possible com-
binations. Each time the lower seven bits cycle through all 128 combinations, the binary counte
increments the upper 6 bits. This continues until the 13-bit address counter cycles through 8192
(213) address combinations. The counter then rolls over to its original value and the proce
peats.

15.2.4 Bus Arbitration

Because the two DMA channels, an external device (via the HOLD pin), and the refresh c
unit can all request bus control, bus control priority must be arbitrated. Refresh requests a
have the highest priority. “Bus Control Arbitration” on page 12-9 discusses the priority stru
of the other bus control requests.)

When a refresh occurs while a DMA channel is performing a transfer, the RCU “steals” a b
cle to perform a refresh. An external device can gain bus control through either the HOLD
or the DMA cascade mode. In this case, a refresh request causes the HLDA or DMACKn#
to be deasserted. When this happens, the external device should deassert its request line
or DRQn) to allow the RCU to perform a refresh cycle. The refresh cycle is not executed unt
external device deasserts its request. If the external device reasserts its request signal be
RCU completes the refresh cycle, bus control is given back to the external device after the
cycle completes, without further arbitration.

15.3 RCU OPERATION

The following steps describe the basic refresh cycle, which is initiated every time the int
counter reaches one.

1. The interval timer unit asserts the timeout signal and reloads the interval counter wit
refresh clock interval register value. The interval counter decrements on each succe
processor clock falling edge.

2. The RCU requests bus ownership.

3. Bus ownership is given to the control unit.

4. The control unit asserts the REFRESH# signal and a bus memory read cycle (with n
Byte-enable signal active) is executed with the address supplied by the RCU.

5. The DRAM controller asserts RAS#, latching the row address inside the DRAM devi
This refreshes the row.

6. The control unit deasserts REFRESH#, and the process repeats from step 1 when th
interval counter reaches one again.

Once enabled, the DRAM refresh process continues until you reprogram the RCU, a reset
or the processor enters powerdown mode.
15-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

tions
15.4 REGISTER DEFINITIONS

Table 15-2 provides an overview of the registers associated with the RCU. The following sec
provide specific programming information for each register.

Table 15-2. RCU Registers

Register
Expanded
 Address

Description

RFSCIR
(read/write)

0F4A2H Refresh Clock Interval:

Determines the processor clock (CLK2/2) count between refresh requests.

RFSCON
(read/write)

0F4A4H Refresh Control:

Enables the refresh control unit. Reading this register also provides the
current value of the interval counter.

RFSBAD
(read/write)

0F4A0H Refresh Base Address:

Contains the A25:14 address bits of the refresh address. This establishes
a memory region for refreshing.

RFSADD
(read/write)

0F4A6H Refresh Address:

Contains the A13:1 address bits of the refresh address. The 13-bit address
counter generates these values.
15-6

REFRESH CONTROL UNIT

value
15.4.1 Refresh Clock Interval Register (RFSCIR)

Use RFSCIR to program the interval timer unit’s 10-bit down counter. The refresh counter
is a function of DRAM specifications and processor frequency as follows:

,

where X = 128 or the # of DRAM rows, whichever is greater.

The DRAM refresh period is the time required to refresh all rows in the DRAM device.

NOTE
Because the lower seven address bits come from a linear-feedback shift
register, which generates all address bit combinations in a nonsequential order,
X in the equation above must never be less than 128 to ensure proper refresh of
all the rows in a DRAM device that has less than 128 rows.

Figure 15-2. Refresh Clock Interval Register (RFSCIR)

Refresh Clock Interval
RFSCIR
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A2H
—
0000H

15 8

— — — — — — RC9 RC8

7 0

RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

9–0 RC9:0 Refresh Counter Value:

Write the counter value to these ten bits. The interval counter counts
down from this value. When the interval counter reaches one, the control
unit initiates a refresh request (provided it does not have a request
pending). The counter value is a function of DRAM specifications and
processor frequency (see the equation above).

counter value DRAM refresh period (µs) processor clock (MHz)×
X

---=
15-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

terval
15.4.2 Refresh Control Register (RFSCON)

Use RFSCON to enable and disable the refresh control unit and to check the current in
counter value.

Figure 15-3. Refresh Control Register (RFSCON)

Refresh Control
RFSCON
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A4H
—
0000H

15 8

REN — — — — — CV9 CV8

7 0

CV7 CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

15 REN Refresh Control Unit Enable:

This bit enables or disables the refresh control unit.

0 = Disables refresh control unit
1 = Enables refresh control unit

14–10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

9–0 CV9:0 Counter Value:

These read-only bits represent the current value of the interval counter.
Write operations to these bits have no effect.
15-8

REFRESH CONTROL UNIT

gister
-

U for

er for
 In this
n that is
15.4.3 Refresh Base Address Register (RFS BAD)

Use RFSBAD to set up the memory region that needs refreshing. The value written to this re
forms the upper bits (A25:14) of the refresh address. The RFSBAD register can be used in con
junction with the Chip Select Unit (CSU) to generate a chip-select for the DRAM region during
refresh cycles. If the address in the RFSBAD matches the region programmed in the CS
DRAM, then the DRAM chip-select is generated for both access and refresh cycles.

By programming two separate regions in the CSU, one for DRAM access cycles and the oth
DRAM refresh cycles, separate chip-selects can be generated for the two types of cycles.
case, the RFSBAD needs to be programmed with an address that matches the CSU regio
programmed for the refresh cycle chip-select.

Figure 15-4. Refresh Base Address Register (RFSBAD)

Refresh Base Address
RFSBAD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A0H
—
0000H

15 8

— — — — RA25 RA24 RA23 RA22

7 0

RA21 RA20 RA19 RA18 RA17 RA16 RA15 RA14

Bit
Number

Bit
Mnemonic Function

15–12 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

11–0 RA25:14 Refresh Base:

These bits make up the A25:14 address bits of the refresh address. This
establishes a memory region for refreshing.
15-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ed be-
15.4.4 Refresh Address Register (RFS ADD)

RFSADD contains the bits A13:1 of the refresh address. The lowest address bit is not us
cause most DRAM devices contain word-wide memory arrays; for all refresh operations, the low-
est address bit remains set.

Figure 15-5. Refresh Address Register (RFSADD)

Refresh Address
RFSADD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A6H
—
00FFH

15 8

— — RA13 RA12 RA11 RA10 RA9 RA8

7 0

RA7 RA6 RA5 RA4 RA3 RA2 RA1 1

Bit
Number

Bit
Mnemonic Function

15–14 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

13–1 RA13:1 Refresh Address Bits:

These bits comprise A13:1 of the refresh address.

0 — Refresh Bit 0:

A0 of the refresh address. This bit is always 1 and is read-only.
15-10

REFRESH CONTROL UNIT

LE#
LE#

A1. A

dress
n
puts
to

SRAM,
lem.

 be

g
15.5 DESIGN CONSIDERATIONS

Consider the following when programming the RCU.

• The system address bus does not contain an address A0 signal; instead, it uses the B
and the BHE# pins to generate the lowest address bit. During all refresh operations, B
and BHE# are driven high.

This needs to be noted especially when interfacing to an 8-bit wide Pseudo Static RAM
(PSRAM) device. The lowest address bit generated by the refresh address counter is
circuit like the one shown in Figure 15-6 can be used to ensure the refresh of all rows.Here
BLE# is connected to an address line of the PSRAM that is not used during refresh. Ad
A1 of the processor is connected to A0 of the PSRAM and so forth. For example, whe
using a 128Kx8-bit PSRAM device (refresh cycles only use the address present on in
A8:0), connect A1 of the processor to A0 of the PSRAM, A2 to A1 and so on, until A9
A8. Then connect BLE# of the processor to any one of the A16:9 address lines of the
PSRAM. Since PSRAM is random access memory, this scheme works. During access
cycles, sequential accesses by the processor go to non-contiguous addresses in the P
but since the processor does both the read and write cycles, this does not pose a prob

Figure 15-6. Connections to Ensure Refresh of All Rows in an 8-Bit Wide PSRAM Device

• An external device can gain bus control through either the HOLD signal or the DMA
cascade mode. In this case, a refresh request causes the HLDA or DACKn# signal to
deasserted. When this happens, the external device must drop its request line (HOLD or
DRQn) to allow the RCU to perform a refresh cycle. The refresh request remains pendin
until the RCU gets control of the bus.

Intel386™ EX

Embedded

Processor

Am

.

.

.

A1

A0

PSRAM
BLE# can be

connected to

any of these

address lines

Am+1

.

.

.

A2

A1

BLE#

A3352-02

An

.

.

.

.

Am+1

Used

during

refresh

cycles
15-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

the
cess
tion

 in

d by
and

he
t.
fer)
r
 the

y
the
pe
• If the counter value stored in the Refresh Clock Interval Register (RFSCIR) is <8 and
RCU is enabled, the RCU always has bus control and other devices will never gain ac
to the bus. This is because refresh requests have the highest priority in the bus arbitra
scheme and you are requesting the bus too often.

• There are two common methods of refreshing DRAM: RAS#-only and CAS#-before-
RAS#.

— RAS#-only refresh takes advantage of the Intel386 EX Embedded Processor’s built
refresh address counter (RFSADD).

— In a CAS#-before-RAS# refresh, the DRAM provides the row address for the refresh
cycle. The RCU counter still generates the row addresses, but they are disregarde
the DRAM. The only external logic required is a PLD to recognize a refresh cycle
provide the CAS# and RAS# signals to the DRAM.

Page Mode A paged DRAM access uses the upper address lines for the row
addresses and the lower lines for the column addresses. On the
Intel386 EX embedded processor, the lower address lines are
connected to the Refresh Address Counter Register (RFSADD). T
RFSADD increments through a set sequence at each refresh reques
Because the lower address bits (wired to the Column Address Buf
change with each refresh request, the PLD must enable this buffe
when RAS# is asserted during a refresh cycle. Figure 15-7 shows
external logic needed for paged RAS#-only refresh cycles. The PLD
can determine a refresh cycle by monitoring BHE# and BLE# (the
are both inactive during a refresh cycle), or by an active signal on
REFRESH# pin. The buffer and lines that are active during this ty
of refresh have a shaded background in Figure 15-7.
15-12

REFRESH CONTROL UNIT

the
nes.

e of

 are

hey

Figure 15-7. RAS# Only Refresh Logic: Paged Mode

Non-page Mode In non-paged mode, the row address buffer can be connected to
lower address lines and the column address buffer to the upper li
Figure 15-8 illustrates the hardware configuration for non-paged
DRAM accesses. The lines and buffer that are enabled in this typ
refresh are highlighted in the figure. The lower address bits are
connected to the Row Address Buffer and the upper address bits
connected to the Column Address Buffer. As in Page Mode, the PLD
recognizes a refresh request by sampling both BHE# and BLE# (t
are both inactive during a refresh cycle), or by detecting an active
signal on the REFRESH# pin. The buffer and lines that are active
during this type of refresh have a shaded background in Figure 15-8.

Intel386™ EX

Embedded Processor

Row

Address

Buffer

PLD

Upper Address
Row

Address

Paged

DRAM

Column

Address

Address

Lower Address

OE_ROW#

OE_COL#

RAS#

CAS#
BHE#

BLE#

A3264-02

Column

Address

Buffer

CSn#

REFRESH#

Note:

A single mux can be used in place of the row and column address buffers.
15-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

et bit 6

it and
eader
Figure 15-8. RAS# Only Refresh Logic: Non-Paged Mode

15.6 PROGRAMMING CONSIDERATIONS

REFRESH# and CS6# share a package pin. To select the REFRESH# signal at this pin, s
in the PINCFG register:

_SetEXRegByte(PINCFG, (_GetEXRegByte(PINCFG) | 0x40));

15.6.1 Refresh Control Unit Example Code

The following code example contains software routines that initialize the refresh control un
retrieve the current value of the refresh interval timer. See Appendix C for the included h
files.

#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

/***
InitRCU:

Description:
 Initializes the Refresh Control Unit

Intel386™ EX

Embedded Processor

Row

Address

Buffer

PLD

Lower Address
Row

Address

Non-paged

DRAM

Column

Address

Address

Upper Address

OE_ROW#

OE_COL#

RAS#

CAS#
BHE#

BLE#

A3265-02

Column

Address

Buffer

CSn#

REFRESH#

Note:

A single mux can be used in place of the row and column address buffers.
15-14

REFRESH CONTROL UNIT
Parameters:
Counter_Value Value of the refresh interval

Returns:
Error Codes:
E_BADVECTOR User input an invalid parameter
E_OK Executed correctly

Assumptions:
None

Syntax:

#define REFRESH_INTERVAL 0x186 //Counter value for DRAM with
 // 1024 rows and a refresh period

 // of 16 msec (25 MHz Processor Clock)
int error_code;

error_code = InitRCU(REFRESH_INTERVAL);

Real/Protected Mode:
No changes required

***/

extern int InitRCU(WORD Counter_Value)
{

 /* Check that Counter_Value is 10 bits in length */
 if (Counter_Value != (Counter_Value & 0x03ff))
 return(E_BADVECTOR);

 /* Clear lower 10 bits of RFSCIR */
 _SetEXRegWord(RFSCIR, 0xfc00);

 /* Set lower 10 bits of RFSCIR to Counter_Value */
 _SetEXRegWord(RFSCIR, _GetEXRegWord(RFSCIR) | Counter_Value);

 /* Enable Refresh Unit */
 _SetEXRegWord(RFSCON, _GetEXRegWord(RFSCON) | 0x8000);

 return(E_OK);

}/* InitRCU */

/***

Get_RCUCounterValue:

Description:
This function returns the current value of the refresh interval timer.
15-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Parameters:
None

Returns:
Refresh Interval Counter Value

Assumptions:
NONE

Syntax:

WORD CounterValue;

CounterValue = Get_RCUCounterValue();

Real/Protected Mode:
No changes required

**/

extern WORD Get_RCUCounterValue(void)
{
 WORD Counter_Value;

 Counter_Value = _GetEXRegWord(RFSCON) & 0x3ff; // Counter value contained
 // in bits RFSCON9:0

 return(Counter_Value);

}/* Get_RCUCounterValue */
15-16

16
INPUT/OUTPUT
PORTS

 sur-
m op-

design
t chip-

 is ar-

ally

ot re-
mple,
 still

e pos-

 each
ut) of
s, di-
CHAPTER 16
INPUT/OUTPUT PORTS

Input/Output (I/O) ports allow you to transfer information between the processor and the
rounding system circuitry. I/O ports are typically used to read system status, monitor syste
eration, output device status, configure system options, and generate control signals.

The Intel386™ EX processor’s I/O port pins are multiplexed with peripheral pin functions. With
this multiplexed arrangement, you can use just those peripheral functions required for your
and use any remaining pins for general-purpose I/O. For example, this device offers eigh
select lines, five of which (CS0#–CS4#) are multiplexed with I/O port pins. If your design does
not need all eight chip-selects, you can use up to five pins (P2.0–P2.4) for I/O.

This chapter describes the I/O ports and explains how to configure them. The information
ranged as follows:

• Overview (see below)

• Register Definitions (page 16-6)

• Design Considerations (page 16-10)

• Programming Considerations (page 16-11)

16.1 OVERVIEW

The Intel386 EX processor has three 8-bit bidirectional I/O ports, all of which are function
identical (Figure 16-1). Each port has three control registers and a status register.

All three ports share pins with internal peripherals (see Table 16-1). If your design does n
quire a pin’s peripheral function, you can configure that pin for use as an I/O port. For exa
if you don’t need serial channel 0, you can use P1.4–P1.0 and P2.7–P2.5 as I/O ports and
allow the bus interface unit to use P1.7–P1.5 and the chip-select unit to use P2.4–P2.0.

Each pin can operate either in I/O mode or in peripheral mode. In I/O mode, a pin has thre
sible configurations:

• high-impedance input

• open-drain output (requires an external pull-up resistor)

• complementary output

In I/O mode, register bits control the direction (input or output) of each pin and the value of
output pin. In peripheral mode, the internal peripheral controls the operation (input or outp
the pin. Table 16-1 lists the port pins with their reset status, multiplexed peripheral function
rection (input or output), and associated internal peripheral.
16-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

(P
Figure 16-1. I/O Port Block Diagram

16.1.1 Port Functionality

The function of a bi-directional port pin is controlled by the state of the Port Control Latch n-
LTC). This is shown in Figure 16-2.

I

n

t

e

r

n

a

l

B

u

s

1

0

A2393-01

PnDIR.x

PnLTC.x

PnPIN.x

Internal Peripherals

PnCFG.x

Pn.x
16-2

INPUT/OUTPUT PORTS
Figure 16-2. Logic Diagram of a Bi-directional Port

0

1

S

Q

D

Q#
CK

PnLTC

From Internal

Peripheral

Read Port

Data latch

Write Port

Data Latch

Read Port

Pin State

To Internal

Peripheral

Write Port

Direction

Read Port

Direction

Write Port

Control

Read Port

Control

Internal Data

Bus (F-Bus)

SYNC

Pin

A3266-01

Q

D

Q#
CK

PnDIR

PnPIN

VCC

or

VSS†

0

1

S

0

1

S

Q

D

Q#
CK

PnCFG

From Internal

Peripheral

Direction

Control

† Depends on peripheral's inactive state
16-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 is

e
 under

ver
ing
etting

s. For
p from

 port or
The output of the Pin Configuration latch (PnCFG) selects whether the I/O port or peripheral
connected to the pin. When the port is programmed to act as a peripheral pin, both the data for
the pin and the directional control signal for the pin come from the associated integrated priph-
eral. When a bi-directional port pin is programmed as an I/O port, all port parameters are
software control.

The output of the Port Direction latch (PnDIR) enables or disables the three-state output dri
when the pin is programmed as an I/O port. The three-state output driver is enabled by clear
the Port Direction latch. The data driven to an output port pin is held in the Port Data latch. S
the Port Direction latch disables the three-state output driver making the pin an input.

The signal present on the pin is routed through a synchronizer to a three-state buffer that connects
the I/O port path to the internal data bus. Not all peripheral input functions are synchronou
example, the interrupt pins (INT9-INT0) are asynchronous so that they can wake up the chi
Powerdown mode when the clocks are stopped.

The state of the pin can be read at any time regardless of whether the pin is used as an I/O
for a peripheral function.
16-4

INPUT/OUTPUT PORTS
Table 16-1. Pin Multiplexing

Port Pin Peripheral Function

Pin Reset Status (1) Signal Direction (2) Internal
Peripheral

P1.0 wk 1 DCD0# I SIO0

P1.1 wk 1 RTS0# O SIO0

P1.2 wk 1 DTR0# O SIO0

P1.3 wk 1 DSR0# I SIO0

P1.4 wk 1 RI0# I SIO0

P1.5 wk 1 LOCK# O BIU

P1.6 wk 0 HOLD I BIU

P1.7 wk 0 HLDA O BIU

P2.0 wk 1 CS0# O CSU

P2.1 wk 1 CS1# O CSU

P2.2 wk 1 CS2# O CSU

P2.3 wk 1 CS3# O CSU

P2.4 wk 1 CS4# O CSU

P2.5 wk 0 RXD0 I SIO0

P2.6 wk 0 TXD0 O SIO0

P2.7 wk 1 CTS0# I SIO0

P3.0 wk 0 TMROUT0 O Timer 0

P3.1 wk 0 TMROUT1 O Timer 1

P3.2 wk 0 INT0 I ICU

P3.3 wk 0 INT1 I ICU

P3.4 wk 0 INT2 I ICU

P3.5 wk 0 INT3 I ICU

P3.6 wk 0 PWRDOWN O CLK & PM

P3.7 wk 0 COMCLK I SIO0, SIO1

NOTES:
1. wk 0 = weakly pulled down; wk 1 = weakly pulled up.
2. I = input; O = output.
16-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

he con-
P

16.2 REGISTER DEFINITIONS

Each port has three control registers and a status register associated with it (Table 16-2). T
trol registers (PnCFG, PnDIR, and PnLTC) can be both read and written. The status register (n-
PIN) can only be read. All four registers reside in I/O address space.

Table 16-2. I/O Port Registers

Register Address Description

P1CFG
P2CFG
P3CFG

(read/write)

0F820H
0F822H
0F824H

Port n Mode Configuration:

Each bit controls the mode of the associated pin.

0 = Selects I/O mode.

1 = Selects peripheral mode.

P1DIR
P2DIR
P3DIR

(read/write)

0F864H
0F86CH
0F874H

Port n Direction:

Each bit controls the direction of a pin that is in I/O mode.

0 = Configures a pin as a complementary output. If a pin is in peripheral
mode, this value is ignored.

1 = Configures a pin as either an input or an open-drain output.

P1LTC
P2LTC
P3LTC

(read/write)

0F862H
0F86AH
0F872H

Port n Data Latch:

Each bit contains data to be driven onto an output pin that is in I/O mode. Write
the desired pin state value to this register. If a pin is in peripheral mode, this
value is ignored.

Reading this register returns the value in the register—not the actual pin state.

P1PIN
P2PIN
P3PIN

(read only)

0F860H
0F868H
0F870H

Port n Pin State:

Each bit of this read-only register reflects the state of the associated pin.
Reading this register returns the current pin state value, regardless of the pin’s
mode and direction.
16-6

INPUT/OUTPUT PORTS

escrip-
de. In-
16.2.1 Pin Configuration

You select the operating mode of each pin by writing to the associated bit in the PnCFG registers
(Figure 16-3 gives an abbreviated version of these registers; for the complete register d
tions, see Appendix D). Setting a bit selects peripheral mode; clearing a bit selects I/O mo
ternal peripherals control pins configured for peripheral mode, while the PnDIR (Figure 16-4)
and PnLTC (Figure 16-5) registers control pins configured for I/O mode. Table 16-3 shows the
PnDIR and PnLTC register values that determine the pin direction and state.

NOTE
You must program both registers to correctly configure the pins.

Regardless of the pin’s configuration, you can read the PnPIN registers (Figure 16-6) to determine
the current pin state.

Figure 16-3. Port n Configuration Register (P nCFG)

Table 16-3. Control Register Values for I/O Port Pin Configurations

Desired Pin Configuration Desired Pin State P nDIR PnLTC

High-impedance input high impedance 1 1

Open-drain output
high impedance 1 1

0 1 0

Complementary output
1 0 1

0 0 0

Port n Configuration
PnCFG (n=1–3)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F820H, F822H, F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7–0 PM7:0 Pin Mode:

0 = Places pin in I/O mode, controlled by PnDIR and PnLTC registers.
1 = Places pin in peripheral mode, controlled by the internal peripheral
16-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 16-4. Port Direction Register (P nDIR)

Figure 16-5. Port Data Latch Register (P nLTC)

Port DIrection
PnDIR (n=1–3)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F864H, F86CH, F874H
—
FFH

7 0

PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

Bit
Number

Bit
Mnemonic Function

7–0 PD7:0 Pin Direction:

0 = Configures the pin as a complementary output.
1 = Configures the pin as an open-drain output or high-impedance input.

Port Data Latch
PnLTC (n=1–3)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F862H, F86AH, F872H
—
FFH

7 0

PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0

Bit
Number

Bit
Mnemonic Function

7–0 PL7:0 Port Data Latch:

Writing a value to a PL bit causes that value to be driven onto the
corresponding pin.

For a complementary output, write the desired pin value to its PL bit.
This value is strongly driven onto the pin.

For an open-drain output, a one results in a high-impedance (input) state
at the pin.

For a high-impedance input, write a one to the corresponding PL bit. A
one results in a high-impedance state at the pin, allowing external
hardware to drive it.
16-8

INPUT/OUTPUT PORTS
Figure 16-6. Port Pin State Register (P nPIN)

Port Pin State
PnPIN (n=1–3)
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F860H, F868H, F870H
—
XXH

7 0

PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

Bit
Number

Bit
Mnemonic Function

7–0 PS7:0 Pin State:

Reading a PS bit returns the logic state present on the associated port
pin.
16-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

r
 en-
 this

.

.

ith ex-
ating,
 the
riting
nd the
16.2.2 Initialization Sequence

After a device reset, a weak pull-up or pull-down resistor holds each pin high or low until use
software writes to the PnCFG register. The pins are configured as inputs in I/O port mode. To
sure that the pins are initialized correctly and that the weak resistors are turned off, follow
suggested initialization sequence.

NOTE
Even if you want to use the entire port as I/O (its default configuration after
reset), you must write to PnCFG to turn off the weak pull-up and pull-down
resistors.

1. Write to PnLTC to specify the pin value. Writing to PnLTC before PnDIR ensures that
output pins initialize to known values.

• For an output pin, write the data that is to be driven by the pin to its PnLTC bit.

• For an input pin, set its PnLTC bit.

2. Write to PnDIR to specify the pin direction.

• To configure a pin as a complementary output, clear its PnDIR bit.

• To configure a pin as an input or open-drain output, set its PnDIR bit.

3. Write to PnCFG to turn off the weak resistors and select either I/O or peripheral mode

• To configure a pin for I/O mode, clear its PnCFG bit.

• To configure a pin for peripheral mode, set its PnCFG bit.

16.3 DESIGN CONSIDERATIONS

This section outlines design considerations for the I/O ports.

• Source and sink current are different between the three ports. Consult the latest Intel386™
EX Embedded Microprocessor datasheet (order number 272420) for exact specifications

• Use read/modify/write operations to set and clear bits.

16.3.1 Pin Status During and After Reset

A device reset applies an asynchronous reset signal to the port pins. To avoid contention w
ternal drivers, the pins are configured as inputs in I/O port mode. To prevent pins from flo
a weak pull-up or pull-down resistor holds each pin high or low (Table 16-1). Writing to
PnCFG register (regardless of the value written) turns off these resistors. For example, w
any value to P1CFG after a reset turns off the weak pull-down resistors on P1.7–P1.6 a
weak pull-up resistors on P1.5–P1.0. The resistors remain off until the next reset.
16-10

INPUT/OUTPUT PORTS

e Ap-
16.4 PROGRAMMING CONSIDERATIONS

16.4.1 I/O Ports Code Example

The following code example contains a software routine that initializes the I/O port pins. Se
pendix C for the included header files.
#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

/***

Init_IOPorts:

Description:
This function initializes the direction and mode of the I/O port pins.
Although the pins are default configured to the peripheral state after
RESET, they must still be initialized to turn off the weak resistors.

Parameters:
Port1 Port1 Mode Configuration
Port2 Port2 Mode Configuration
Port3 Port3 Mode Configuration
PortDir1 Port1 Direction
PortDir2 Port2 Direction
PortDir3 Port3 Direction
PortLtc1 Port1 Data Latch Value
PortLtc2 Port2 Data Latch Value
PortLtc3 Port3 Data Latch Value

Returns:
None

Assumptions:
None

Syntax:

 // Port 1 configuration defines

#define DCD0 0x1
#define RTS0 0x2
#define DTR0 0x4
#define DSR0 0x8
#define RI0 0X10
#define LOCK 0x20
#define HOLD 0X40
#define HOLDACK 0X80

// Port 2 configuration defines
#define CS0 0x1
#define CS1 0x2
16-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
#define CS2 0x4
#define CS3 0x8
#define CS4 0X10
#define RXD0 0x20
#define TXD0 0X40
#define CTS0 0X80

// Port 3 configuration defines
#define TMROUT0 0x1
#define TMROUT1 0x2
#define INT0 0x4
#define INT1 0x8
#define INT2 0x10
#define INT3 0x20
#define PWRDWN 0x40
#define COMCLK 0x80

// Port Direction defines
#define P0_IN 0x1
#define P1_IN 0x2
#define P2_IN 0x4
#define P3_IN 0x8
#define P4_IN 0x10
#define P5_IN 0x20
#define P6_IN 0x40
#define P7_IN 0x80
#define Px_OUT 0

//Initialize SIO0 pins, DRAM and SRAM Chip Selects, Interrupt Signals,
//and TimerOut Signals to be in peripheral mode

Init_IOPorts(DCD0|RTS0|DTR0|DSR0|RI0,
CS2|CS4|RXD0|TXD0|CTS0,
TMROUT0|TMROUT1|INT0|INT1|INT2|INT3|PWRDWN|COMCLK,
Px_OUT,
Px_OUT,

 Px_OUT,
0xff, // This example shows all output pins being

// initially 1
0xff, // Note: Input pins must be given an initial
0xff); // value of 1 whereas peripheral pins initially

// can be set or cleared

Real/Protected Mode:
No changes required.

**
/

extern void Init_IOPorts(BYTE Port1, BYTE Port2, BYTE Port3, BYTE PortDir1,
 BYTE PortDir2, BYTE PortDir3, BYTE PortLtc1,
 BYTE PortLtc2, BYTE PortLtc3)
16-12

INPUT/OUTPUT PORTS
{
 /* Select pin values */
 _SetEXRegByte(P1LTC, PortLtc1);
 _SetEXRegByte(P2LTC, PortLtc2);
 _SetEXRegByte(P3LTC, PortLtc3);

 /* Select pin directions */
 _SetEXRegByte(P1DIR, PortDir1);
 _SetEXRegByte(P2DIR, PortDir2);
 _SetEXRegByte(P3DIR, PortDir3);

 /* Turn off weak resistors and select either I/O or peripheral mode */
 _SetEXRegByte(P1CFG, Port1);
 _SetEXRegByte(P2CFG, Port2);
 _SetEXRegByte(P3CFG, Port3);

} /* Init_IOPorts */
16-13

17
WATCHDOG
TIMER UNIT

r,

s, you

re must
sserts

ly the

hile
AN-

sserts
CHAPTER 17
WATCHDOG TIMER UNIT

The watchdog timer (WDT) unit can function as a general-purpose timer, a software watchdog
timer, or a bus monitor, or it can be disabled.

This chapter is organized as follows:

• Overview (see below)

• Watchdog Timer Unit Operation (page 17-3)

• Disabling the WDT (page 17-6)

• Register Definitions (page 17-7)

• Design Considerations (page 17-12)

• Programming Considerations (page 17-12)

17.1 OVERVIEW

The watchdog timer unit (Figure 17-1) includes a 32-bit reload register, a 32-bit down-counte
an 8-state binary counter, a readable counter value register, and a status register.

The watchdog timer can operate in three modes:

• General-purpose 32-bit timer/counter mode (default mode)

• Watchdog mode

• Bus-monitor mode

Only a single mode can be active at one time. If you have no need for any of its function
can disable the unit entirely.

Watchdog mode protects systems from software upsets. In watchdog mode, system softwa
reload the down-counter at regular intervals. If it fails to do so, the timer expires and a
WDTOUT. For example, the watchdog times out if the software goes into an endless loop.

Some possible uses of this feature include:

• Connecting WDTOUT to the NMI pin to generate a non-maskable interrupt

• Connecting the WDTOUT signal to the RESET pin to reset the processor (and possib
entire system)

In watchdog mode only, idle mode stops the down-counter. Since no software can execute w
the CPU is idle, a software watchdog is unnecessary. (Chapter 8, “CLOCK AND POWER M
AGEMENT UNIT,” discusses idle mode.)

Bus monitor mode protects normally not-ready systems from ready-hang conditions. (A normally
not-ready system is one in which a bus cycle continues until the accessed device a
17-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

e
x-
 bit

rated
DY bit
e-out
READY#). In bus monitor mode, the ADS# signal from the bus interface unit (BIU) reloads th
down-counter and the READY# signal stops it. The READY# signal can be generated either e
ternally or internally, using the WDTRDY bit in the PWRCON register (Figure 17-5). If this
is deasserted, then an external READY# is required to terminate the cycle when the WDT times
out (WDTOUT is asserted) in Bus Monitor mode. In this case, if a READY# is never gene
by external logic, the processor hangs (since the bus cycle never terminates). If the WDTR
is set, the processor generates an internal READY# to terminate the cycle upon tim
(WDTOUT is asserted) in Bus Monitor mode.

The WDT circuitry correctly matches each READY# with a corresponding ADS# (even in pipe-
lined mode when two ADS# pulses occur before the first READY# pulse).

Figure 17-1. Watchdog Timer Unit Connections

E

I

B

u

s

A2330-02

Reload

Registers

WDTRLDH

WDTRLDL

32-Bit

Down Counter

WDTCLR
Connect

to NMI

or RESET

8-State

Binary

Counter
WDTOUT

WDTSTATUS

WDTCNTH

WDTCNTL

WDTOUT#

to IR7 of

Slave 8259A
17-2

WATCHDOG TIMER UNIT

s you
TOUT

ounter
 clock
of the
 the
em.
17.1.1 WDT Signals

Table 17-1 describes the signals associated with the WDT.

17.2 WATCHDOG TIMER UNIT OPERATION

After a device reset, the WDT begins counting down in general-purpose timer mode. Unles
change the mode, change the reload value, or disable it, the WDT times out and asserts WD
after 4 million (222) processor clock cycles (PH1 or CLKOUT cycles).

The 32-bit down-counter decrements on every processor clock cycle. When the down-c
reaches zero, the 8-state binary counter drives the WDTOUT pin high for eight processor
cycles (16 CLK2 cycles) to signal the timeout. An internal signal carries the inverted value
WDTOUT pin to the interrupt control unit (the slave’s IR7 line). A WDT timeout can reset
system or generate an interrupt request, depending on how WDTOUT is used in your syst

Table 17-1. WDT Signals

Signal Device Pin or
Internal Signal Description

ADS# Device pin Address Status (from the bus interface unit):

Indicates that the processor is driving a valid bus-cycle definition
and address onto its pins. Bus monitor mode reloads and starts the
down-counter each time ADS# is asserted.

IDLE Internal signal Idle (from the clock and power management unit):

Indicates that the device is in idle mode (core clocks stopped and
peripheral clocks running). In watchdog mode, the down-counter
stops when the core is idle. In bus monitor or general-purpose
timer mode, the WDT continues to run while the core is idle.

READY# Device pin Ready (from the bus interface unit):

Indicates that the current bus cycle has completed. Bus monitor
mode stops the down-counter when READY# is asserted.

WDTOUT Device pin Watchdog Timer Output:

Indicates that the down-counter has timed out. If you want a WDT
timeout to reset the device, connect WDTOUT to the RESET input.
If you want a WDT timeout to generate a nonmaskable interrupt,
connect WDTOUT to the NMI input.

An internal signal carries the inverted value of WDTOUT to the
interrupt control unit (the slave’s IR7 line). If you want a WDT
timeout to cause a maskable interrupt, enable the interrupt.
(Chapter 8, “Interrupt Control Unit,” explains how to do this.)
17-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

e count

 can
erates

ement

ues of

e the
ccurs,
 events.

n high
r the
gisters.

2-

eout.
d the
The reload registers hold a user-defined value that reloads the down-counter when one of the fol-
lowing reload events occurs:

• In watchdog mode, when system software executes a specific instruction sequence (called a
lockout sequence) to the WDTCLR location

• In bus monitor mode, when the bus interface unit asserts ADS#

• In all modes, when the down-counter reaches zero

Software can read the status register to determine the mode of the WDT, and can read th
registers to determine the current value of the down-counter.

17.2.1 Idle and Powerdown modes

In CPU-idle mode, the WDT is disabled only if it is in watchdog mode. Since no software
execute while the CPU is in idle mode, the software watchdog is unnecessary. The WDT op
normally in general-purpose timer and bus-monitor modes if the CPU is in idle mode.

In CPU-powerdown mode, the WDT unit is disabled, like all other peripherals.

17.2.2 General-purpose Timer Mode

The WDT defaults to general-purpose timer mode after reset. If your system has no requir
for a software watchdog or a bus monitor, you can use the WDT in this mode. At reset, the down-
counter begins decrementing once every clock cycle, beginning at 3FFFFFH (the initial val
the reload and count registers). Unless you intervene, the WDT times out after 4 million (222) pro-
cessor clock cycles.

Software can read the count registers (WDTCNTH and WDTCNTL) at any time to determin
current value of the down-counter. You might, for example, read the count when one event o
read it again when a second event occurs, then calculate the elapsed time between the two

When the down-counter reaches zero, the 8-state binary counter drives the WDTOUT pi
for eight processor clock cycles (16 CLK2 cycles). During the clock cycle immediately afte
down-counter reaches zero, the down-counter is reloaded with the contents of the reload re

If you want fewer than 4 million (222) processor clock cycles between WDT timeouts, write a 3
bit reload value to the reload registers (Figure 17-4):

1. Write the upper 16 bits of the reload value to WDTRLDH.

2. Write the lower 16 bits of the reload value to WDTRLDL.

In the general-purpose timer mode, you cannot reload the counter except on a WDT tim
However, you can force a reload by entering bus monitor mode, allowing an ADS# to reloa
counter, then switching back to general-purpose timer mode.
17-4

WATCHDOG TIMER UNIT

a
 design
nalysis

WDT
tem

US
its.

m
struc-

two se-
H).

e ini-

e reload
17.2.3 Software Watchdog Mode

In software watchdog mode, system software must periodically reload the down-counter with
reload value or the timer expires and asserts WDTOUT. The reload value depends on the
of the system software. In general, determining the proper reload value requires software a
and some experimentation.

After reset, the WDT defaults to general-purpose timer mode. Unless you intervene, the
times out after 4 million (222) processor clock cycles. If you want to use the WDT as a sys
watchdog, use this sequence to enable watchdog mode:

1. Write the upper 16 bits of the reload value to WDTRLDH (Figure 17-4).

2. Write the lower 16 bits of the reload value to WDTRLDL (Figure 17-4).

3. Write two sequential words, 0F01EH followed by 0FE1H, to the WDTCLR location
(0F4C8H). This sequence (called a lockout sequence) sets the WDTEN bit in the
watchdog status register and loads the contents of the reload value register into the down-
counter.

Regardless of the values of the two control bits (BUSMON and CLKDIS) in the WDTSTAT
register (Figure 17-3), the lockout sequence sets the WDTEN bit and clears the remaining b
The lockout sequence prohibits writes to the WDTSTATUS and reload registers; only a syste
reset can change them. This reduces the possibility for errant software to duplicate the in
tions and illegally reload the timer.

The same lockout sequence that enables the watchdog reloads the down-counter. Write
quential words, 0F01EH followed immediately by 0FE1H, to the WDTCLR location (0F4C8

17.2.4 Bus Monitor Mode

In bus monitor mode, ADS# reloads and starts the down-counter and READY# stops it. Th
tial values of the reload register and down-counter are 3FFFFFH.

CAUTION
For correct operation in Bus Monitor mode (see “Overview” on page 17-1),
you must have a minimum reload value = (Maximum number of wait-states in
your system + 12). For example, if the slowest device in your system requires
8 wait-states during an access, the reload value must be greater than or equal to
20.

Use this sequence to enable bus monitor mode:

1. Write the upper word of the reload value to WDTRLDH (Figure 17-4).

2. Write the lower word of the reload value to WDTRLDL (Figure 17-4).

3. Set the bus monitor bit (BUSMON) in WDTSTATUS (Figure 17-3).

Because you never execute the lockout sequence in bus monitor mode, you can change th
value and enable or disable the mode at any time.
17-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

 timer
re
• To change the reload value, write the new values to the WDTRLDH and WDTRLDL
registers, as described in steps 1 and 2 above.

• To disable or enable bus monitor mode, write to the bus monitor bit (BUSMON):

— 0 = disabled

— 1 = enabled

17.3 DISABLING THE WDT

If your system has no need for the WDT, when the unit is in bus monitor or general-purpose
mode, you can disable the unit by setting the CLKDIS bit in the WDTSTATUS register (Figu
17-3), which stops the clock to the WDT. In this configuration, the WDT consumes minimal pow-
er, but you can re-enable the unit at any time.

If the WDT is in watchdog mode, you cannot write to the WDTSTATUS register to stop the clock
and therefore cannot disable the unit.
17-6

WATCHDOG TIMER UNIT
17.4 REGISTER DEFINITIONS

This section describes the registers associated with the WDT, and explains how these registers
can be used to enable and use each WDT mode.

Table 17-2 describes the registers associated with the WDT.

Table 17-2. WDT Registers

Register Address Descr iption

WDTCLR 0F4C8H Watchdog Timer Clear:

Write the lockout sequence to this location. Circuitry at this address decodes
the lockout sequence to enable watchdog mode, reload the counter, or both.
This location is used only for watchdog mode.

WDTCNTH
WDTCNTL

(read only)

0F4C4H
0F4C6H

WDT Counter:

These registers hold the current value of the WDT down-counter. Software
can read them to determine the current count value. Any reload event
reloads these registers with the contents of WDTRLDH and WDTRLDL.

WDTRLDH
WDTRLDL

(read/write)

0F4C0H
0F4C2H

WDT Reload Value:

Write the reload value to these registers, using two word writes. After a
lockout sequence is issued, these registers cannot be written again until after
a device reset. A reload event (each WDT mode has its own; refer to
Sections 17.2.2 through 17.2.4) reloads WDTCNTH and WDTCNTL with the
contents of these registers.

WDTSTATUS

(read/write)

0F4CAH WDT Status:

This register contains one read-only bit (WDTEN) that indicates whether
watchdog mode is enabled and two read/write bits that control bus monitor
mode and the WDT clock. A lockout sequence sets the WDTEN bit and
clears the two read/write bits, disabling bus monitor mode and enabling the
WDT clock. After a lockout sequence is issued, a write to this register has no
effect unless the device is reset.

Software can read this register to determine the current status of the WDT
and (unless a lockout sequence has been issued) can set the BUSMON bit to
enable bus monitor mode or set the CLKDIS bit to disable the WDT.

PWRCON

(read/write)

0F800H Power Control register:

This register holds the WDTRDY bit that is used to enable/disable internal
READY# generation for the WDT Bus Monitor mode.
17-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 17-2. WDT Counter Value Registers (WDTCNTH and WDTCNTL)

WDT Counter Value (High)
WDTCNTH
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F4C4H
—
003FH

15 8

WC31 WC30 WC29 WC28 WC27 WC26 WC25 WC24

7 0

WC23 WC22 WC21 WC20 WC19 WC18 WC17 WC16

WDT Counter Value (Low)
WDTCNTL
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F4C6H
—
FFFFH

15 8

WC15 WC14 WC13 WC12 WC11 WC10 WC9 WC8

7 0

WC7 WC6 WC5 WC4 WC3 WC2 WC1 WC0

Bit Number Bit
Mnemonic Function

High 15–0 WC31:16 WDT Counter Value High Word and Low Word:

Read the high word of the counter value from WDTCNTH and the low
word from WDTCNTL.

Low 15–0 WC15:0
17-8

WATCHDOG TIMER UNIT
Figure 17-3. WDT Status Register (WDTSTATUS)

WDT Status
WDTSTATUS
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4CAH
—
00H

7 0

WDTEN — — — — — BUSMON CLKDIS

Bit
Number

Bit
Mnemonic Function

7 WDTEN Watchdog Mode Enabled:

This read-only bit indicates whether watchdog mode is enabled. Only a
lockout sequence can set this bit and only a device reset can clear it.

0 = Watchdog mode disabled
1 = Watchdog mode enabled

6–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 BUSMON Bus Monitor Enable:

0 = Disables bus monitor mode
1 = Enables bus monitor mode

Read this bit to determine the current status. A lockout sequence clears
BUSMON and prevents writes to the WDTSTATUS register.

0 CLKDIS Clock Disable:

Write to this bit to stop or restart the clock to the WDT; read it to
determine the current clock status. A lockout sequence clears CLKDIS
and prevents writing to this register.

0 = Clock enabled
1 = Processor clock (frequency=CLK2/2) disabled (stopped)
17-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 17-4. WDT Reload Value Registers (WDTRLDH and WDTRLDL)

WDT Reload Value (High)
WDTRLDH
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4C0H
—
003FH

15 8

WR31 WR30 WR29 WR28 WR27 WR26 WR25 WR24

7 0

WR23 WR22 WR21 WR20 WR19 WR18 WR17 WR16

WDT Reload Value (Low)
WDTRLDL
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4C2H
—
FFFFH

15 8

WR15 WR14 WR13 WR12 WR11 WR10 WR9 WR8

7 0

WR7 WR6 WR5 WR4 WR3 WR2 WR1 WR0

Bit
Number

Bit
Mnemonic Function

High 15–0 WR31:16 WDT Reload Value (High Word and Low Word):

Write the high word of the reload value to WDTRLDH and the low word
to the WDTRLDL.

Low 15–0 WR15:0
17-10

WATCHDOG TIMER UNIT
Figure 17-5. Power Control Register (PWRCON)

Power Control Register
PWRCON
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F800H
—
00H

7 0

— — — — WDTRDY HSREADY PC1 PC0

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:

0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.

1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.

1–0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT
instruction causes a normal halt and the device remains in active mode.

PC1 PC0

0 0 active mode
1 0 idle mode
0 1 powerdown mode
1 1 active mode
17-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

a

e
o
y

ively.
in

-bit
17.5 DESIGN CONSIDERATIONS

This section outlines design considerations for the watchdog timer unit.

Depending on the system configuration, a WDT timeout can cause a maskable interrupt, non-
maskable interrupt, or a system reset.

Maskable interrupt The WDT timeout signal is internally inverted and connected to th
interrupt control unit’s slave IR7 line. If you want a WDT timeout t
generate a slave IR7 interrupt (maskable interrupt), you need onl
enable (unmask) the interrupt (Refer to Chapter 9, for details).
Ensure that the slave 8259A is configured for edge-triggered
interrupts (refer to Chapter 9, Interrupt Control Unit) if IR7 is
unmasked. Otherwise, the WDT generates continuous interrupts.

Nonmaskable interrupt If you want a WDT timeout to cause a nonmaskable interrupt,
connect the WDTOUT pin to the NMI input pin.

Reset If you want a WDT timeout to reset the system, connect the
WDTOUT pin to the RESET input pin.

17.6 PROGRAMMING CONSIDERATIONS

This section outlines programming considerations for the watchdog timer unit.

17.6.1 Writing to the WDT Reload Registers (WDTRLDH and WDTRLDL)

WDTRLDH and WDTRLDL are 16 bit registers at addresses 0F4C0H and 0F4C2H respect
Therefore, when using a 32-bit write to load the two registers, the lower 16 bits should conta
the data for WDTRLDH and the higher 16 bits should contain the data for WDTRLDL.

For example, 4321H can be written to WDTRLDH and 0CCCCH to WDTRLDL using a 32
write of the number 0CCCC4321H to I/O address 0F4C0H.

17.6.2 Minimum Counter Reload Value

To ensure correct operation of the Watchdog Timer, the WDT’s counter should never be reloaded
with a value less than 8.

17.6.3 Watchdog Timer Unit Code Examples

This section includes these software routines:

ReLoadDownCounter Initiates a lockout sequence

GetWDT_Count Reads the value of the counter

WDT_BusMonitor Places the WDT in Bus Monitor Mode

EnableWDTInterrupt Enables WDT interrupts
17-12

WATCHDOG TIMER UNIT
See Appendix C for included header files.

#include <dos.h>
#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

/***
ReLoadDownCounter:

Description:
This function initiates a lockout sequence which results in the
setting of the WDTEN bit in the status register. By setting
WDTEN, the software watchdog mode is enabled.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:

ReloadDownCounter();

Real/Protected Mode:
No changes required

***/

void ReLoadDownCounter(void)
{

_disable(); /* Disable interrupts */

_SetEXRegWord(WDTCLR,0xf01e);
_SetEXRegWord(WDTCLR,0xfe1);

_enable(); /* Enable interrupts */

}/* ReLoadDownCounter */

/***

GetWDT_Count:

Description:
Returns current value of watch dog counter.
17-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Parameters:
None

Returns:
16-bit down-counter value

Assumptions:
None

Syntax:

WORD counter_value;

counter_value = GetWDT_Count();

Real/Protected Mode:
 No changes required.

**/

DWORD GetWDT_Count(void)
{

WORD LowWord, HiWord;
LowWord = _GetEXRegWord(WDTCNTL);
HiWord = _GetEXRegWord(WDTCNTH);
return (((DWORD)HiWord << 16) + LowWord);

}/* GetWDT_Count */

/***

WDT_BusMonitor:

Description:
Enables the bus monitor mode of the Watch Dog Timer.

Parameters:
EnableDisable Nonzero if bus monitor mode is to be enabled,

Zero if it is to be disabled

 Returns:
 None

 Assumptions:
 None

 Syntax:

 #define Enable 0x01
 #define Disable 0x00

17-14

WATCHDOG TIMER UNIT
 WDT_BusMonitor(Enable);

 Real/Protected Mode:
 No changes required.

**/

void WDT_BusMonitor(BYTE EnableDisable)
{

 BYTE Status;

 Status = _GetEXRegByte(WDTSTATUS);

 if(EnableDisable) /* If true, Enable */
 _SetEXRegByte(WDTSTATUS, Status | BIT1MSK); /* Set Bit */

 else /* else, Disable */

 _SetEXRegByte(WDTSTATUS, Status & ~BIT1MSK); /* Clear Bit */

}/* WDT_BusMonitor */

/***
EnableWDTInterrupt:

Description:
Enables a maskable interrupt on the assertion of WDTOUT

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:

EnableWDTInterrupt();

Real/Protected Mode:
No changes required

**/

extern void EnableWDTInterrupt(void)
{

InitICUSlave(ICU_TRIGGER_EDGE, 0x30, 0); /* Initialize Slave ICU */

SetIRQVector(wdtISR, 15, INTERRUPT_ISR); /* Puts address of interrupt
service
17-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
 routine in Interrupt Vector Table */

 Enable8259Interrupt(IR2,IR7); /* Enable slave interrupt to master(IR2),
 Enable slave IR2 */

 _enable(); /* Enable Interrupts */

} /* EnableWDTInterrupt */

/***

wdtISR:

Description:
Interrupt Service Routine for Watchdog Timer

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user; Interrupt Control Unit executes this
routine upon acknowledgment of a WDT interrupt

Real/Protected Mode:
No changes required

***/

void interrupt far wdtISR(void)
{

SerialWriteStr(SIO_PORT,”Executing in WDT_ISR”); /* Prints out to Serial
Port as a demonstration */

NonSpecificEOI();

} /* wdtISR */
17-16

18
JTAG TEST-LOGIC
UNIT

ns be-

lished

-

-
X

 term

rm the
 clock
CHAPTER 18
JTAG TEST-LOGIC UNIT

The JTAG test-logic unit enables you to test both the device logic and the interconnectio
tween the device and the board (system) it is plugged into. The term JTAG refers to the Joint Test
Action Group, the IEEE technical subcommittee that developed the testability standard pub
as Standard 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture† and
its supplement, Standard 1149.1a-1993. The Intel386TM EX Embedded Processor JTAG test-log
ic unit is fully compliant with this standard.

You can use the JTAG unit for other purposes. For example you can perform in-system program
ming of flash memory; refer to AP-720, Programming Flash Memory through the Intel386™ E
Embedded Processor JTAG Port (order number 272753).

This chapter is organized as follows:

• Overview (see below)

• Test-Logic Unit Operation (page 18-3)

• Testing (page 18-10)

• Timing Information (page 18-12)

• Design Considerations (page 18-14)

18.1 OVERVIEW

As the title of the IEEE standard suggests, two major components of the test-logic unit are the test
access port and the boundary-scan register. The term test access port (TAP) refers to the dedicat-
ed input and output pins through which a tester communicates with the test-logic unit. The
boundary-scan refers to the ability to scan (observe) the signals at the boundary (the pins) of a
device. A boundary-scan cell resides at each pin. These cells are connected serially to fo
boundary-scan register, which allows you to control or observe every device pin except the
pin, the power and ground pins, and the test access port pins.

The test-logic unit allows a tester to perform these tasks:

• Identify a component on a board (manufacturer, part number, and version)

• Bypass one or more components on a board while testing others

• Preload a pin state for a test or read the current pin state

• Perform static (slow-speed) testing of this device

• Test off-chip circuitry and board-level interconnections

† Some of the figures and tables in this chapter were reproduced from Standard 1149.1-1990, IEEE Standard Test
Access Port and Boundary-Scan Architecture, Copyright 1993 by the Institute of Electrical and Electronics Engineers,
Inc., with the permission of the IEEE.
18-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

f the
e data
sary
• Place all device output pins into their inactive drive (high-impedance) state, allowing
external hardware to drive connections that the processor normally drives

The test-logic unit (Figure 18-1) is fully compliant with IEEE Standard 1149.1. It consists o
test access port (TAP), the test access port controller, the instruction register (IR), and thre
registers (IDCODE, BYPASS, and BOUND). It also includes logic for generating neces
clock and control signals.

Figure 18-1. Test Logic Unit Co nnections

A2340-01

IR Register

TAP

Controller

IDCODE Register

BYPASS Register

BOUND Register

TRST#

TDO

TCK

TDI

Output

Stage

.

TMS

18-2

JTAG TEST-LOGIC UNIT

CK)
n read

ad the
ent or a
on by
ta are
18.2 TEST-LOGIC UNIT OPERATION

18.2.1 Test Access Port (TAP)

The test access port consists of five dedicated pins (four inputs and one output). It is through these
pins that all communication with the test-logic unit takes place. This unit has its own clock (T
and reset (TRST#) pins, so it is independent of the rest of the device. The test-logic unit ca
or write its registers even if the rest of the device is in reset or powerdown.

CAUTION
The JTAG Test-Logic Unit must be reset upon power-up using the TRST# pin.
(To do this, invert the RESET signal and send this inverted RESET to the
TRST# pin). If this is not done, the processor may power-up with the JTAG
test-logic unit in control of the device pins, and the system does not initialize
properly.

The test-logic unit allows you to shift test instructions and test data into the device and to re
results of the test. A tester (that is, an external bus master such as automatic test equipm
component that interfaces to a higher-level test bus) controls the TAP controller’s operati
applying signals to the clock (TCK) and test-mode-select (TMS) inputs. Instructions and da
shifted serially from the test-data input (TDI) to the test-data output (TDO). Table 18-1 describes
the test access port pins.

Table 18-1. Test Access Port Dedicated Pins

Pin
Name

Description

TCK Test Clock Input:

Provides the clock input for the test-logic unit. An external signal must provide a maximum
input frequency of one-half the CLK2 input frequency. TCK is driven by the test-logic unit’s
control circuitry.

TDI Test Data Input:

Serial input for test instructions and data. Sampled on the rising edge of TCK; valid only when
either the instruction register or a data register is being serially loaded (SHIFT-IR, SHIFT-DR).

TDO Test Data Output:

Serial output for test instructions and data. TDO shifts out the contents of the instruction
register or the selected data register (LSB first) on the falling edge of TCK. If serial shifting is
not taking place, TDO floats.

TMS Test Mode Select Input:

Controls the sequence of the TAP controller’s states. Sampled on the rising edge of TCK.

TRST# Test Reset Input:

Resets the TAP controller. Asynchronously clears the data registers and initializes the
instruction register to 0010 (the IDCODE instruction opcode).

NOTE: The JTAG Test-Logic Unit must be reset upon power-up using the TRST# pin. If this is not done
the processor may power-up with the JTAG test-logic unit in control of the device pins, and the
system does not initialize properly.
18-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

)
P con-
ntrols
AP state
18.2.2 Test Access Port (TAP) Controller

The TAP controller is a finite-state machine that is capable of 16 states (Figure 18-2). Three of its
states provide the basic actions required for testing:

• Applying stimulus (update-data-register)

• Executing a test (run-test/idle)

• Capturing the response (capture-data-register)

Its remaining states support loading instructions, shifting information toward TDO, scanning
pins, and pausing to allow time for the tester to perform other operations.

The TAP controller changes state only in response to the assertion of the test-reset input (TRST#
or the state of the mode-select pin (TMS) on the rising edge of TCK. TRST# causes the TA
troller to enter its test-logic-reset state, and the state of TMS on the rising edge of TCK co
the subsequent states.Table 18-2 describes the states and Figure 18-2 illustrates how the T
machine moves from one state to another.

Table 18-2. TAP Controller State Descriptions (Sheet 1 of 2)

State Description

Next State
(on TCK Rising Edge)

TMS = 0 TMS = 1

Test-Logic-Reset

Resets the test-logic unit and forces the IDCODE
instruction into the instruction register. (In
components that have no IDCODE instruction, the
BYPASS instruction is loaded instead.) Test logic is
disabled; the device is in normal operating mode.

Run-Test/Idle Test-Logic-Reset

Run-Test/Idle Executes a test or disables the test logic. Run-Test/Idle Select-DR-Scan

Select-DR-Scan Selects the data register to be placed in the serial
path between TDI and TDO. Capture-DR Select-IR-Scan

Capture-DR
Parallel loads data into the active data register, if
necessary. Otherwise, the active register retains its
previous state.

Shift-DR Exit1-DR

Shift-DR The active register shifts data one stage toward
TDO on each TCK rising edge. Shift-DR Exit1-DR

Exit1-DR The active register retains its previous state. Pause-DR Update-DR

Pause-DR The active register temporarily stops shifting data
and retains its previous state. Pause-DR Exit2-DR

Exit2-DR The active register retains its previous state. Shift-DR Update-DR

Update-DR

Applies stimulus to the device. Data is latched onto
the active register’s parallel output on the falling
edge of TCK. If the register has no parallel output, it
retains its previous state.

Run-Test/Idle Select-DR-Scan

NOTE: By convention, the abbreviation DR stands for data register, and IR stands for instruction register.
The active register is the register that the current instruction has placed in the serial path between
TDI and TDO.
18-4

JTAG TEST-LOGIC UNIT

tart
tate
f TCK
e TAP
For example, assume that the TAP controller is in its test-logic-reset state and you want it to s
shifting the contents of the instruction register from TDI toward TDO (Shift-IR state). This s
change requires a zero, two ones, then two zeros on TMS at the next five rising edges o
(see Table 18-3). By supplying the proper values in the correct sequence, you can move th
controller from any state to any other state.

Select-IR-Scan Test-logic is idle and the instruction register retains
its previous state. Capture-IR Test-Logic-Reset

Capture-IR Loads the SAMPLE/PRELOAD instruction
instruction (0001) into the instruction register. Shift-IR Exit1-IR

Shift-IR
Shifts the SAMPLE/PRELOAD instruction one
stage toward TDO while shifting the new instruction
in from TDI on each rising edge of TCK.

Shift-IR Exit1-IR

Exit1-IR The instruction register retains its previous state. Pause-IR Update-IR

Pause-IR The instruction register temporarily stops shifting
and retains its previous state. Pause-IR Exit2-IR

Exit2-IR The instruction register retains its previous state. Shift-IR Update-IR

Update-IR Latches the current instruction onto the instruction
register’s parallel output on the falling edge of TCK. Run-Test/Idle Select-DR-Scan

Table 18-3. Example TAP Controller State Selections

Initial State TMS Value at TCK Rising Edge Resulting State

Test-Logic-
Reset

0
Run-Test/Idle

Run-Test/Idle 1 Select-DR-Scan

Select-DR-
Scan

1
Select-IR-Scan

Select-IR-
Scan

0
Capture-IR

Capture-IR 0 Shift-IR

Table 18-2. TAP Controller State Descriptions (Sheet 2 of 2)

State Description

Next State
(on TCK Rising Edge)

TMS = 0 TMS = 1

NOTE: By convention, the abbreviation DR stands for data register, and IR stands for instruction register.
The active register is the register that the current instruction has placed in the serial path between
TDI and TDO.
18-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Figure 18-2. TAP Controller (Finite-State Machine)

A2356-01

Update -

IR

Exit2 -

IR

Pause -

IR

Exit1 -

IR

Shift -

IR

Capture -

IR

Select -

IR - Scan

Update -

DR

Exit2 -

DR

Pause -

DR

Exit1 -

DR

Shift -

DR

Capture -

DR

Select -

DR - Scan

Run - Test/

Idle

Test - Logic

- Reset

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

1

1

00

1

11

0

1

0

0

0

0

1

0

1

18-6

JTAG TEST-LOGIC UNIT

ister
e in-
18.2.3 Instruction Register (IR)

An instruction opcode is clocked serially through the TDI pin into the four-bit instruction reg
(Figure 18-3). The instruction determines which data register is affected. Table 18-4 lists th
structions with their binary opcodes, descriptions, and associated registers.

Figure 18-3. Instruction Register (IR)

Instruction Register
IR

Reset State
(Using TRST#): 02H

3 0

INST3 INST2 INST1 INST0

Bit
Number

Bit
Mnemonic Function

3–0 INST3:0 Instruction opcode. At reset (using TRST#, or after 5 TCK cycles with
TMS held low), this field is loaded with 0010, the opcode for the IDCODE
instruction. Instructions are shifted into this field serially through the TDI
pin. (Table 18-4 lists the valid instruction opcodes.)

Table 18-4. Test-logic Unit Instructions

Mnemonic Opcode† Description Affected
Register

BYPASS
1111 Bypass on-chip system logic (mandatory instruction).

Used for those components that are not being tested.
BYPASS

EXTEST
0000 Off-chip circuitry test (mandatory instruction).

Used for testing device interconnections on a board.
BOUND

SAMPRE
0001 Sample pins/preload data (mandatory instruction).

Used for controlling (preload) or observing (sample) the signals at
device pins. This test has no effect on system operation.

BOUND

IDCODE
0010 ID code test (optional instruction).

Used to identify devices on a board.
IDCODE

HIGHZ

1000 High-impedance/On-Circuit Emulation (ONCE) mode test
(optional instruction).

Used to place device pins into their inactive drive states. Allows
external components to drive signals onto connections that the
processor normally drives.

BYPASS

† The opcode is the sequence of data bits shifted serially into the instruction register (IR) from the TDI input.
The opcodes for EXTEST and BYPASS are mandated by IEEE 1149.1, so they should be the same for all
JTAG-compliant devices. The remaining opcodes are designer-defined, so they may vary among devices.

All unlisted opcodes are reserved. Use of reserved opcodes could cause the device to enter reserved
factory-test modes.
18-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

an. The

I and

um-
18.2.4 Data Registers

The test-logic unit uses three data registers: bypass, identification code, and boundary-sc
instruction determines which data register is used.

The single-bit bypass register (BYPASS) provides a minimal-length serial path between TD
TDO. During board-level testing, you can use this path for any devices that are not currently un-
der test. This speeds access to the data registers for the devices that are being tested.

The 32-bit identification code register (IDCODE) identifies a device by manufacturer, part n
ber, and version number. Figure 18-4 describes the register and shows the values for the Intel386
EX processor.

Figure 18-4. Identification Code Register (IDCODE)

Identification Code Register
IDCODE Reset State:

2027 0013H (3V)
2827 0013H (5V)

31 24

0 0 1 0 0 (3V)
1 (5V)

0 0 0

23 16

0 0 1 0 0 1 1 1

15 8

0 0 0 0 0 0 0 0

7 0

0 0 0 1 0 0 1 1

Bit
Number

Bit
Mnemonic Function

31–28 V3:0 Device version number.

27–12 PN15:0 Device part number.

11–1 MFR10:0 Manufacturer identification (compressed JEDEC106-A code).

0 IDP Identification Present. Always true for this device.

This is the first data bit shifted out of the device during a data scan
immediately following an exit from the test-logic-reset state. A one
indicates that an IDCODE register is present. (A zero originates from the
BYPASS register and indicates that the device being interrogated has no
IDCODE register.)
18-8

JTAG TEST-LOGIC UNIT

d at the
The boundary-scan register (BOUND) holds data to be applied to the pins or data observe
pins. Each bit corresponds to a specific pin (Table 18-5).

Table 18-5. Boundary-scan Register Bit Assignments

Bit Pin Bit Pin Bit Pin Bit Pin

0 M/IO# 25 A15 50 TMROUT2 75 P2.2

1 D/C# 26 A16/CAS0 51 TMRGATE2 76 P2.3

2 W/R# 27 A17/CAS1 52 INT4/TMRCLK0 77 P2.4

3 READY# 28 A18/CAS2 53 INT5/TMRGATE0 78 DACK0#

4 BS8# 29 A19 54 INT6/TMRCLK1 79 P2.5/RXD0

5 RD# 30 A20 55 INT7/TMRGATE1 80 P2.6/TXD0

6 WR# 31 A21 56 STXCLK 81 P2.7

7 BLE# 32 A22 57 FLT# 82 UCS#

8 BHE# 33 A23 58 P1.0 83 CS6#/REFRESH#

9 ADS# 34 A24 59 P1.1 84 LBA#

10 NA# 35 A25 60 P1.2 85 D0

11 A1 36 SMI# 61 P1.3 86 D1

12
A2

37 P3.0/TMROUT0/

INT9

62
P1.4

87
D2

13
A3

38 P3.1/TMROUT1/

INT8

63
P1.5

88
D3

14 A4 39 SRXCLK 64 P1.6/HOLD 89 D4

15 A5 40 SSIORX 65 RESET 90 D5

16 A6 41 SSIOTX 66 P1.7/HLDA 91 D6

17 A7 42 P3.2/INT0 67 DACK1#/TXD1 92 D7

18 A8 43 P3.3/INT1 68 EOP# 93 D8

19 A9 44 P3.4/INT2 69 WDTOUT 94 D9

20 A10 45 P3.5/INT3 70 DRQ0 95 D10

21 A11 46 P3.6/PWRDOWN 71 DRQ1/RXD1 96 D11

22 A12 47 P3.7/SERCLK 72 SMIACT# 97 D12

23 A13 48 PEREQ/TMRCLK2 73 P2.0 98 D13

24 A14 49 NMI 74 P2.1 99 D14

100 D15

NOTES:
1. Bit 0 is closest to TDI; bit 100 is closest to TDO.
2. The boundary-scan chain consists of 101 bits; however, each bit has both a control cell and a data cell,

so an EXTEST instruction requires 202 shifts (101 bits × 2 cells).
18-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

onnec-
n sup-

r.
he in-
y ma-
s the

g oth-
ard has
n cells
l-
ypass

 The
 value

s an
ration

ode
DI and
pdate-

ns.
tem in-
ate-DR
18.3 TESTING

This section explains how to use the test-logic unit to test the device and the board interc
tions. For any test, you must load an instruction and perform an instruction-scan cycle, the
ply the correct sequence of ones and zeros to move the TAP controller through the required states
to perform the test.

18.3.1 Identifying the Device

The IDCODE instruction allows you to determine the contents of a device’s IDCODE registe
When TRST# is asserted, the test-logic-reset state forces the IDCODE instruction into t
struction register’s parallel output latches. You can also load this instruction like any other, b
nipulating the TDI input to supply the binary opcode (0010). The Capture-DR state load
identification code into the IDCODE register, and the Shift-DR state shifts the value out.

18.3.2 Bypassing Devices on a Board

The BYPASS instruction allows you to bypass one or more devices on a board while testin
ers. This significantly reduces the time required for a test. For example, assume that a bo
100 devices, each of which has 101 bits in its boundary-scan register. If the boundary-sca
are all connected in series, the boundary-scan path is 10,100 stages long. Bypassing devices a
lows you to shorten the path considerably. If you set 99 of the devices to shift through their b
registers and only a single chip to shift through its boundary-scan register (101 bits in this case),
the serial path is only 200 stages long.

You load the BYPASS instruction by manipulating TDI to supply the binary opcode (1111).
Capture-DR state loads a logic 0 into the bypass register and the Shift-DR state shifts the
out.

18.3.3 Sampling Device Operation and Preloading Data

The SAMPLE/PRELOAD instruction has two functions: SAMPLE takes a snapshot of data flow-
ing from (or to) the system pins to (or from) on-chip system logic, while PRELOAD place
initial data pattern at the latched parallel outputs of the boundary-scan register cells in prepa
for another boundary-scan test operation.

You load the SAMPLE/PRELOAD instruction by manipulating TDI to supply the binary opc
(0001). The Shift-DR state places the boundary-scan register in the serial path between T
TDO, the Capture-DR state loads the pin states into the boundary-scan register, and the U
DR state loads the shift-register contents into the boundary-scan register’s parallel outputs.

18.3.4 Testing the Interconnections (EXTEST)

The EXTEST instruction allows testing of off-chip circuitry and board-level interconnectio
Boundary-scan cells at the system outputs are used to apply test stimuli, while cells at sys
puts capture the results. The Capture-DR state captures input pins into the chain; the Upd
state drives the new values of the parallel output onto the output pins.
18-10

JTAG TEST-LOGIC UNIT

ary-
e EX-
 state
hifted

nce)
or out-
 data

the
be ac-
Z in-
chip to

e shifts
Typically, you would use the SAMPLE/PRELOAD instruction to load data onto the bound
scan register’s latched parallel outputs before loading the EXTEST instruction. You load th
TEST instruction by manipulating TDI to supply the binary opcode (0000). The Update-DR
drives the preloaded data onto the pins for the first test. Stimuli for the remaining tests are s
in while the results for the completed tests are shifted out.

18.3.5 Disabling the Output Drivers

The HIGHZ instruction places all system logic outputs into an inactive drive (high impeda
state. This state allows an in-circuit emulator to drive signals onto connections that process
puts normally drive, without risk of damaging the processor. It also allows you to connect a
source (such as a test chip) to board-level signals (such as an array of memory devices) that
processor outputs normally drive. During normal operation, the processor outputs would
tive, while the test chip outputs would be inactive. During testing, you would use the HIGH
struction to place the processor outputs into an inactive drive state, then enable the test
drive the connections.

You load the HIGHZ instruction by manipulating the TDI input to supply the binary opcode
(1000). The Capture-DR state loads a logic 0 into the bypass register, and the Shift-DR stat
the value out.
18-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
18.4 TIMING INFORMATION

The test-logic unit’s input/output timing is as specified in IEEE 1149.1. Figure 18-5 shows the
pin timing associated with loading the instruction register and Figure 18-6 shows the timing for
loading a given data register.

Figure 18-5. Internal and External Timing for Loading the Instruction Register

A2361-01

T
est - Logic - R

eset

R
un - T

est / Idle

S
elect - D

R
 - S

can

S
elect - IR

 - S
can

C
apture - IR

S
hift - IR

E
xit1 - IR

P
ause - IR

E
xit2 - IR

S
hift - IR

E
xit1 - IR

U
pdate - IR

R
un - T

est / Idle

TDI

Data Input to IR

IR Shift-Register

Parallel Output of IR

Data Input to TDR

TDR Shift-Register

Parallel Output of TDR

Register Selected

TDO Enable

TDO

= Don't care or undefined.

IDCode New Instruction

Old Data

Instruction Register

Inactive Active InactiveActiveInactive

Controller State

TMS

TCK
18-12

JTAG TEST-LOGIC UNIT
Figure 18-6. Internal and External Timing for Loading a Data Register

A2362-01

R
un - T

est / Idle

S
elect - D

R
 - S

can

C
apture - D

R

S
hift - D

R

E
xit1 - D

R

P
ause - D

R

E
xit2 - D

R

S
hift - D

R

E
xit1 - D

R

U
pdate - D

R

R
un - T

est / Idle

TDI

Data Input to IR

IR Shift-Register

Parallel Output of IR

Data Input to TDR

TDR Shift-Register

Parallel Output of TDR

Instruction Register

TDO Enable

TDO

= Don't care or undefined.

IDCode

Instruction

New Data

Test Data Register

Inactive Active InactiveActiveInactive

S
elect - D

R
 - S

can

S
elect - IR

 - S
can

T
est - Logic - R

eset

Old Data

Controller State

TMS

TCK
18-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

this,
t
e

 For

ffect
18.5 DESIGN CONSIDERATIONS

This section outlines considerations for the test-logic unit.

• The JTAG Test-Logic Unit must be reset upon power-up using the TRST# pin. (To do
invert the RESET signal and send this inverted RESET to the TRST# pin). If this is no
done, the processor may power-up with the JTAG test-logic unit in control of the devic
pins, and the system does not initialize properly.

• For system-level in-circuit emulation, use the HIGHZ instruction to enter ONCE mode.
device-level in-circuit emulation, you assert the FLT# pin to enter ONCE mode. This
method can interfere with the test-logic unit’s parallel functions, although it does not a
the shifting functions or the TDO output.
18-14

A
SIGNAL
DESCRIPTIONS

g the
in

de,
APPENDIX A
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pins and signals of the device, includin
states of certain pins during reset, idle, powerdown, and hold. The information is presented four
tables:

• Table A-1 defines the abbreviations used in Table A-2 to describe the signals.

• Table A-2 describes each signal.

• Table A-3 defines the abbreviations used in Table A-4 to describe the pin states.

• Table A-4 lists the states of output and bidirectional pins after reset and during idle mo
powerdown, and hold.

Table A-1. Signal Description Abbreviations

Abbreviation Definition

signal is active low

— not applicable or none

I standard TTL input

O standard CMOS output

OD open-drain output

I/O bidirectional (input and output)

ST Schmitt-trigger input

P power pin

G ground pin
A-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table A-2 is an alphabetical list of the signals available at the device pins. The Multiplexed With
column lists other signals that share a pin with the signal listed in the Signal column.

Table A-2. Description of Signals Available at the Device Pins (Sheet 1 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)

A25:19
A18:16
A15:1

O Address Bus:

Outputs physical memory or port I/O addresses. These
signals are valid when ADS# is active and remain valid until
the next T1, T2P, or Ti.

—
CAS2:0
—

ADS# O Address Status:

Indicates that the processor is driving a valid bus-cycle
definition and address (W/R#, D/C#, M/IO#, A25:1, BHE#,
BLE#) onto its pins.

—

BHE# O Byte High Enable:

Indicates that the processor is transferring a high data byte.

—

BLE# O Byte Low Enable:

Indicates that the processor is transferring a low data byte.

—

BS8# I Bus Size:

Indicates that an 8-bit device is currently being addressed.

—

BUSY# I Busy:

Indicates that the math coprocessor is busy. If BUSY# is
sampled low at the falling edge of RESET, the processor
performs an internal self test.

TMRGATE2

CAS2:0 O Cascade Address:

Carries the slave address information from the master
8259A interrupt module during interrupt acknowledge bus
cycles.

A18:16

CLK2 ST Input Clock:

Is connected to an external clock that provides the
fundamental timing for the microprocessor. The internal
processor clock frequency is half the CLK2 frequency.

—

CLKOUT O Clock Output:

Use this output to synchronize external devices with the
processor.

—

COMCLK I SIO Baud Clock:

An external source connected to this pin can clock the SIOn
baud-rate generator.

P3.7

CS6#
CS5#
CS4#
CS3#
CS2#
CS1#
CS0#

O Chip-selects:

Activated when the address of a memory or I/O bus cycle is
within the address region programmed by the user.

REFRESH#
DACK0#
P2.4
P2.3
P2.2
P2.1
P2.0
A-2

SIGNAL DESCRIPTIONS
CTS1#
CTS0#

I Clear to Send:

Indicates that the modem or data set is ready to exchange
data with the SIO channel.

EOP#
P2.7

D15:0 I/O Data Bus:

Inputs data during memory read, I/O read, and interrupt
acknowledge cycles; outputs data during memory write and
I/O write cycles. During reads, data is latched during the
falling edge of phase 2 of T2, T2P, or T2i. During writes, this
bus is driven during phase 2 of T1 and remains active until
phase 2 of the next T1, T1P, or Ti.

—

DACK1#
DACK0#

O DMA Channel Acknowledge:

Indicates that the DMA channel is ready to service the
requesting device. An external device uses the DRQn pin to
request DMA service; the DMA uses the DACKn pin to
indicate that the request is being serviced.

TXD1
CS5#

D/C# O Data/Control:

Indicates whether the current bus cycle is a data cycle
(memory or I/O read or write) or a control cycle (interrupt
acknowledge, halt/shutdown, or code fetch).

—

DCD1#
DCD0#

I Data Carrier Detect:

Indicates that the modem or data set has detected the SIO
channel’s data carrier.

DRQ0
P1.0

DRQ1
DRQ0

I DMA External Request:

Indicates that an external device requires DMA service.

RXD1
DCD1#

DSR1#
DSR0#

I Data Set Ready:

Indicates that the modem or data set is ready to establish
the communications link with the SIO channel.

STXCLK
P1.3

DTR1#
DTR0#

O Data Terminal Ready:

Indicates that the SIO channel is ready to establish a
communications link with the modem or data set.

SRXCLK
P1.2

EOP# I/OD End-of-process:

As an input, this signal terminates a DMA transfer. As an
ouput, it indicates that a DMA transfer has completed.

CTS1#

ERROR# I Error:

Indicates the the math coprocessor has an error condition.

TMROUT2

FLT# I Float:

Forces all bidirectional and output signals except TDO to a
high-impedance state.

—

HLDA O Hold Acknowledge:

Indicates that the processor has relinquished local bus
control to another bus master in response to a HOLD
request.

P1.7

Table A-2. Description of Signals Available at the Device Pins (Sheet 2 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)
A-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
HOLD I Hold Request:

An external bus master asserts HOLD to request control of
the local bus. The processor finishes the current nonlocked
bus transfer, releases the bus signals, and asserts HLDA.

P1.6

INT9
INT8
INT7
INT6
INT5
INT4
INT3
INT2
INT1
INT0

I Interrupt Requests:

These maskable inputs cause the processor to suspend
execution of the current program and execute an interrupt
acknowledge cycle.

P3.0/TMROUT0
P3.1/TMROUT1
TMRGATE1
TMRCLK1
TMRGATE0
TMRCLK0
P3.5
P3.4
P3.3
P3.2

LBA# O Local Bus Access:

Indicates that the processor provides the READY# signal
internally to terminate a bus transaction. This signal is
active when the processor accesses an internal peripheral
or when the chip-select unit provides the READY# signal for
an external peripheral.

—

LOCK# O Bus Lock:

Prevents other bus masters from gaining control of the bus.

P1.5

M/IO# O Memory/IO:

Indicates whether the current bus cycle is a memory cycle
or an I/O cycle.

—

NA# I Next Address:

Requests address pipelining.

—

NMI ST Nonmaskable Interrupt Request:

Causes the processor to suspend execution of the current
program and execute an interrupt acknowledge cycle.

—

PEREQ I Processor Extension Request:

Indicates that the math coprocessor has data to transfer to
the processor.

TMRCLK2

P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0

I/O Port 1:

General-purpose, bidirectional I/O port.

HLDA
HOLD
LOCK#
RI0#
DSR0#
DTR0#
RTS0#
DCD0#

Table A-2. Description of Signals Available at the Device Pins (Sheet 3 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)
A-4

SIGNAL DESCRIPTIONS
P2.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

I/O Port 2:

General-purpose, bidirectional I/O port.

CTS0#
TXD0
RXD0
CS4#
CS3#
CS2#
CS1#
CS0#

P3.7
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0

I/O Port 3:

General-purpose, bidirectional I/O port.

COMCLK
PWRDOWN
INT3
INT2
INT1
INT0
TMROUT1/INT8
TMROUT0/INT9

PWRDOWN O Powerdown Output:

Indicates that the device is in powerdown mode.

P3.6

RD# O Read Enable:

Indicates that the current bus cycle is a read cycle and the
data bus is able to accept data.

READY# I/O Ready:

Terminates the current bus cycle. The processor drives
READY# when LBA# is active; otherwise, the processor
samples READY# on the falling edge of phase 2 of T2, T2P
or T2i.

—

REFRESH# O Refresh:

Indicates that a refresh bus cycle is in progress and that the
refresh address is on the bus for the DRAM controller.

CS6#

RESET ST System Reset Input:

Suspends any operation in progress and places the
processor into a known reset state.

—

RI1#
RI0#

I Ring Indicator:

Indicates that the modem or data set has received a
telephone ringing signal.

SSIORX
P1.4

RTS1#
RTS0#

O Request to Send:

Indicates that the SIO channel is ready to exchange data
with the modem or data set.

SSIOTX
P1.1

RXD1
RXD0

I Receive Data:

Accepts data from the modem or data set to the SIO
channel.

DRQ1
P2.5

Table A-2. Description of Signals Available at the Device Pins (Sheet 4 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)
A-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
SMI# ST System Management Interrupt:

Causes the device to enter System Management Mode.
SMI# is the highest priority external interrupt.

—

SMIACT# O System Management Interrupt Active:

Indicates that the processor is in System Management
Mode.

—

SRXCLK I/O SSIO Receive Clock:

In master mode, the baud-rate generator’s output appears
on SRXCLK and can be used to clock a slave transmitter. In
slave mode, SRXCLK functions as an input clock for the
receiver.

DTR1#

SSIORX I SSIO Receive Serial Data:

Accepts serial data (most-significant bit first) into the SSIO.

RI1#

SSIOTX O SSIO Transmit Serial Data:

Sends serial data (most-significant bit first) from the SSIO.

RTS1#

STXCLK I/O SSIO Transmit Clock:

In master mode, the baud-rate generator’s output appears
on STXCLK and can be used to clock a slave receiver. In
slave mode, STXCLK functions as an input clock for the
transmitter.

DSR1

TCK I Test Clock Input:

Provides the clock input for the test-logic unit.

—

TDI I Test Data Input:

Serial input for test instructions and data. Sampled on the
rising edge of TCK; valid only when either the instruction
register or a data register is being serially loaded.

—

TDO O Test Data Output:

Serial output for test instructions and data. TDO shifts out
the contents of the instruction register or the selected data
register (LSB first) on the falling edge of TCK. If serial
shifting is not taking place, TDO floats.

—

TMRCLK2
TMRCLK1
TMRCLK0

I Timer/Counter Clock Input:

An external clock source connected to the TMRCLKn pin
can drive the corresponding timer/counter.

PEREQ
INT6
INT4

TMRGATE2
TMRGATE1
TMRGATE0

I Timer/Counter Gate Input:

Can control the counter’s operation (enable, disable, or
trigger, depending on the programmed mode).

BUSY#
INT7
INT5

TMROUT2
TMROUT1
TMROUT0

O Timer/Counter Output:

Can provide the timer/counter’s output. The form of the
output depends on the programmed mode.

ERROR#
P3.1/INT8
P3.0/INT9

Table A-2. Description of Signals Available at the Device Pins (Sheet 5 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)
A-6

SIGNAL DESCRIPTIONS
TMS I Test Mode Select:

Controls the sequence of the test-logic unit’s TAP controller
states. Sampled on the rising edge of TCK.

—

TRST# ST Test Reset:

Resets the test-logic unit’s TAP controller. Asynchronously
clears the data registers and initializes the instruction
register to 0010 (the IDCODE instruction opcode).

—

TXD1
TXD0

O Transmit Data:

Transmits serial data from the corresponding SIO channel.

DACK1#
P2.6

UCS# O Upper Chip-select:

Activated when the address of a memory or I/O bus cycle is
within the address region programmed by the user.

—

VCC P System Power:

Provides the nominal DC supply input. Connected
externally to a VCC board plane.

—

VSS G System Ground:

Provides the 0 volt connection from which all inputs and
outputs are measured. Connected externally to a ground
board plane.

—

WDTOUT O Watchdog Timer Output:

Indicates that the watchdog timer has expired.

—

W/R# O Write/Read:

Indicates whether the current bus cycle is a write cycle or a
read cycle.

—

WR# O Write Enable:

Indicates that the current bus cycle is a write cycle.

—

Table A-2. Description of Signals Available at the Device Pins (Sheet 6 of 6)

Signal Type Name and Description
Multiplexed With

(Alternate
Function)
A-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table A-3 defines the abbreviations used in Table A-4 to describe the pin states.

Table A-3. Pin State Abbreviations

Abbreviation Description

1 Output driven to VCC

0 Output driven to VSS

Z Output floats

Q Output remains active

X Output retains current state

WH Pin floats and has a temporary weak
pull-up

WL Pin floats and has a temporary weak
pull-down
A-8

SIGNAL DESCRIPTIONS

Table A-4 lists the states of output and bidirectional pins after reset and during idle mode,pow-
erdown, and hold.

Table A-4. Pin States After Reset and During Idle, Powerdown, and Hold (Sheet 1 of 2)

Symbol Type
Pin State

Reset Idle Powerdown Hold

A25:1 O 1 1 1 Z

ADS# O 1 1 1 Z

BHE# O 0 X 0 Z

BLE# O 0 X 1 Z

CAS2:0 O 1 1 1 Z

CLKOUT O Q Q 0 Q

CS4:0# O WH Q X 1

CS6:5# O 1 Q X 1

D15:0 I/O Z Z Z Z

DACK1:0# O 1 Q X 1

D/C# O 1 0 0 Z

DTR1:0 O WH X X X

EOP# I/OD WH Z Z Z

HLDA O WL Q X 1

LBA# O 1 Q X 1

LOCK# O WH X X Z

M/IO# O 0 1 1 Z

P1.5:0 I/O WH X X X

P1.7:6 I/O WL X X X

P2.4:0 I/O WH X X X

P2.6:5 I/O WL X X X

P2.7 I/O WH X X X

P3.7:0 I/O WL X X X

PWRDWN O WL X 1 Q

RD# O 1 1 1 1

READY# I/O Z Z Z Z

REFRESH# O 1 Q X 1

RTS1# O WL X X X

RTS0# O WH X X X

SMIACT# O 1 X X 1

SRXCLK I/O WH Q X or Q(1) Q

SSIOTX O WL Q X or Q(1) Q

NOTES:
1. X if clock source is internal; Q if clock source is external.
2. Q when shifting data out through the JTAG port, otherwise Z.
A-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

T#,
The following input pins have permanent weak pull-up resistors: TCK, TDI, TMS, TRS
SMI#, PEREQ/TMRCLK2, and FLT#.

STXCLK I/O WH Q X or Q(1) Q

TDO O Z or Q(2) Z or Q(2) Z or Q(2) Z or Q(2)

TMROUT2 O WH Q X or Q(1) Q

TMROUT1:0 O WL Q X or Q(1) Q

TXD1 O 1 Q X or Q(1) Q

TXD0 O WL Q X or Q(1) Q

UCS# O 0 Q X 1

WDTOUT O 0 Q X Q

W/R# O 0 1 1 Z

WR# O 1 1 1 1

Table A-4. Pin States After Reset and During Idle, Powerdown, and Hold (Sheet 2 of 2)

NOTES:
1. X if clock source is internal; Q if clock source is external.
2. Q when shifting data out through the JTAG port, otherwise Z.
A-10

B
COMPATIBILITY
WITH THE PC/AT*
ARCHITECTURE

A/PC-

pack-
 differ-
r less
nts of
tem.

a
. Chap-
ble

tal of
sfers.

it (64
APPENDIX B
COMPATIBILITY WITH THE PC/AT*

ARCHITECTURE

The Intel386™ EX embedded processor is NOT 100% PC/AT* compatible. Due to compatibility
issues, not all PC software executes on the Intel386 EX processor. In addition, not all IS
104 cards operate in an Intel386 EX processor system.

It is the responsibility of the designer to determine if a specific PC/AT software or hardware
age operates on an Intel386 EX processor system. Typically an embedded PC can be very
ent from a traditional desktop PC’s system. The embedded PC may have more o
functionality than a desktop PC. It is important for the designer to evaluate the requireme
the PC software or hardware that is expected to operate on the Intel386 EX processor sys

This appendix is organized as follows:

• Hardware Departures from PC/AT System Architecture (see below)

• Software Considerations for a PC/AT System Architecture (page B-5)

B.1 HARDWARE DEPARTURES FROM P C/AT SYSTEM ARCHI TECTURE

This appendix describes the areas in which the Intel386 EX processor departs from a stndard
PC/AT system architecture and explains how to work around those departures if necessary
ter 5, “DEVICE CONFIGURATION”, shows an example configuration for a PC/AT-compati
system

B.1.1 DMA Unit

The PC/AT architecture uses two 8237A DMA controllers, connected in cascade, for a to
seven channels. One DMA controller allows byte transfers and the other allows word tran
However, the 8237A has two major restrictions:

• It has only 16-bit addressing capability. This requires a page register to allow address
extension for a system based on a processor like the Intel386 EX processor, with 26-b
Mbyte) physical memory addressing capability. A page register implementation is
cumbersome and degrades the system performance.

• The 8237A has no natural two-cycle data transfer mode to allow memory-to-memory
transfers. Instead, two DMA channels have to be used in a very specific manner.
Transferring data between memory and memory-mapped I/O devices, common in
embedded applications, would not be easy.
B-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

inte-

s

f
ry
rted

s
7A.
.e.,

m
em’s
 MS-
dify
ter-
sfers.
 inten-

 The

pati-

ssor
ignals
To eliminate these problems with an 8237A DMA controller, the Intel386 EX processor
grates a DMA controller unit that differs from the 8237A DMA in these ways:

• It provides two channels, each capable of either byte or word transfers.

• Each channel can transfer data between any combination of memory and I/O. The Bu
Interface Unit supports both external fly-by and two-cycle operation.

• For programming compatibility, the internal DMA unit preserves all of the 8-bit registers o
the 8237A. The 8237A’s command register bits that affect two-channel memory-to-memo
transfers, compressed timing, and DREQ/DACK signal polarity selection are not suppo
by the internal DMA.

• The internal DMA uses 26-bit address registers to support the 26-bit address bus and use
24-bit byte count registers to support larger data blocks than are possible with the 823
However, each channel can be configured to look like an 8237A with page registers (i
16-bit address and byte count registers).

Chapter 12, “DMA CONTROLLER,” describes the DMA unit’s features in detail.

While the internal DMA offers a comprehensive set of features to meet the needs of most ebed-
ded applications, strict DOS compatibility may be critical to some. A PC/AT compatible syst
Basic Input Output System (BIOS) only uses the DMA for floppy disk access. Since both
DOS* and Microsoft* Windows* make calls to the BIOS for disk access, it is possible to mo
the BIOS. The floppy disk controller allows data transfers to occur using DMA, Polling, or In
rupt based. A few BIOS vendors have implemented the transfers using polling for disk tran
Some programs bypass the BIOS and go directly to the hardware; typically, these are disk
sive programs like hard disk backup software or disk management software.

If more DMA channels are required for compatibility, external controllers could be added.
Intel386 EX processor’s flexible address remapping scheme enables you to map the internal
DMA out of the DOS I/O space and then connect an external 8237A to achieve PC/AT com
bility. The internal DMA can still be used for other non-DOS related functions.

B.1.2 Industry Standard Bus (ISA) Signals

The address, data, and control signals, along with the interrupt and DMA control signals, do not
directly conform to the PC/AT ISA bus. (They more closely match the Intel386™ SX proce
local bus signals.) However, you can easily construct a subset PC/AT ISA bus from these s
or a combination of these signals. For example, the AEN signal is typically generated as shown
in Figure B-1 in a PC/AT-compatible system.
B-2

COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

 Figure
 there

he

 detect
ex-
hould
 in a
pact
e

differ-
 load.

tes, but
rs and

ard for
Figure B-1. Derivation of AEN Signal in a Typical PC/AT System

For systems based on Intel386 EX processor, the AEN signal could be derived as shown in
B-2. Notice that since the DMA acknowledge signals are used instead of a generic HLDA,
is no need to incorporate the REFRESH# signal in the logic.

Figure B-2. Derivation of AEN Signal for Intel386™ EX processor-based Systems

In a PC/AT system using the 8237A DMA controller in fly-by mode, the 8237A generates appro-
priate control signals for memory (MEMR# or MEMW#) and for I/O (IOW# and IOR#). T
Intel386 EX processor’s internal DMA, during fly-by transfers, generates control signals (M/IO#
and W/R#) that apply to the memory device. There needs to be some external logic that can
the DMA operation (through the AEN signal) and generate a complementary I/O cycle. For
ample, if the DMA is generating a memory read cycle and AEN is active, then the logic s
drive the IOW# signal on the PC/AT bus. Actually, the internal DMA could be programmed
two-cycle mode eliminating the need for external logic. This will not have a significant im
on the performance — of the two cycles required to complete the transfer, the I/O cycle is thlong
one (meeting PC/AT timings) while the memory cycle is relatively very quick.

The drive capability and the operating frequency of the Intel386 EX processor signals are
ent from the standard PC/AT bus, which requires 24 mA drive capacity at 200 pF capacitive

Most PC/AT systems presently operate in a “quiet bus” mode so that non-ISA cycles are not re-
flected on the ISA bus. In a typical implementation, the address/data buses may change sta
the control signals are not strobed if a non-ISA cycle is detected. External three-state buffe
some decoding logic are needed to implement this scheme. The EV386EX (evaluation bo

A2504-01

HLDA

MASTER#

(From PC/AT* Bus)

AENProcessor

A2503-01

Processor

DACK0#

DACK1#
DACK

MASTER# (From PC/AT* Bus)

AEN
B-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

s

e for
ication
n an
accord-

. The
ional

ot the
 any

 reset
d to a

xpect-

 sig-
et func-

ntrols
of the
l386

aising
l the
l unit

ile the
 mas-
 and
the Intel386 EX embedded processor) demonstrates the design of a Synchronous Expansion Bu
that is very similar to the ISA bus. The Intel386 EX processor is not capable of providing a 100%
compatible ISA bus due to its lack of DMA channels and interrupt inputs.

B.1.3 Interrupt Control Unit

Interrupt signals IRQ10, IRQ11, and IRQ15 found on an ISA bus are not directly availabl
external interrupt connections in systems based on an Intel386 EX processor. If an appl
intends to use these IRQn signals, then they can be rerouted to other IRQ signals available i
Intel386 EX processor architecture, and the respective interrupt handler routines assigned
ingly.

B.1.4 SIO Units

In the modem control register (MCR), the OUT1 register bit is used only in loopback tests
OUT2 bit in the MCR is used as an SIO interrupt enable control signal. This allows two addit
UARTs to be added externally as COM3 and COM4.

The SIO units (COM1 and COM2) are connected to the equivalent of a PC’s local bus, n
ISA bus. However, this does not affect the compatibility with DOS application software in
form.

B.1.5 CPU-only Reset

The RESET pin on the Intel386 EX processor can be considered to function as a system
function because all of the on-chip peripheral units, as well as the CPU core, are initialize
known start-up state. There is no separate reset pin that goes only to the CPU. Some CPU-only
reset modes, such as a keyboard controller generated CPU-only reset, will not function as e
ed.

A CPU-only reset can be implemented by routing the reset signal to either the NMI or SMI#
nal, and the appropriate handler code could then generate a corresponding CPU-Only-Res
tion by setting bit 0 of the PORT92H register.

B.1.6 HOLD, HLDA Pins

These pins do not connect directly to the CPU. Instead they go to the Bus Arbiter which co
the internal HOLD and HLDA signals connected to the CPU core. However the presence
bus arbiter is transparent as far as functionality of the external HOLD and HLDA pins of Inte
EX processor are concerned.

In a PC/AT system, if an external bus master gains the bus by raising HOLD to the CPU or r
DREQ in DMA cascade mode, the corresponding HLDA or DACK signal stays active unti
bus master drops HOLD or DREQ. In the Intel386 EX processor, when the refresh contro
requests the bus, the bus arbiter deactivates the signals on the HLDA or DACK# pins wh
external bus master still has the bus (HOLD or DREQ is high). At this point, the external bus
ter or DMA must deassert its HOLD or DREQ signal for a minimum of one CPU clock cycle
it can then assert the signal again.
B-4

COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

an be
 this

e
y BIOS

ement
h the
in
alua-
ated

 key-

able,
86

 dem-

ws.
er, real
OM
B.1.7 Port B

The Port B register found on the PC/AT is not supported on the Intel386 EX processor. It c
implemented externally with a PLD. The EXPLR1 (Explorer Evaluation board) supports
Port B.

B.2 SOFTWARE CONSIDERATIONS FOR A PC/AT SYSTEM ARCHI TECTURE

B.2.1 Embedded Basic Input Output System (BIOS)

The BIOS provides low-level drivers to interface to the hardware. The BIOS is hardware dpen-
dent and typically requires changes for the embedded design. There are several third part
vendors that support the Intel386 EX processor.

Embedded PC features supported include PCMCIA, Flash, Advanced Power Manag
(APM), Source, Remote Floppy, OEM Configurable, and Video/Keyboard rerouted throug
serial port. For a complete list of vendors and their features, call the Intel BBS as described
“Electronic Support Systems” on page 1-6. A good evaluation vehicle is the EV386EX Ev
tion Board which comes with five different third party BIOS demonstrations. New and upd
demonstrations are also available on the Intel BBS.

B.2.2 Embedded Disk Operating System (DOS)

The DOS operating system offers functions for I/O communication, floppy/hard disk, video,
board, program handling, memory management, and network support. All these are available to
the Intel386 EX embedded processor user.

Embedded PC DOS features include Advanced Power Management (APM) support, ROM
Source, Disk Compression, and XIP. A variety of third party DOS vendors support the Intel3
EX processor. For a complete list of vendors and their features, call the Intel BBS. The EV386EX
Evaluation Board also provides a variety of DOS demonstrations. New and updated DOS
onstrations are also available on the Intel BBS.

B.2.3 Microsoft* Windows*

The Intel386 EX processor can run both Microsoft Windows 3.1 and Microsoft ROM Windo
Both require RAM and disk space to execute. Other hardware such as a keyboard controll
time clock and video controller may be required. For more information on implementing R
Windows, refer to Mobile Intel486™ SX CPU PC Designs Using FlashFile™ Components (Or-
der Number 292149).
B-5

C
EXAMPLE CODE
HEADER FILES

several
. Sec-
APPENDIX C
EXAMPLE CODE HEADER FILES

This appendix contains the header files called by the code examples that are included in
chapters of this manual. Section C.1 contains the register definitions for each code routine
tion C.2 contains the variable definitions.

C.1 REGISTER DEFINITIONS FOR CODE EXAMPLES

/* 80386EX REGISTER DEFINITIONS */
#define _SetEXRegWord(reg,val) (outpw(reg,val))
#define _SetEXRegByte(reg,val) (outp(reg,val))
#define _ReadEXRegWord(val,reg) (val=inpw(reg))
#define _GetEXRegByte(reg) inp(reg)
#define _GetEXRegWord(reg) inpw(reg)

/* REMAP ADDRESSING Registers */
#define REMAPCFGH 0x0023
#define REMAPCFGL 0x0022
#define REMAPCFG 0x0022
/* INTERRUPT CONTROL REGISTERS -- SLOT 15 ADDRESSES */
#define ICW1M 0xF020
#define ICW1S 0xF0A0
#define ICW2M 0xF021
#define ICW2S 0xF0A1
#define ICW3M 0xF021
#define ICW3S 0xF0A1
#define ICW4M 0xF021
#define ICW4S 0xF0A1
#define OCW1M 0xF021
#define OCW1S 0xF0A1
#define OCW2M 0xF020
#define OCW2S 0xF0A0
#define OCW3M 0xF020
#define OCW3S 0xF0A0
/* INTERRUPT CONTROL REGISTERS -- SLOT 0 ADDRESSES */
#define ICW1MDOS 0x0020
#define ICW1SDOS 0x00A0
#define ICW2MDOS 0x0021
#define ICW2SDOS 0x00A1
#define ICW3MDOS 0x0021
#define ICW3SDOS 0x00A1
#define ICW4MDOS 0x0021
#define ICW4SDOS 0x00A1
#define OCW1MDOS 0x0021
#define OCW1SDOS 0x00A1
#define OCW2MDOS 0x0020
C-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
#define OCW2SDOS 0x00A0
#define OCW3MDOS 0x0020
#define OCW3SDOS 0x00A0

/* CONFIGURATION Registers */
#define DMACFG 0xF830
#define INTCFG 0xF832
#define TMRCFG 0xF834
#define SIOCFG 0xF836
#define P1CFG 0xF820
#define P2CFG 0xF822
#define P3CFG 0xF824
#define PINCFG 0xF826

/* WATCHDOG TIMER Registers */
#define WDTRLDH 0xF4C0
#define WDTRLDL 0xF4C2
#define WDTCNTH 0xF4C4
#define WDTCNTL 0xF4C6
#define WDTCLR 0xF4C8
#define WDTSTATUS 0xF4CA

/* TIMER CONTROL REGISTERS -- SLOT 15 ADDRESSES */
#define TMR0 0xF040
#define TMR1 0xF041
#define TMR2 0xF042
#define TMRCON 0xF043
/* TIMER CONTROL REGISTERS -- SLOT 0 ADDRESSES */
#define TMR0DOS 0x0040
#define TMR1DOS 0x0041
#define TMR2DOS 0x0042
#define TMRCONDOS 0x0043

/* INPUT/OUTPUT PORT UNIT Registers */
#define P1PIN 0xF860
#define P1LTC 0xF862
#define P1DIR 0xF864
#define P2PIN 0xF868
#define P2LTC 0xF86A
#define P2DIR 0xF86C
#define P3PIN 0xF870
#define P3LTC 0xF872
#define P3DIR 0xF874

/* ASYNCHRONOUS SERIAL CHANNEL 0 -- SLOT 15 ADDRESSES */
#define RBR0 0xF4F8
#define THR0 0xF4F8
#define TBR0 0xF4F8
#define DLL0 0xF4F8
#define IER0 0xF4F9
#define DLH0 0xF4F9
C-2

EXAMPLE CODE HEADER FILES
#define IIR0 0xF4FA
#define LCR0 0xF4FB
#define MCR0 0xF4FC
#define LSR0 0xF4FD
#define MSR0 0xF4FE
#define SCR0 0xF4FF
/* ASYNCHRONOUS SERIAL CHANNEL 0 -- SLOT 0 ADDRESSES */
#define RBR0DOS 0x03F8
#define THR0DOS 0x03F8
#define TBR0DOS 0x03F8
#define DLL0DOS 0x03F8
#define IER0DOS 0x03F9
#define DLH0DOS 0x03F9
#define IIR0DOS 0x03FA
#define LCR0DOS 0x03FB
#define MCR0DOS 0x03FC
#define LSR0DOS 0x03FD
#define MSR0DOS 0x03FE
#define SCR0DOS 0x03FF

/* ASYNCHRONOUS SERIAL CHANNEL 1 -- SLOT 15 ADDRESSES */
#define RBR1 0xF8F8
#define THR1 0xF8F8
#define TBR1 0XF8F8
#define DLL1 0xF8F8
#define IER1 0xF8F9
#define DLH1 0xF8F9
#define IIR1 0xF8FA
#define LCR1 0xF8FB
#define MCR1 0xF8FC
#define LSR1 0xF8FD
#define MSR1 0xF8FE
#define SCR1 0xF8FF
/* ASYNCHRONOUS SERIAL CHANNEL 1 -- SLOT 0 ADDRESSES */
#define RBR1DOS 0x02F8
#define THR1DOS 0x02F8
#define TBR1DOS 0x02F8
#define DLL1DOS 0x02F8
#define IER1DOS 0x02F9
#define DLH1DOS 0x02F9
#define IIR1DOS 0x02FA
#define LCR1DOS 0x02FB
#define MCR1DOS 0x02FC
#define LSR1DOS 0x02FD
#define MSR1DOS 0x02FE
#define SCR1DOS 0x02FF

/* SYNCHRONOUS SERIAL CHANNEL REGISTERS */
#define SSIOTBUF 0xF480
#define SSIORBUF 0xF482
#define SSIOBAUD 0xF484
#define SSIOCON1 0xF486
C-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
#define SSIOCON2 0xF488
#define SSIOCTR 0xF48A

/* CHIP SELECT UNIT Registers */
#define CS0ADL 0xF400
#define CS0ADH 0xF402
#define CS0MSKL 0xF404
#define CS0MSKH 0xF406
#define CS1ADL 0xF408
#define CS1ADH 0xF40A
#define CS1MSKL 0xF40C
#define CS1MSKH 0xF40E
#define CS2ADL 0xF410
#define CS2ADH 0xF412
#define CS2MSKL 0xF414
#define CS2MSKH 0xF416
#define CS3ADL 0xF418
#define CS3ADH 0xF41A
#define CS3MSKL 0xF41C
#define CS3MSKH 0xF41E
#define CS4ADL 0xF420
#define CS4ADH 0xF422
#define CS4MSKL 0xF424
#define CS4MSKH 0xF426
#define CS5ADL 0xF428
#define CS5ADH 0xF42A
#define CS5MSKL 0xF42C
#define CS5MSKH 0xF42E
#define CS6ADL 0xF430
#define CS6ADH 0xF432
#define CS6MSKL 0xF434
#define CS6MSKH 0xF436
#define UCSADL 0xF438
#define UCSADH 0xF43A
#define UCSMSKL 0xF43C
#define UCSMSKH 0xF43E

/* REFRESH CONTROL UNIT Registers */
#define RFSBAD 0xF4A0
#define RFSCIR 0xF4A2
#define RFSCON 0xF4A4
#define RFSADD 0xF4A6

/* POWER MANAGEMENT CONTROL Registers */
#define PWRCON 0xF800
#define CLKPRS 0xF804

/* DMA UNIT REGISTERS -- SLOT 15 ADDRESSES */
#define DMA0TAR 0xF000
#define DMA0BYC 0xF001
#define DMA1TAR 0xF002
#define DMA1BYC 0xF003
C-4

EXAMPLE CODE HEADER FILES
#define DMACMD1 0xF008
#define DMASTS 0xF008
#define DMASRR 0xF009
#define DMAMSK 0xF00A
#define DMAMOD1 0xF00B
#define DMACLRBP 0xF00C
#define DMACLR 0xF00D
#define DMACLRMSK 0xF00E
#define DMAGRPMSK 0xF00F
#define DMA0REQL 0xF010
#define DMA0REQH 0xF011
#define DMA1REQL 0xF012
#define DMA1REQH 0xF013
#define DMABSR 0xF018
#define DMACHR 0xF019
#define DMAIS 0xF019
#define DMACMD2 0xF01A
#define DMAMOD2 0xF01B
#define DMAIEN 0xF01C
#define DMAOVFE 0xF01D
#define DMACLRTC 0xF01E
#define DMA1TARPL 0xF083
#define DMA1TARPH 0xF085
#define DMA0TARPH 0xF086
#define DMA0TARPL 0xF087
#define DMA0BYCH 0xF098
#define DMA1BYCH 0xF099

/* DMA UNIT REGISTERS -- SLOT 0 ADDRESSES */
#define DMA0TARDOS 0x0000
#define DMA0BYCDOS 0x0001
#define DMA1TARDOS 0x0002
#define DMA1BYCDOS 0x0003
#define DMACMD1DOS 0x0008
#define DMASTSDOS 0x0008
#define DMASRRDOS 0x0009
#define DMAMSKDOS 0x000A
#define DMAMOD1DOS 0x000B
#define DMACLRBPDOS 0x000C
#define DMACLRDOS 0x000D
#define DMACLRMSKDOS 0x000E
#define DMAGRPMSKDOS 0x000F
#define DMA1TARPLDOS 0x0083
#define DMA0TARPLDOS 0x0087

/* A20GATE AND FAST CPU RESET -- SLOT 15 ADDRESS */
#define PORT92 0xF092
/* A20GATE AND FAST CPU RESET -- SLOT 0 ADDRESS */
#define PORT92DOS 0x0092
C-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
C.2 EXAMPLE CODE DEFINES

/*********************** Global typedef **********************/
typedef unsigned char BYTE; /* 8-bit value */
typedef unsigned short WORD; /* 16-bit value */
typedef unsigned long DWORD; /* 32-bit value */

/******************** Global Used defines ********************/

/* Error Flags */
#define E_OK 0
#define E_INVALID_DEVICE 1
#define E_INVALID_VECTOR 2
#define E_BADVECTOR 3

#define INTERRUPT_ISR 1
#define TRAP_ISR 2
#define IDT_ALIAS 2 /* Only valid for protected mode */
#define TRAP_TYPE 0x8f00 /* Only valid for protected mode */
#define INTR_TYPE 0x8e00 /* Only valid for protected mode */

#define LOBYTE(w) ((BYTE)(w))
#define HIBYTE(w) ((BYTE)(((WORD)(w) >> 8) & 0xFF))

#define LOWORD(l) ((WORD)(DWORD)(l))
#define HIWORD(l) ((WORD)((((DWORD)(l)) >> 16) & 0xFFFF))

/*** Bit Masks ***/
#define BIT0MSK 0x1
#define BIT1MSK 0x2
#define BIT2MSK 0x4
#define BIT3MSK 0x8
#define BIT4MSK 0x10
#define BIT5MSK 0x20
#define BIT6MSK 0x40
#define BIT7MSK 0x80

/*** Global Function ***/
extern void _EnableExtIOMem(void);

/******* Interrupt Control Unit configuration defines ********/

/* ICU Modes */
#define ICU_SFNM 0x10
#define ICU_AUTOEOI 0x2
#define ICU_TRIGGER_LEVEL 0x8
#define ICU_TRIGGER_EDGE 0x0

/* ICU Master Pins */
C-6

EXAMPLE CODE HEADER FILES
#define MPIN_INT0 0x4
#define MPIN_INT1 0x8
#define MPIN_INT2 0x10
#define MPIN_INT3 0x20

/* ICU Master External Cascade IRs */
#define MCAS_IR1 0x2
#define MCAS_IR2 0x4
#define MCAS_IR5 0x20
#define MCAS_IR6 0x40
#define MCAS_IR7 0x80

/* ICU Slave Pins */
#define SPIN_INT4 0x1
#define SPIN_INT5 0x2
#define SPIN_INT6 0x4
#define SPIN_INT7 0x8

/* ICU IRQ Mask Values*/
#define IR0 0x1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40
#define IR7 0x80

/* ICU EOI Types */
#define NONSPECIFIC_EOI 0x20
#define SPECIFIC_EOI 0x60
#define NonSpecificEOI() _SetEXRegByte(OCW2S,NONSPECIFIC_EOI);

_SetEXRegByte(OCW2M,NONSPECIFIC_EOI)
#define MstrSpecificEOI(irq) _SetEXRegByte(OCW2M, 0x60 | ((BYTE)((irq) & 0x7))
)
#define SlaveSpecificEOI(irq) _SetEXRegByte(OCW2S, 0x60 | ((BYTE)((irq) & 0x7))
)

#define Master 1
#define Slave 0

/* ICU Function Definitions */
extern int InitICU (BYTE MstrMode, BYTE MstrBase, BYTE MstrCascade,

BYTE SlaveMode, BYTE SlaveBase,BYTE MstrPins,
BYTE SlavePins);

extern int InitICUSlave(BYTE SlaveMode, BYTE SlaveBase, BYTE SlavePins);
extern void SetInterruptVector(void (far interrupt *IntrProc)(void),

int Vector, int IntrType);
extern int SetIRQVector(void (far interrupt *IntrProc)(void), int IRQ,

 int IntrType);
extern void Enable8259Interrupt(BYTE MstrMask, BYTE SlaveMask);
extern void Disable8259Interrupt(BYTE MstrMask, BYTE SlaveMask);
extern int Poll_Command(int Master_or_Slave);

C-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

/************ Asynchronous Serial I/O Port defines ***********/
#define SIO_0 0
#define SIO_1 1

#define SIO0_IRQ 4 /* IRQ # Master IRQ4 */
#define SIO1_IRQ 3 /* IRQ # Master IRQ3 */

#define SIO_5DATA 0x0
#define SIO_6DATA 0x1
#define SIO_7DATA 0x2
#define SIO_8DATA 0x3

#define SIO_1STOPBIT 0x0
#define SIO_2STOPBIT 0x4

#define SIO_NOPARITY 0x0
#define SIO_ODDPARITY 0x8
#define SIO_EVNPARITY 0x18
#define SIO_FRC0PARITY 0x28
#define SIO_FRC1PARITY 0x38

#define SIO_SETBREAK 0x40

#define SIO_INTERNAL_SRC 0x1
#define SIO_EXTERNAL_SRC 0x0
#define SIO_CLKSRC_CLK2 0x1
#define SIO_CLKSRC_COMCLK 0x0

#define SIO_INTR_NONE 0
#define SIO_INTR_RBF 0x1
#define SIO_INTR_TBE 0x2
#define SIO_INTR_RLS 0x4
#define SIO_INTR_MS 0x8

#define SIO_MCR_LOOP_BACK 0x10
#define SIO_MCR_OUT2 0x8
#define SIO_MCR_OUT1 0x4
#define SIO_MCR_RTS 0x2
#define SIO_MCR_DTR 0x1

#define SIO_8N1 (SIO_8DATA | SIO_1STOPBIT | SIO_NOPARITY)
#define SIO_7N1 (SIO_7DATA | SIO_1STOPBIT | SIO_NOPARITY)

/* Status Bits */
#define SIO_ERROR_BITS 0x1e
#define SIO_RX_BUF_FULL 0x1
#define SIO_OVERRUN 0x2
#define SIO_PARITY_ERR 0x4
#define SIO_FRAMING_ERR 0x8
#define SIO_BREAK_INTR 0x10
#define SIO_TX_BUF_EMPTY 0x20
C-8

EXAMPLE CODE HEADER FILES
#define SIO_TX_EMPTY 0x40

/* Offsets from beginning of SIO port addresses */
#define RBR 0
#define TBR 0
#define DLL 0
#define IER 1
#define DLH 1
#define IIR 2
#define LCR 3
#define MCR 4
#define LSR 5
#define MSR 6
#define SCR 7
#define SIO0_BASE 0xF4F8
#define SIO1_BASE 0xF8F8

/* Define Function Macros */
#define GetSIO0Status() _GetEXRegByte(LSR0)
#define GetSIO1Status() _GetEXRegByte(LSR1)
#define GetSIO0InterruptID() _GetEXRegByte(IIR0)
#define GetSIO1InterruptID() _GetEXRegByte(IIR1)
#define GetSIO0ModemStatus() _GetEXRegByte(MSR0)
#define GetSIO1ModemStatus() _GetEXRegByte(MSR1)
#define GetSIO0Char() _GetEXRegByte(RBR0)
#define GetSIO1Char() _GetEXRegByte(RBR1)
#define ChangeSIO0IntrSrc(src) _SetEXRegByte(IER0,src)
#define ChangeSIO1IntrSrc(src) _SetEXRegByte(IER1,src)
#define ChangeSIO0Mode(Mode) _SetEXRegByte(LCR0,Mode)
#define ChangeSIO1Mode(Mode) _SetEXRegByte(LCR1,Mode)
#define DisableSIO0Interrupt(src) _SetEXRegByte(IER0,_GetEXRegByte(IER0) &
!(src))
#define DisableSIO1Interrupt(src) _SetEXRegByte(IER1,_GetEXRegByte(IER1) &
!(src))

/* SIO Function Definitions */
extern int InitSIO (int Unit, BYTE Mode, BYTE ModemCntrl, DWORD BaudRate,

DWORD BaudClkIn);
extern BYTE SerialReadChar(int Unit);
extern int SerialReadStr(int Unit, char far *str, int count);
extern void SerialWriteChar(int Unit, BYTE ch);
extern void SerialWriteStr(int Unit, const char far *str);
extern void SerialWriteMem(int Unit, const char far *mem, int count);
void interrupt far Serial0_ISR(void);
extern void Service_RBF (void);
extern void SerialWriteStr_Int(int Unit, const char far *str);
extern void Service_TBE(void);

/***************** DMA configuration defines *****************/
C-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
typedef enum
{
 DMA_Channel0 = 0,
 DMA_Channel1 = 1
} DMAChannelEnum;

typedef enum
{
 ERR_NONE = 0,
 ERR_BADINPUT = -1
} ERREnum;

/* DMA Function Definitions */
int SetDMAReqIOAddr(int nChannel, WORD wIO);
int SetDMATargMemAddr(int nChannel, void *ptMemory);
int SetDMAXferCount(int nChannel, DWORD lCount);
int EnableDMAHWRequests(int nChannel);
int DisableDMAHWRequests(int nChannel);
void InitDMA(void);
void InitDMA1ForSerialXmitter(void);

/*************** Port I/O configuration defines **************/
/* Port 1 configuration defines */

#define DCD0 0x1
#define RTS0 0x2
#define DTR0 0x4
#define DSR0 0x8
#define RI0 0X10
#define LOCK 0x20
#define HOLD 0X40
#define HOLDACK 0X80

/* Port 2 configuration defines */
#define CS0 0x1
#define CS1 0x2
#define CS2 0x4
#define CS3 0x8
#define CS4 0X10
#define RXD0 0x20
#define TXD0 0X40
#define CTS0 0X80

/* Port 3 configuration defines */
#define TMROUT0 0x1
#define TMROUT1 0x2
#define INT0 0x4
#define INT1 0x8
#define INT2 0x10
#define INT3 0x20
#define PWRDWN 0x40
#define COMCLK 0x80

/* Port Direction defines */
#define P0_IN 0x1
C-10

EXAMPLE CODE HEADER FILES
#define P1_IN 0x2
#define P2_IN 0x4
#define P3_IN 0x8
#define P4_IN 0x10
#define P5_IN 0x20
#define P6_IN 0x40
#define P7_IN 0x80
#define Px_OUT 0

/* Pin configuration defines */
#define RTS1 0x1
#define SSIOTX 0
#define DTR1 0x2
#define SRXCLK 0
#define TXD1 0x4
#define DACK1 0
#define CTS1 0x8
#define EOP 0
#define CS5 0x10
#define DACK0 0
#define TIMER2 0x20
#define COPROC 0
#define REFRESH 0x40
#define CS6 0

/* Port I/O Function Definitions */
extern void Init_IOPorts (BYTE Port1, BYTE Port2, BYTE Port3, BYTE PortDir1,

BYTE PortDir2, BYTE PortDir3, BYTE PortLtc1,
BYTE PortLtc2, BYTE PortLtc3);

/**************** Timer configuration defines ****************/
#define TMR_0 0
#define TMR_1 1
#define TMR_2 2
#define TMR0_IRQ 0 /* IRQ # Master IRQ0 */
#define TMR1_IRQ 10 /* IRQ # Slave IRQ2 */
#define TMR2_IRQ 11 /* IRQ # Slave IRQ3 */

/* Timer Modes */
#define TMR_TERMCNT 0
#define TMR_1SHOT (1<<1)
#define TMR_RATEGEN (2<<1)
#define TMR_SQWAVE (3<<1)
#define TMR_SW_TRIGGER (4<<1)
#define TMR_HW_TRIGGER (5<<1)

/* Count Type */
#define TMR_CLK_BCD 1
#define TMR_CLK_BIN 0

/* Timer Pin Configuration */
#define TMR_CLK_INTRN 0
#define TMR_CLK_EXTRN 0x1
#define TMR_GATE_VCC 0
C-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
#define TMR_GATE_EXTRN 0x2
#define TMR_OUT_ENABLE 0x1
#define TMR_OUT_DISABLE 0

#define TMR_ENABLE 1
#define TMR_DISABLE 0

 /* Timer Macros Definitions */
#define DisableTimer() \
 _SetEXRegByte(TMRCFG, (_GetEXRegByte(TMRCFG) | 0x80))

#define EnableTimer() \
 _SetEXRegByte(TMRCFG, (_GetEXRegByte(TMRCFG) & 0x7f))

/* Timer Function Definitions */
extern int InitTimer (int Unit, WORD Mode, BYTE Inputs, BYTE Output,

WORD InitCount, int Enable);

extern void SetUp_ReadBack (BYTE Timer0, BYTE Timer1, BYTE Timer2,
BYTE GetStatus, BYTE GetCount);

extern WORD CounterLatch(BYTE Timer);

extern WORD ReadCounter(BYTE Timer);

void interrupt far TimerISR(void);

/**************** SSIO configuration defines *****************/

#define SSIO_TUE 0x80 /* Transmit Underflow Error */
#define SSIO_THBE 0x40 /* Transmit Holding Buffer Empty */
#define SSIO_TX_IE 0x20 /* Transmit Interrupt Enable */
#define SSIO_TX_ENAB 0x10 /* Transmitter Enable */
#define SSIO_ROE 0x08 /* Receive Overflow Error */
#define SSIO_RHBF 0x04 /* Receive Holding Buffer Full */
#define SSIO_RX_IE 0x02 /* Receive Interrupt Enable */
#define SSIO_RX_ENAB 0x01 /* Receiver Enable */

#define SSIO_TX_MASTR 0x02 /* Transmit Master Mode */
#define SSIO_RX_MASTR 0x01 /* Receive Master Mode */
#define SSIO_TX_SLAVE 0
#define SSIO_RX_SLAVE 0

#define SSIO_CLK_SERCLK 0x01 /* Baud Rate Clocking Source:
SERCLK = CLK2/4 */

#define SSIO_CLK_PSCLK 0x00 /* Baud Rate Clocking Source:
PSCLK = (CLK2/2) / (CLKPRS+2) */

#define SSIO_BAUD_ENAB 0x80 /* Enable Baud Rate Generator */

/* SSIO Function Definitions */
extern void InitSSIO (BYTE Mode, BYTE MasterTxRx, BYTE BaudValue,
C-12

EXAMPLE CODE HEADER FILES
BYTE PreScale);
extern WORD SSerialReadWord(BYTE MasterSlave);
extern void SSerialWriteWord(WORD Ch,BYTE MasterSlave);
void interrupt far SSIO_ISR(void);
extern void Service_RHBF(void);
extern void Service_THBE(void);

/********************* Watch Dog Timer ***********************/
#define SetWatchDogReload(ReloadHi,ReloadLow) \

_SetEXRegWord(WDTRLDL,ReloadLow);_SetEXRegWord(WDTRLDH,ReloadHi);

#define WatchDogClockDisable()\
_SetEXRegByte(WDTSTATUS, _GetEXRegByte(WDTSTATUS) | BIT0MSK)

#define WatchDogClockEnable()\

_SetEXRegByte(WDTSTATUS, _GetEXRegByte(WDTSTATUS) & ~BIT0MSK)

/* Watch Dog Timer Function Definitions */

extern void ReLoadDownCounter(void);
extern DWORD GetWDT_Count(void);
extern void WDT_BusMonitor(BYTE EnableDisable);
extern void EnableWDTInterrupt(void);
void interrupt far wdtISR(void);

/********************Refresh Control Unit*********************/

#define EnableRCU() \
 _SetEXRegWord(RDFSCON, _GetEXRegWord(RDFSCON) | 0x8000)

#define DisableRCU() \
 _SetEXRegWord(RDFSCON, _GetEXRegWord(RDFSCON) & 0x7fff)

/* Refresh Control Unit Function Definitions */
extern int InitRCU(WORD counter_value);

extern WORD Get_RCUCounterValue(void);

/****************Clock and Power Management Unit**************/

#define IDLE 0x02
#define PWDWN 0x01
#define ACTIVE 0x00

/* Clock and Power Management Function Definitions */
extern int Set_Prescale_Value(WORD prescale);
extern void Enter_Idle_Mode(void);
extern void Enter_Powerdown_Mode(void);
extern void Mode_Setting_To_Active(void);
C-13

D
SYSTEM
REGISTER QUICK
REFERENCE

APPENDIX D
SYSTEM REGISTER QUICK REFERENCE

D.1 PERIPHERAL REGISTER ADDRESSES

Table D-1. Peripheral Register Addresses (Sheet 1 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

DMA Controller and Bus Arbiter

F000H 0000H Byte DMA0TAR0/1 (Note 1) XX

F001H 0001H Byte DMA0BYC0/1 (Note 1) XX

F002H 0002H Byte DMA1TAR0/1 (Note 1) XX

F003H 0003H Byte DMA1BYC0/1 (Note 1) XX

F004H 0004H Reserved

F005H 0005H Reserved

F006H 0006H Reserved

F007H 0007H Reserved

F008H 0008H Byte DMACMD1/DMASTS 00H

F009H 0009H Byte DMASRR 00H

F00AH 000AH Byte DMAMSK 04H

F00BH 000BH Byte DMAMOD1 00H

F00CH 000CH Byte DMACLRBP Not a register

F00DH 000DH Byte DMACLR Not a register

F00EH 000EH Byte DMACLRMSK Not a register

F00FH 000FH Byte DMAGRPMSK 03H

F010H Byte DMA0REQ0/1 XX

F011H Byte DMA0REQ2/3 XX

F012H Byte DMA1REQ0/1 XX

F013H Byte DMA1REQ2/3 XX

F014H Reserved

F015H Reserved

F016H Reserved

F017H Reserved

F018H Byte DMABSR X1X10000B

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
F019H Byte DMACHR/DMAIS 00H

F01AH Byte DMACMD2 08H

F01BH Byte DMAMOD2 00H

F01CH Byte DMAIEN 00H

F01DH Byte DMAOVFE 0AH

F01EH Byte DMACLRTC Not a register

Master Interrupt Controller

F020H 0020H Byte ICW1m/IRRm/ISRm/
OCW2m/OCW3m

XX

F021H 0021H Byte ICW2m/ICW3m/ICW4m/
OCW1m/POLLm

XX

Address Configuration Register

0022H 0022H Word REMAPCFG 0000H

Timer/counter Unit

F040H 0040H Byte TMR0 XX

F041H 0041H Byte TMR1 XX

F042H 0042H Byte TMR2 XX

F043H 0043H Byte TMRCON XX

DMA Page Registers

F080H Reserved

F081H 0081H Reserved

F082H 0082H Reserved

F083H 0083H Byte DMA1TAR2 XX

F084H Reserved

F085H Byte DMA1TAR3 XX

F086H Byte DMA0TAR3 XX

F087H 0087H Byte DMA0TAR2 XX

F088H Reserved

F089H 0089H Reserved

F08AH 008AH Reserved

F08BH 008BH Reserved

F08CH Reserved

F08DH Reserved

Table D-1. Peripheral Register Addresses (Sheet 2 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-2

SYSTEM REGISTER QUICK REFERENCE
F08EH Reserved

F08FH Reserved

F098H Byte DMA0BYC2 XX

F099H Byte DMA1BYC2 XX

F09AH Reserved

F09BH Reserved

A20GATE and Fast CPU Reset

F092H 0092H Byte PORT92 XXXXXX10B

Slave Interrupt Controller

F0A0H 00A0H Byte ICW1s/IRRs/ISRs/
OCW2s/OCW3s

XX

F0A1H 00A1H Byte ICW2s/ICW3s/ICW4s/
OCW1s/POLLs

XX

Chip-select Unit

F400H Word CS0ADL 0000H

F402H Word CS0ADH 0000H

F404H Word CS0MSKL 0000H

F406H Word CS0MSKH 0000H

F408H Word CS1ADL 0000H

F40AH Word CS1ADH 0000H

F40CH Word CS1MSKL 0000H

F40EH Word CS1MSKH 0000H

F410H Word CS2ADL 0000H

F412H Word CS2ADH 0000H

F414H Word CS2MSKL 0000H

F416H Word CS2MSKH 0000H

F418H Word CS3ADL 0000H

F41AH Word CS3ADH 0000H

F41CH Word CS3MSKL 0000H

F41EH Word CS3MSKH 0000H

F420H Word CS4ADL 0000H

F422H Word CS4ADH 0000H

F424H Word CS4MSKL 0000H

Table D-1. Peripheral Register Addresses (Sheet 3 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
F426H Word CS4MSKH 0000H

F428H Word CS5ADL 0000H

F42AH Word CS5ADH 0000H

F42CH Word CS5MSKL 0000H

F42EH Word CS5MSKH 0000H

F430H Word CS6ADL 0000H

F432H Word CS6ADH 0000H

F434H Word CS6MSKL 0000H

F436H Word CS6MSKH 0000H

F438H Word UCSADL FF6FH

F43AH Word UCSADH FFFFH

F43CH Word UCSMSKL FFFFH

F43EH Word UCSMSKH FFFFH

Synchronous Serial I/O Unit

F480H Word SSIOTBUF 0000H

F482H Word SSIORBUF 0000H

F484H Byte SSIOBAUD 00H

F486H Byte SSIOCON1 C0H

F488H Byte SSIOCON2 00H

F48AH Byte SSIOCTR 00H

Refresh Control Unit

F4A0H Word RFSBAD 0000H

F4A2H Word RFSCIR 0000H

F4A4H Word RFSCON 0000H

F4A6H Word RFSADD 00FFH

Watchdog Timer Unit

F4C0H Word WDTRLDH 003FH

F4C2H Word WDTRLDL FFFFH

F4C4H Word WDTCNTH 003FH

F4C6H Word WDTCNTL FFFFH

F4C8H Word WDTCLR Not a register

F4CAH Byte WDTSTATUS 00H

Table D-1. Peripheral Register Addresses (Sheet 4 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-4

SYSTEM REGISTER QUICK REFERENCE
Asynchronous Serial I/O Channel 0 (COM1)

F4F8H 03F8H Byte RBR0/TBR0/DLL0 XX/XX/02H

F4F9H 03F9H Byte IER0/DLH0 00H/00H

F4FAH 03FAH Byte IIR0 01H

F4FBH 03FBH Byte LCR0 00H

F4FCH 03FCH Byte MCR0 00H

F4FDH 03FDH Byte LSR0 60H

F4FEH 03FEH Byte MSR0 X0H

F4FFH 03FFH Byte SCR0 XX

Clock Generation and Power Management

F800H Byte PWRCON 00H

F804H Word CLKPRS 0000H

Device Configuration Registers

F820H Byte P1CFG 00H

F822H Byte P2CFG 00H

F824H Byte P3CFG 00H

F826H Byte PINCFG 00H

F830H Byte DMACFG 00H

F832H Byte INTCFG 00H

F834H Byte TMRCFG 00H

F836H Byte SIOCFG 00H

Parallel I/O Ports

F860H Byte P1PIN XX

F862H Byte P1LTC FFH

F864H Byte P1DIR FFH

F868H Byte P2PIN XX

F86AH Byte P2LTC FFH

F86CH Byte P2DIR FFH

F870H Byte P3PIN XX

F872H Byte P3LTC FFH

F874H Byte P3DIR FFH

Table D-1. Peripheral Register Addresses (Sheet 5 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Asynchronous Serial I/O Channel 1 (COM2)

F8F8H 02F8H Byte RBR1/TBR1/DLL1 XX/XX/02H

F8F9H 02F9H Byte IER1/DLH1 00H/00H

F8FAH 02FAH Byte IIR1 01H

F8FBH 02FBH Byte LCR1 00H

F8FCH 02FCH Byte MCR1 00H

F8FDH 02FDH Byte LSR1 60H

F8FEH 02FEH Byte MSR1 X0H

F8FFH 02FFH Byte SCR1 XX

Table D-1. Peripheral Register Addresses (Sheet 6 of 6)

Expanded
Address

PC/AT
Address

Access Type
(Byte/Word) Register Name Reset Value

NOTES:
1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.
D-6

SYSTEM REGISTER QUICK REFERENCE
D.2 CLKPRS

Clock Prescale Register
CLKPRS
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F804H
—
0000H

15 8

— — — — — — — PS8

7 0

PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

Bit
Number

Bit
Mnemonic Function

15–9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

8–0 PS8:0 Prescale Value:

These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).

divisor = PS8:0 + 2
D-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.3 CSnADH (UCSADH)

Chip-select High Address
CSnADH (n = 0–6), UCSADH
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F402H, F40AH
F412H, F41AH
F422H, F42AH
F432H, F43AH
—
0000H (CSnADH)
FFFFH (UCSADH)

15 8

— — — — — — CA15 CA14

7 0

CA13 CA12 CA11 CA10 CA9 CA8 CA7 CA6

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved; for compatibility with future devices, write zeros to these bits.

9–0 CA15:6 Chip-select Channel Address Upper Bits:

Defines the upper 10 bits of the channel’s 15-bit address. The address
bits CA15:6 and the mask bits CM15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.
D-8

SYSTEM REGISTER QUICK REFERENCE
D.4 CSnADL (UCSADL)

Chip-select Low Address
CSnADL (n = 0–6), UCSADL
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F400H, F408H
F410H, F418H
F420H, F428H
F430H, F438H
—
0000H (CSnADL)
FF6FH (UCSADL)

15 8

CA5 CA4 CA3 CA2 CA1 CASMM BS16 MEM

7 0

RDY — — WS4 WS3 WS2 WS1 WS0

Bit
Number

Bit
Mnemonic Function

15–11 CA5:1 Chip-select Address Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit address. The address bits
CA5:1 and the mask bits CM5:1 form a masked address that is compared to
memory address bits A15:11 or I/O address bits A5:1.

10 CASMM SMM Address Bit:

If this bit is set (and unmasked), the CSU activates the chip-select channel
only while the processor is in SMM (and not in a hold state). Otherwise, the
CSU activates the channel only when processor is operating in a mode
other than SMM.

Setting the SMM mask bit in the channel’s mask low register masks this bit.
When this bit is masked, an address match activates the chip-select,
regardless of whether the processor is in SMM or not.

9 BS16 Bus Size 16-bit:

0 = All bus cycles to addresses in the channel’s address block are byte-
wide.

1 = Bus cycles are 16 bits unless the bus size control pin (BS8#) is
asserted.

8 MEM Bus Cycle Type:

0 = Configures the channel for an I/O addresses
1 = Configures the channel for memory addresses

7 RDY Bus Ready Enable:

0 = External READY# is ignored. READY# generated by CSU to terminate
the bus cycle.

1 = Requires that external READY# be active to complete a bus cycle. This
bit must be set to extend wait states beyond the number determined by
WS4:0 (see “Bus Cycle Length Control” on page 14-11).

6–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4–0 WS4:0 Wait State Value:

WS4:0 defines the minimum number of wait states inserted into the bus
cycle. A zero value means no wait states.
D-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.5 CSnMSKH (UCSMSKH)

Chip-select High Mask
CSnMSKH (n = 0–6), UCSMSKH
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F406H, F40EH
F416H, F41EH
F426H, F42EH
F436H, F43EH
—
0000H (CSnMSKH)
FFFFH (UCSMSKH)

15 8

— — — — — — CM15 CM14

7 0

CM13 CM12 CM11 CM10 CM9 CM8 CM7 CM6

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved; for compatibility with future devices, write zeros to these bits.

9–0 CM15:6 Mask Value Upper Bits:

Defines the upper 10 bits of the channel’s 15-bit mask. The mask bits
CM15:6 and the address bits CA15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.
D-10

SYSTEM REGISTER QUICK REFERENCE
D.6 CSnMSKL (UCSMSKL)

Chip-select Low Mask
CSnMSKL (n = 0–6), UCSMSKL
(read/write)

Expanded Addr:

ISA Addr:
Reset State:

F404H, F40CH
F414H, F41CH
F424H, F42CH
F434H, F43CH
—
0000H (CSnMSKL)
FFFFH (UCSMSKL)

15 8

CM5 CM4 CM3 CM2 CM1 CMSMM — —

7 0

— — — — — — — CSEN

Bit
Number

Bit
Mnemonic Function

15–11 CM5:1 Chip-select Mask Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit mask. The mask bits
CM5:1 and the address bits CA5:1 form a masked address that is
compared to memory address bits A15:11 or I/O address bits A5:1.

10 CMSMM SMM Mask Bit:

0 = The SMM address bit is not masked.
1 = Masks the SMM address bit in the channel’s Chip-Select Low

Address register. When the SMM address bit is masked, an address
match activates the chip-select, regardless of whether the processor
is in SMM.

9–1 — Reserved; for compatibility with future devices, write zeros to these bits.

0 CSEN Chip-select Enable:

0 = Disables the chip-select channel.
1 = Enables the chip-select channel.
D-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.7 DLLn AND DLHn

Divisor Latch Low
DLL0, DLL1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

DLL0 DLL1
F4F8H F8F8H
03F8H 02F8H
02H 02H

7 0

LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

Divisor Latch High
DLH0, DLH1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

DLH0 DLH1
F4F9H F8F9H
03F9H 02F9H
00H 00H

7 0

UD15 UD14 UD13 UD12 UD11 UD10 UD9 UD8

Bit
Number

Bit
Mnemonic Function

DLLn
(7–0)

LD7:0 Lower 8 Divisor and Upper 8 Divisor Bits:

Write the lower 8 divisor bits to DLLn and the upper 8 divisor bits to
DLHn. The baud-rate generator output is a function of the baud-rate
generator input (BCLKIN) and the 16-bit divisor.

bit rate (shifting rate) = baud-rate generator output frequency/16

DLHn
(7–0)

UD15:8

NOTE: The divisor latch registers share address ports with other SIO registers. Bit 7 (DLAB) of
LCRn must be set in order to access the divisor latch registers.

If DLL = DLH = 00H, baud-rate generator ouput frequency = 0 (stops clock).

baud-rate generator output frequency
 BCLKIN frequency

divisor
---=
D-12

SYSTEM REGISTER QUICK REFERENCE
D.8 DMABSR

DMA Bus Size
DMABSR
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F018H
—
X1X10000B

7 0

— RBS — TBS — — 0 CS

Bit
Number

Bit
Mnemonic Function

7 — Reserved; for compatibility with future devices, write zero to this bit.

6 RBS Requester Bus Size:

Specifies the requester’s data bus width for the channel specified by bit
0.

0 = 16-bit bus
1 = 8-bit bus

5 — Reserved; for compatibility with future devices, write zero to this bit.

4 TBS Target Bus Size:

Specifies the target’s data bus width for the channel specified by bit 0.

0 = 16-bit bus
1 = 8-bit bus

3–1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–4 affect channel 0.
1 = The selections for bits 7–4 affect channel 1.
D-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.9 DMACFG

DMA Configuration
DMACFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F830H
—
00H

7 0

D1MSK D1REQ2 D1REQ1 D1REQ0 D0MSK D0REQ2 D0REQ1 D0REQ0

Bit
Number

Bit
Mnemonic Function

7 D1MSK DMA Acknowledge 1 Mask:

0 = DMA channel 1’s acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1’s acknowledge (DMAACK1#) signal. Useful

when channel 1’s request (DREQ1) input is connected to an internal
peripheral.

6–4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1’s
request input (DREQ1).

000 = DRQ1 pin (external peripheral)
001 = SIO channel 1’s receive buffer full signal (RBFDMA1)
010 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
011 = SSIO receive holding buffer full signal (SSRBF)
100 = TCU counter 2’s output signal (OUT2)
101 = SIO channel 0’s receive buffer full signal (RBFDMA0)
110 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 D0MSK DMA Acknowledge 0 Mask:

0 = DMA channel 0’s acknowledge (DMAACK0#) signal is not masked.
1 = Masks DMA channel 0’s acknowledge (DMAACK0#) signal. Useful

when channel 0’s request (DREQ0) input is connected to an internal
peripheral.

2–0 D0REQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0’s
request input (DREQ0).

000 = DRQ0 pin (external peripheral)
001 = SIO channel 0’s receive buffer full signal (RBFDMA0)
010 = SIO channel 1’s transmit buffer empty signal (TXEDMA1)
011 = SSIO transmit holding buffer empty signal (SSTBE)
100 = TCU counter 1’s output signal (OUT1)
101 = SIO channel 1’s receive buffer full signal (RBFDMA1)
110 = SIO channel 0’s transmit buffer empty signal (TXEDMA0)
111 = SSIO receive holding buffer full signal (SSRBF)
D-14

SYSTEM REGISTER QUICK REFERENCE
D.10 DMACHR

DMA Chaining
DMACHR
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F019H
—
00H

7 0

— — — — — CE 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved; for compatibility with future devices, write zeros to these bits.

2 CE Chaining Enable:

0 = Disables the chaining buffer-transfer mode for the channel specified
by bit 0.

1 = Enables the chaining buffer-transfer mode for the channel specified
by bit 0.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
D-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.11 DMACMD1

DMA Command 1
DMACMD1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F008H
0008H
00H

7 0

— — — PRE — CE — —

Bit
Number

Bit
Mnemonic Function

7–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 PRE Priority Rotation Enable:

0 = Priority is fixed based on value in DMACMD2.
1 = Enables the rotation method for changing the bus control priority

structure. That is, after the external bus master or one of the DMA
channels is given bus control, it is assigned to the lowest priority
level.

3 — Reserved; for compatibility with future devices, write zero to this bit.

2 CE Channel Enable:

0 = Enables channel 0 and 1.
1 = Disables the channels.

1–0 — Reserved; for compatibility with future devices, write zeros to these bits.
D-16

SYSTEM REGISTER QUICK REFERENCE
D.12 DMACMD2

DMA Command 2
DMACMD2
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F01AH
—
08H

7 0

— — — — PL1 PL0 ES DS

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved; for compatibility with future devices, write zeros to these bits.

3–2 PL1:0 Low Priority Level Set:

Use these bits to assign a particular bus request to the lowest priority
level in fixed priority mode.

00 = Assigns channel 0’s request (DREQ0) to the lowest priority level
01 = Assigns channel 1’s request (DREQ1) to the lowest priority level
10 = Assigns the external bus master request (HOLD) to the lowest

priority level
11 = Reserved

1 ES EOP# Sampling:

0 = Causes the DMA to sample the EOP# input asynchronously.
1 = Causes the DMA to sample the end-of-process (EOP#) input

synchronously.

0 DS DREQn Sampling:

0 = Causes the DMA to sample the DREQn inputs asynchronously.
1 = Causes the DMA to sample the channel request (DREQn) inputs

synchronously.
D-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.13 DMAGRPMSK

DMA Group Channel Mask
DMAGRPMSK
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F00FH
000FH
03H

7 0

— — — — — — HRM1 HRM0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 HRM1 Hardware Request Mask 1:

0 = Channel 1’s hardware requests are not masked.
1 = Masks (disables) channel 1’s hardware requests. When this bit is

set, channel 1 can still receive software requests.

0 HRM0 Hardware Request Mask 0:

0 = Channel 0’s hardware requests are not masked.
1 = Masks (disables) channel 0’s hardware requests. When this bit is

set, channel 0 can still receive software requests.
D-18

SYSTEM REGISTER QUICK REFERENCE
D.14 DMAIEN

DMA Interrupt Enable
DMAIEN
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F01CH
—
00H

7 0

— — — — — — TC1 TC0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 TC1 Transfer Complete 1:

0 = Disables Transfer Complete interrupts.
1 = Connects channel 1’s transfer complete signal to the interrupt

control unit’s DMAINT input.

Note: When channel 1 is in chaining mode (DMACHR.2=1 and
DMACHR.0=1), this bit is a don’t care.

0 TC0 Transfer Complete 0:

0 = Disables Transfer Complete interrupts.
1 = Connects channel 0’s transfer complete signal to the interrupt

control unit’s DMAINT input.

Note: When channel 0 is in chaining mode (DMACHR.2=1 and
DMACHR.0=0), this bit is a don’t care.
D-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.15 DMAIS

DMA Interrupt Status
DMAIS
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F019H
—
00H

7 0

— — TC1 TC0 — — CI1 CI0

Bit
Number

Bit
Mnemonic Function

7–6 — Reserved. These bits are undefined.

5 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 1 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don’t care.

4 TC0 Transfer Complete 0:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 0 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don’t care.

3–2 — Reserved. These bits are undefined.

1 CI1 Chaining Interrupt 1:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 1. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don’t care.

0 CI0 Chaining Interrupt 0:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 0. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don’t care.
D-20

SYSTEM REGISTER QUICK REFERENCE
D.16 DMAMOD1

DMA Mode 1
DMAMOD1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F00BH
000BH
00H

7 0

DTM1 DTM0 TI AI TD1 TD0 0 CS

Bit
Number

Bit
Mnemonic Function

7–6 DTM1:0 Data-transfer Mode:

00 = Demand
01 = Single
10 = Block
11 = Cascade

5 TI Target Increment/Decrement:

0 = Causes the target address to be incremented after each data
transfer in a buffer transfer.

1 = Causes the target address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant
(DMAMOD2.2 = 1), this bit is a don’t care.

4 AI Autoinitialize:

0 = Disables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

1 = Enables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

3–2 TD1:0 Transfer Direction:

Determines the transfer direction for the channel specified by bit 0.

00 = Target is read; nothing is written (used for testing)
01 = Data is transferred from the requester to the target
10 = Data is transferred from the target to the requester
11 = Reserved

Note: In cascade mode, these bits become don’t cares.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–2 affect channel 0.
1 = The selections for bits 7–2 affect channel 1.
D-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.17 DMAMOD2

DMA Mode 2
DMAMOD2
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F01BH
—
00H

7 0

BCO RD TD RH RI TH 0 CS

Bit
Number

Bit
Mnemonic Function

7 BCO Bus Cycle Option:

0 = Selects the fly-by data transfer bus cycle option for the channel specified
by bit 0.

1 = Selects the two-cycle data transfer bus cycle option for the channel
specified by bit 0.

6 RD Requester Device Type:

0 = Clear this bit when the requester for the channel specified by bit 0 is in
memory space.

1 = Set this bit when the requester for the channel specified by bit 0 is in I/O
space.

This bit is ignored if BCO is cleared.

5 TD Target Device Type:

0 = Clear this bit when the target for the channel specified by bit 0 is in
memory space.

1 = Set this bit when the target for the channel specified by bit 0 is in I/O
space.

4 RH Requester Address Hold:

0 = Causes the address to be modified (incremented or decremented,
depending on DMAMOD2.3).

1 = Causes the requester’s address for the channel specified by bit 0 to
remain constant during a buffer transfer.

3 RI Requester Address Increment/Decrement:

0 = Causes the requester address to be incremented after each data transfer
in a buffer transfer.

1 = Causes the requester address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant
(DMAMOD2.4 = 1), this bit is a don’t care.

2 TH Target Address Hold:

0 = Causes the address to be modified (incremented or decremented,
depending on DMAMOD1.5).

1 = Causes the target’s address for the channel specified by bit 0 to remain
constant during a buffer transfer.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selections for bits 7–2 affect channel 0.
1 = The selections for bits 7–2 affect channel 1.
D-22

SYSTEM REGISTER QUICK REFERENCE
D.18 DMAMSK

DMA Individual Channel Mask
DMAMSK
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F00AH
000AH
04H

7 0

— — — — — HRM 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved; for compatibility with future devices, write zeros to these bits.

2 HRM Hardware Request Mask:

0 = Unmasks (enables) hardware requests for the channel specified by
bit 0.

1 = Masks (disables) hardware requests for the channel specified by
bit 0.

NOTE: When this bit is set, the channel can still receive software
requests.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
D-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.19 DMAnBYCn, DMAnREQn AND DMAnTARn

DMA Channel 0

DMA Channel 1

24 16 8 0

Requester Address DMA0REQ3 DMA0REQ2 DMA0REQ1 DMA0REQ0

F011H (BP=1) F011H (BP=0) F010H (BP=1) F010H (BP=0)

24 16 8 0

Target Address DMA0TAR3 DMA0TAR2 DMA0TAR1 DMA0TAR0

F086H F087H F000H (BP=1) F000H (BP=0)

16 8 0

Byte Count DMA0BYC2 DMA0BYC1 DMA0BYC0

F098H F001H (BP=1) F001H (BP=0)

24 16 8 0

Requester Address DMA1REQ3 DMA1REQ2 DMA1REQ1 DMA1REQ0

F013H (BP=1) F013H (BP=0) F012H (BP=1) F012H (BP=0)

24 16 8 0

Target Address DMA1TAR3 DMA1TAR2 DMA1TAR1 DMA1TAR0

F085H F083H F002H (BP=1) F002H (BP=0)

16 8 0

Byte Count DMA1BYC2 DMA1BYC1 DMA1BYC0

F099H F003H (BP=1) F003H (BP=0)
D-24

SYSTEM REGISTER QUICK REFERENCE
D.20 DMAOVFE

DMA Overflow Enable
DMAOVFE
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F01DH
—
0AH

7 0

— — — — ROV1 TOV1 ROV0 TOV0

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

3 ROV1 Channel 1 Requester Overflow Enable:

0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement

2 TOV1 Channel 1 Target & Byte Counter Overflow Enable:

0 = lowest 16 bits of target address and byte count
increment/decrement

1 = all bits of target address and byte count increment/decrement

1 ROV0 Channel 0 Requester Overflow Enable:

0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement

0 TOV0 Channel 0 Target & Byte Counter Overflow Enable:

0 = lowest 16 bits of target address and byte count
increment/decrement

1 = all bits of target address and byte count increment/decrement
D-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.21 DMASRR

DMA Software Request (read format)
DMASRR

Expanded Addr:
ISA Addr:
Reset State:

F009H
0009H
00H

7 0

— — — — — — SR1 SR0

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 SR1 Software Request 1:

When set, this bit indicates that channel 1 has a software request
pending.

0 SR0 Software Request 0:

When set, this bit indicates that channel 0 has a software request
pending.

DMA Software Request (write format)
DMASRR

Expanded Addr:
ISA Addr:
Reset State:

F009H
0009H
00H

7 0

— — — — — SR 0 CS

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SR Software Request:

Setting this bit generates a software request for the channel specified by
bit 0. When the channel’s buffer transfer completes, this bit is cleared.

1 0 Must be 0 for correct operation.

0 CS Channel Select:

0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.
D-26

SYSTEM REGISTER QUICK REFERENCE
D.22 DMASTS

DMA Status
DMASTS
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F008H
0008H
00H

7 0

— — R1 R0 — — TC1 TC0

Bit Number Bit Mnemonic Function

7–6 — Reserved. These bits are undefined.

5 R1 Request 1:

When set, this bit indicates that channel 1 has a hardware request
pending. When the request is removed, this bit is cleared.

4 R0 Request 0:

When set, this bit indicates that channel 0 has a hardware request
pending. When the request is removed, this bit is cleared.

3–2 — Reserved. These bits are undefined.

1 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC1 in DMAIS.

0 TC0 Transfer Complete 0:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC0 in DMAIS.
D-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.23 ICW1 (MASTER AND SLAVE)

Initialization Command Word 1
ICW1 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

0 0 0 RSEL1 LS 0 0 1

Bit
Number

Bit
Mnemonic Function

7–5 — Clear these bits to guarantee device operation.

4 RSEL1 Register Select 1 (Also see OCW2 and OCW3):

ICW1, OCW2, and OCW3 are accessed through the same addresses.

0 = OCW2 or OCW3 is accessed (Figure 9-13 and Figure 9-15).
1 = ICW1 register is accessed.

3 LS Level/Edge Sensitive:

0 = Selects edge-triggered IR input signals.
1 = Selects level-sensitive IR input signals.

All internal peripherals interface with the 82C59As in edge-triggered
mode only. This is compatible with the PC/AT bus specification. Each
source signal initiates an interrupt request by making a low-to-high
transition. External peripherals interface with the 8259As in edge-
triggered or level-sensitive mode. The modes are selected for the
device, not for individual interrupts.

NOTE: If an internal peripheral interrupt is used, the 8259A that the
interrupt is connected to must be programmed for edge-triggered
interrupts.

2–1 — Clear these bits to guarantee device operation.

0 — Set this bit to guarantee device operation.

NOTE: The 82C59A must be initialized before it can be used. After reset, the 82C59A register states are
undefined. The 82C59A modules must be initialized before the IF flag in the core FLAG register is
set. All peripherals that use interrupts connected to the ICU must be initialized before initializing
the ICU.
D-28

SYSTEM REGISTER QUICK REFERENCE
D.24 ICW2 (MASTER AND SLAVE)

D.25 ICW3 (MASTER)

Initialization Command Word 2
ICW2 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

T7 T6 T5 T4 T3 0 0 0

Bit
Number

Bit
Mnemonic Function

7–3 T7:3 Base Interrupt Type:

Write the base interrupt vector’s five most-significant bits to these bits.

2–0 T2:0 Clear these bits to guarantee device operation.

Initialization Command Word 3
ICW3 (master)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F021H
0021H
XXH

7 0

S7 S6 S5 S4 S3 S2 S1 0

Bit
Number

Bit
Mnemonic Function

7–3 S7:3 Slave IRs

0 = No slave 8259A is attached to the corresponding IR signal of the
master.

1 = A slave 82C59A is attached to the corresponding IR signal of the
master.

2 S2 0 = Internal slave not used
1 = Internal slave is cascaded from the master’s IR2 signal.

1 S1 Slave IRs

0 = No slave 8259A is attached to the master through the IR1 signal of
the master.

1 = A slave 82C59A is attached to the IR1 signal of the master.

0 — Clear this bit to guarantee device operation.
D-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.26 ICW3 (SLAVE)

D.27 ICW4 (MASTER AND SLAVE)

Initialization Command Word 3
ICW3 (slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

F0A1H
00A1H
XXH

7 0

0 0 0 0 0 0 1 0

Bit
Number

Bit
Mnemonic Function

7–2 — Clear these bits to guarantee device operation.

1 — Set this bit to guarantee device operation.

0 — Clear this bit to guarantee device operation.

Initialization Command Word 4
ICW4 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

0 0 0 SFNM 0 0 AEOI 1

Bit
Number

Bit
Mnemonic Function

7–5 — Write zero to these bits to guarantee device operation.

4 SFNM Special-fully Nested Mode:

0 = Selects fully nested mode.
1 = Selects special-fully nested mode. Only the master 82C59A can

operate in special-fully nested mode.

3–2 — Write zero to these bits to guarantee device operation.

1 AEOI Automatic EOI Mode:

0 = Disables automatic EOI mode.
1 = Enables automatic EOI mode. Only the master 82C59A can operate

in automatic EOI mode.

0 — Write one to this bit to guarantee device operation.
D-30

SYSTEM REGISTER QUICK REFERENCE
D.28 IDCODE

Identification Code Register
IDCODE Reset State:

2027 0013H (3V)
2827 0013H (5V)

31 24

0 0 1 0 0 (3V)
1 (5V)

0 0 0

23 16

0 0 1 0 0 1 1 1

15 8

0 0 0 0 0 0 0 0

7 0

0 0 0 1 0 0 1 1

Bit
Number

Bit
Mnemonic Function

31–28 V3:0 Device version number.

27–12 PN15:0 Device part number.

11–1 MFR10:0 Manufacturer identification (compressed JEDEC106-A code).

0 IDP Identification Present. Always true for this device.

This is the first data bit shifted out of the device during a data scan
immediately following an exit from the test-logic-reset state. A one
indicates that an IDCODE register is present. (A zero originates from the
BYPASS register and indicates that the device being interrogated has no
IDCODE register.)
D-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.29 IERn

Interrupt Enable
IER0, IER1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

IER0 IER1
F4F9H F8F9H
03F9H 02F9H
00H 00H

7 0

— — — — MS RLS TBE RBF

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved; for compatibility with future devices, write zeros to these bits.

3 MS Modem Status Interrupt Enable:

0 = Modem input signal changes do not cause interrupts.
1 = Connects the modem status signal to the interrupt control unit’s

SIOINTn output. A change on one or more of the modem input
signals activates the modem status signal.

2 RLS Receiver Line Status Interrupt Enable:

0 = LSR error conditions do not cause interrupts.
1 = Connects the receiver line status signal to the interrupt control unit’s

SIOINTn output. Sources for this interrupt include overrun error,
parity error, framing error, and break interrupt.

1 TBE Transmit Buffer Empty Interrupt Enable:

0 = Transmit Buffer Empty signal does not cause interrupts.
1 = Connects the transmit buffer empty signal to the interrupt control

unit’s SIOINTn output.

0 RBF Receive Buffer Full Interrupt Enable:

0 = Receive buffer full signal does not cause interrupts.
1 = Connects the receive buffer full signal to the interrupt control unit’s

SIOINTn output.

NOTE: The interrupt enable register is multiplexed with the divisor latch high register. You must clear
bit 7 (DLAB) of the serial line control register (LCRn) before you can access the interrupt
control register.
D-32

SYSTEM REGISTER QUICK REFERENCE
D.30 IIRn

Interrupt ID
IIR0, IIR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

IIR0 IIR1
F4FAH F8FAH
03FAH 02FAH
01H 01H

7 0

— — — — — IS2 IS1 IP#

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined.

2 IS2:1 Interrupt Source:

If an interrupt is pending (bit 0 = 0), these bits specify which status signal
caused the pending interrupt.
IS2 IS1 Interrupt Source

0 0 modem status signal*
0 1 transmitter buffer empty signal
1 0 receive buffer full signal
1 1 receiver line status signal**

* When one of the modem input signals (CTSn#, DSRn#, RIn#, and
DCDn#) changes state, the modem status signal is activated.

** A framing error, overrun error, parity error, or break interrupt activates
the receiver line status signal.

Reading the modem status register clears the modem status signal.
Reading the IIRn register or writing to the transmit buffer register clears
the transmit buffer empty signal. Reading the receive buffer register
clears the receive buffer full signal. Reading the receive buffer register or
the serial line status register clears the LSRn error bits, which clears the
receiver line status signal.

0 IP# Interrupt Pending:

This bit indicates whether an interrupt is pending.

0 = Interrupt is pending
1 = No interrupt is pending
D-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.31 INTCFG

Interrupt Configuration
INTCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F832H
—
00H

7 0

CE IR3 IR4 SWAP IR6 IR5/IR4 IR1 IR0

Bit
Number

Bit
Mnemonic Function

7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:

See Table 5-1 on page 5-8 for all the IR3 configuration options.

5 IR4 Internal Master IR4 Connection:

See Table 5-2 on page 5-8 for all the IR4 configuration options.

4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.
1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave

IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects VSS to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:

These depend on whether INTCFG.4 is set or clear.

0 = Connects VSS to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IR0 Internal Slave IR0 Connection:

0 = Connects VSS to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.
D-34

SYSTEM REGISTER QUICK REFERENCE
D.32 IR

Instruction Register
IR

Reset State
(Using TRST#): 02H

3 0

INST3 INST2 INST1 INST0

Bit
Number

Bit
Mnemonic Function

3–0 INST3:0 Instruction opcode. At reset (using TRST#, or after 5 TCK cycles with
TMS held low), this field is loaded with 0010, the opcode for the IDCODE
instruction. Instructions are shifted into this field serially through the TDI
pin. (Table 18-4 lists the valid instruction opcodes.)
D-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.33 LCRn

Serial Line Control
LCR0, LCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

LCR0 LCR1
F4FBH F8FBH
03FBH 02FBH
00H 00H

7 0

DLAB SB SP EPS PEN STB WLS1 WLS0

Bit
Number

Bit
Mnemonic Function

7 DLAB Divisor Latch Access Bit:

This bit determines which of the multiplexed registers is accessed.

0 = Allows access to the receiver and transmit buffer registers (RBRn and
TBRn) and the interrupt enable register (IERn).

1 = Allows access to the divisor latch registers (DLLn and DLHn).

6 SB Set Break:

0 = No effect on TXDn.
1 = Forces the TXDn pin to the spacing (logic 0) state for as long as bit is

set.

5 SP Sticky Parity, Even Parity Select, and Parity Enable:

These bits determine whether the control logic produces (during
transmission) or checks for (during reception) even, odd, no, or forced
parity.

SP EPS PEN Function
X X 0 parity disabled (no parity option)
0 0 1 produce or check for odd parity
0 1 1 produce or check for even parity
1 0 1 produce or check for forced parity (parity bit = 1)
1 1 1 produce or check for forced parity (parity bit = 0)

4 EPS

3 PEN

2 STB Stop Bits:

This bit specifies the number of stop bits transmitted and received in each
serial character.

0 = 1 stop bit
1 = 2 stop bits (1.5 stop bits for 5-bit characters)

1–0 WLS1:0 Word Length Select:

These bits specify the number of data bits in each transmitted or received
serial character.

00 = 5-bit character
01 = 6-bit character
10 = 7-bit character
11 = 8-bit character
D-36

SYSTEM REGISTER QUICK REFERENCE
D.34 LSRn

Serial Line Status
LSR0, LSR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

LSR0 LSR1
F4FDH F8FDH
03FDH 02FDH
60H 60H

7 0

— TE TBE BI FE PE OE RBF

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined.

6 TE Transmitter Empty:

The transmitter sets this bit to indicate that the transmit shift register and
transmit buffer register are both empty. Writing to the transmit buffer
register clears this bit.

5 TBE Transmit Buffer Empty:

The transmitter sets this bit after it transfers data from the transmit buffer
to the transmit shift register. Writing to the transmit buffer register clears
this bit.

4 BI Break Interrupt:

The receiver sets this bit whenever the received data input is held in the
spacing (logic 0) state for longer than a full word transmission time.
Reading the receive buffer register or the serial line status register clears
this bit.

3 FE Framing Error

The receiver sets this bit to indicate that the received character did not
have a valid stop bit. Reading the receive buffer register or the serial line
status register clears this bit. If data frame is set for two stop bits the
second stop bit is ignored.

2 PE Parity Error:

The receiver sets this bit to indicate that the received data character did
not have the correct parity. Reading the receive buffer register or the
serial line status register clears this bit.

1 OE Overrun Error:

The receiver sets this bit to indicate an overrun error. An overrun occurs
when the receiver transfers a received character to the receive buffer
register before the CPU reads the buffer’s old character. Reading the
serial line status register clears this bit.

0 RBF Receive Buffer Full:

The receiver sets this bit after it transfers a received character from the
receive shift register to the receive buffer register. Reading the receive
buffer register clears this bit.
D-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.35 MCRn

Modem Control
MCR0, MCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

MCR0 MCR1
F4FCH F8FCH
03FCH 02FCH
00H 00H

7 0

— — — LOOP OUT2 OUT1 RTS DTR

Bit
Number

Bit
Mnemonic Function

7–5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 LOOP Loop Back Test Mode:

0 = Normal mode
1 = Setting this bit puts the SIOn into diagnostic (or loop back test) mode. This causes

the SIO channel to:

• set its transmit serial output (TXDn)

• disconnect its receive serial input (RXDn) from the package pin

• loop back the transmitter shift register’s output to the receive shift register’s input

• disconnect the modem control inputs (CTSn#, DSRn#, RIn#, and DCDn#) from the
package pins

• force modem control outputs (RTSn# and DTRn#) to their inactive states

• connects MCRn bits to MSRn bits

3–2 OUT2:1 Test Bits:

In diagnostic mode (bit 4=1), these bits control the ring indicator (RIn) and data carrier
detect (DCDn#) modem inputs. Setting OUT1 activates the internal RIn bit; clearing
OUT1 deactivates the internal RIn bit. Setting OUT2 activates the internal DCDn bit;
clear OUT2 deactivates the internal DCDn bit.

In normal user mode (bit 4=0) OUT1 has no effect and OUT2 in conjunction with
INTCFG.5/6 selects internal SIO interrupt or external interrupt. See Table 5-1 on page
5-8 for the configuration options.

1 RTS Ready to Send:

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal CTSn bit; clearing this bit
deactivates the internal CTSn bit.

In internal connection mode, setting this bit activates the internal CTSn# signal and the
RTSn# pin; clearing this bit deactivates the internal CTSn# signal and the RTSn# pin.

In standard mode, setting this bit activates the RTSn# pin; clearing this bit deactivates
the RTSn# pin. Note that pin is inverted from bit.

0 DTR Data Terminal Ready:

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal DSRn# signal; clearing this bit
deactivates the internal DSRn# signal.

In internal connection mode, setting this bit activates the internal DSRn# and DCDn#
signals and the DTRn# pin; clearing this bit deactivates the internal DSRn# and DCDn#
signals and the DTRn# pin. Note that pin is inverted from bit.

In standard mode, setting this bit activates the DTRn# pin; clearing this bit deactivates
the DTRn# pin. Note that pin is inverted from bit.
D-38

SYSTEM REGISTER QUICK REFERENCE
D.36 MSRn

Modem Status
MSR0, MSR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

MSR0 MSR1
F4FEH F8FEH
03FEH 02FEH
X0H X0H

7 0

DCD RI DSR CTS DDCD TERI DDSR DCTS

Bit
Number

Bit
Mnemonic Function

7 DCD Data Carrier Detect:

This bit is the complement of the data carrier detect (DCDn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.3 (OUT2).

6 RI Ring Indicator:

This bit is the complement of the ring indicator (RIn#) input. In diagnostic
test mode, this bit is equivalent to MCRn.2 (OUT1).

5 DSR Data Set Ready:

This bit is the complement of the data set ready (DSRn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.0 (DTR).

4 CTS Clear to Send:

This bit is the complement of the clear to send (CTSn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.1 (RTS).

3 DDCD Delta Data Carrier Detect:

When set, this bit indicates that the DCDn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

2 TERI Trailing Edge Ring Indicator:

When set, this bit indicates that the RIn# input has changed from a low
to a high state since the last time this register was read. Reading this
register clears this bit.

1 DDSR Delta Data Set Ready:

When set, this bit indicates that the DSRn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

0 DCTS Delta Clear to Send:

When set, this bit indicates that the CTSn# input has changed state
since the last time this register was read. Reading this register clears
this bit.
D-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.37 OCW1 (MASTER AND SLAVE)

Operation Command Word 1
OCW1 (master and slave)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F021H F0A1H
0021H 00A1H
XXH XXH

7 0

M7 M6 M5 M4 M3 M2 M1 M0

Bit
Number

Bit
Mnemonic Function

7–0 M7:0 Mask IR:

0 = Enables interrupts on the corresponding IR signal.
1 = Disables interrupts on the corresponding IR signal.

NOTE: Setting the mask bit does not clear the respective interrupt
pending bit.

NOTE: The 8259A must be initialized before it can be used. After reset, the 8259A register states are
undefined. The 8259A modules must be initialized before the IF flag in the core FLAG register is
set.
D-40

SYSTEM REGISTER QUICK REFERENCE
D.38 OCW2 (MASTER AND SLAVE)

Operation Command Word 2
OCW2 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

R SL EOI RSEL1 RSEL0 L2 L1 L0

Bit
Number

Bit
Mnemonic Function

7 R The Rotate (R), Specific Level (SL), and End-of-Interrupt (EOI) Bits:

These bits change the priority structure and/or send an EOI command.

R SL EOI Command

0 0 0 Cancel automatic rotation*
0 0 1 Send a nonspecific EOI command
0 1 0 No operation
0 1 1 Send a specific EOI command**
1 0 0 Enable automatic rotation*
1 0 1 Enable automatic rotation and send a nonspecific EOI
1 1 0 Initiate specific rotation**
1 1 1 Initiate specific rotation and send a specific EOI**
* These cases allow you to change the priority structure while the

82C59A is operating in the automatic EOI mode.
** The L2:0 bits (see below) specify the specific level for these cases.

6 SL

5 EOI

4–3 RSEL1:0 Register Select Bits:

ICW1, OCW2 and OCW3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 00
to these bits to access OCW2.

RSEL1 RSEL0

0 0 OCW2
0 1 OCW3
1 X ICW1

2–0 L2:0 IR Level:

When you program bits 7–5 to initiate specific rotation, these bits specify
the IR signal that is assigned the lowest level.

When you program bits 7–5 to send a specific EOI command, these bits
specify the IR signal that receives the EOI command.

If SL=0, then these bits have no effect.
D-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.39 OCW3 (MASTER AND SLAVE)

Operation Command Word 3
OCW3 (master and slave)
(write only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

0 ESMM SMM RSEL1 RSEL0 POLL ENRR RDSEL

Bit
Number

Bit
Mnemonic Function

7 — Clear this bit to guarantee device operation.

6 ESMM Enable Special Mask Mode (ESMM) and Special Mask Mode (SMM):

Use these bits to enable or disable special mask mode.

ESMM SMM

0 0 No action
0 1 No action
1 0 Disable special mask mode
1 1 Enable special mask mode

5 SMM

4–3 RSEL1:0 Register Select:

ICW1, OCW2 and OCW3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 01
to these bits to access OCW3.

RSEL1 RSEL0

0 0 OCW2
0 1 OCW3
1 X ICW1

2 POLL Poll Command:

Set this bit to issue a poll command, thus initiating the polling process.

1 ENRR Enable Register Read Select (ENRR) and Read Register Select
(RDSEL):

These bits select which register is read during the next F020H and
F0A0H (or PC/AT address 0020H, 00A0H) read access.

ENRR RDSEL Register Read on Next Read Pulse

0 0 No action
0 1 No action
1 0 Interrupt Request Register
1 1 In-service Register

0 RDSEL
D-42

SYSTEM REGISTER QUICK REFERENCE
D.40 P1CFG

Port 1 Configuration
P1CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F820H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.

6 PM6 Pin Mode:

0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.

5 PM5 Pin Mode:

0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.

4 PM4 Pin Mode:

0 = Selects P1.4 at the package pin.
1 = Selects RI0# at the package pin.

3 PM3 Pin Mode:

0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.

2 PM2 Pin Mode:

0 = Selects P1.2 at the package pin.
1 = Selects DTR0# at the package pin.

1 PM1 Pin Mode:

0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.

0 PM0 Pin Mode:

0 = Selects P1.0 at the package pin.
1 = Selects DCD0# at the package pin.
D-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.41 P2CFG

Port 2 Configuration
P2CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F822H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.

6 PM6 Pin Mode:

0 = Selects P2.6 at the package pin.
1 = Selects TXD0 at the package pin.

5 PM5 Pin Mode:

0 = Selects P2.5 at the package pin.
1 = Selects RXD0 at the package pin.

4 PM4 Pin Mode:

0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.

3 PM3 Pin Mode:

0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.

2 PM2 Pin Mode:

0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.

1 PM1 Pin Mode:

0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.

0 PM0 Pin Mode:

0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.
D-44

SYSTEM REGISTER QUICK REFERENCE
D.42 P3CFG

Port 3 Configuration
P3CFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F824H
—
00H

7 0

PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INT0).

1 PM1 Pin Mode:

See Table 5-1 on page 5-8 for all the PM1 configuration options.

0 PM0 Pin Mode:

See Table 5-1 on page 5-8 for all the PM0 configuration options.
D-45

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.43 PINCFG

Pin Configuration
PINCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F826H
—
00H

7 0

— PM6 PM5 PM4 PM3 PM2 PM1 PM0

Bit
Number

Bit
Mnemonic Function

7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.

6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACK0# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PM0 Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.
D-46

SYSTEM REGISTER QUICK REFERENCE
D.44 PnDIR

Port DIrection
PnDIR (n=1–3)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F864H, F86CH, F874H
—
FFH

7 0

PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

Bit
Number

Bit
Mnemonic Function

7–0 PD7:0 Pin Direction:

0 = Configures the pin as a complementary output.
1 = Configures the pin as an open-drain output or high-impedance input.
D-47

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.45 PnLTC

D.46 PnPIN

Port Data Latch
PnLTC (n=1–3)
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F862H, F86AH, F872H
—
FFH

7 0

PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0

Bit
Number

Bit
Mnemonic Function

7–0 PL7:0 Port Data Latch:

Writing a value to a PL bit causes that value to be driven onto the
corresponding pin.

For a complementary output, write the desired pin value to its PL bit.
This value is strongly driven onto the pin.

For an open-drain output, a one results in a high-impedance (input) state
at the pin.

For a high-impedance input, write a one to the corresponding PL bit. A
one results in a high-impedance state at the pin, allowing external
hardware to drive it.

Port Pin State
PnPIN (n=1–3)
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F860H, F868H, F870H
—
XXH

7 0

PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0

Bit
Number

Bit
Mnemonic Function

7–0 PS7:0 Pin State:

Reading a PS bit returns the logic state present on the associated port
pin.
D-48

SYSTEM REGISTER QUICK REFERENCE
D.47 POLL (MASTER AND SLAVE)

Poll Status Byte
POLL (master and slave)
(read only)

Expanded Addr:
ISA Addr:
Reset State:

master slave
F020H F0A0H
0020H 00A0H
XXH XXH

7 0

INT — — — — L2 L1 L0

Bit
Number

Bit
Mnemonic Function

7 INT Interrupt Pending:

0 = No request pending.
1 = Indicates that a device attached to the 82C59A requires servicing.

6–3 — Reserved. These bits are undefined.

2–0 L2:0 Interrupt Request Level:

When bit 7 is set, these bits indicate the highest-priority IR signal that
requires servicing. When bit 7 is clear, i.e., no request is pending, these
bits are indeterminate.
D-49

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.48 PORT92

Port 92 Configuration
PORT92
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F092H
0092H
XXXXXX10B

7 0

— — — — — — A20G CPURST

Bit
Number

Bit
Mnemonic Function

7–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 A20G A20 Grounded:

0 = Clearing this bit forces address line A20 to 0. This bit affects
addresses generated only by the core. Addresses generated by the
DMA and the Refresh Unit are not affected by this bit.

1 = Setting this bit leaves core-generated addresses unmodified.

0 CPURST CPU Reset:

0 = Clearing this bit performs no operation.
1 = Setting this bit resets the core without resetting the peripherals.

This bit must be cleared before issuing another reset.
D-50

SYSTEM REGISTER QUICK REFERENCE
D.49 PWRCON

Power Control Register
PWRCON
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F800H
—
00H

7 0

— — — — WDTRDY HSREADY PC1 PC0

Bit
Number

Bit
Mnemonic Function

7–4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:

0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.

1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.

1–0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT
instruction causes a normal halt and the device remains in active mode.

PC1 PC0

0 0 active mode
1 0 idle mode
0 1 powerdown mode
1 1 active mode
D-51

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.50 RBRn

Receive Buffer
RBR0, RBR1
(read only)

Expanded Addr:
ISA Addr:
Reset State:

RBR0 RBR1
F4F8H F8F8H
03F8H 02F8H
XXH XXH

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit
Number

Bit
Mnemonic Function

7–0 RB7:0 Receive Buffer Bits:

These bits make up the last word received. The receiver shifts bits in,
starting with the least-significant-bit. The receiver then strips off the
asynchronous bits (start, parity, and stop) and transfers the received
data bits from the receive shift register to the receive buffer.

NOTE: The receive buffer register shares an address port with other SIO registers. Bit 7 (DLAB) of
the LCRn must be cleared in order to read the receive buffer register.
D-52

SYSTEM REGISTER QUICK REFERENCE
D.51 REMAPCFG

Address Configuration Register
REMAPCFG

Expanded Addr:
PC/AT Address:
Reset State:

0022H
0022H
0000H

15 8

ESE — — — — — — —

7 0

— S1R S0R ISR IMR DR — TR

Bit
Number

Bit
Mnemonic Function

15 ESE 0 = Disables expanded I/O space
1 = Enables expanded I/O space

14–7 — Reserved.

6 S1R 0 = Makes serial channel 1 (COM2) accessible in both DOS I/O space
and expanded I/O space

1 = Remaps serial channel 1 (COM2) address into expanded I/O space

5 S0R 0 = Makes serial channel 0 (COM1) accessible in both DOS I/O space
and expanded I/O space

1 = Remaps serial channel 0 (COM1) address into expanded I/O space

4 ISR 0 = Makes the slave 82C59A interrupt controller accessible in both DOS
I/O space and expanded I/O space

1 = Remaps slave 82C59A interrupt controller address into expanded
I/O space

3 IMR 0 = Makes the master 82C59A interrupt controller accessible in both
DOS I/O space and expanded I/O space

1 = Remaps master 82C59A interrupt controller address into expanded
I/O space

2 DR 0 = Makes the DMA address accessible in both DOS I/O space and
expanded I/O space

1 = Remaps DMA address into expanded I/O space

1 — Reserved.

0 TR 0 = Makes the timer control unit accessible in both DOS I/O space and
expanded I/O space

1 = Remaps timer control unit address into expanded I/O space
D-53

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.52 RFSADD

D.53 RFSBAD

Refresh Address
RFSADD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A6H
—
00FFH

15 8

— — RA13 RA12 RA11 RA10 RA9 RA8

7 0

RA7 RA6 RA5 RA4 RA3 RA2 RA1 1

Bit
Number

Bit
Mnemonic Function

15–14 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

13–1 RA13:1 Refresh Address Bits:

These bits comprise A13:1 of the refresh address.

0 — Refresh Bit 0:

A0 of the refresh address. This bit is always 1 and is read-only.

Refresh Base Address
RFSBAD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A0H
—
0000H

15 8

— — — — RA25 RA24 RA23 RA22

7 0

RA21 RA20 RA19 RA18 RA17 RA16 RA15 RA14

Bit
Number

Bit
Mnemonic Function

15–12 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

11–0 RA25:14 Refresh Base:

These bits make up the A25:14 address bits of the refresh address. This
establishes a memory region for refreshing.
D-54

SYSTEM REGISTER QUICK REFERENCE
D.54 RFSCIR

D.55 RFSCON

Refresh Clock Interval
RFSCIR
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A2H
—
0000H

15 8

— — — — — — RC9 RC8

7 0

RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

Bit
Number

Bit
Mnemonic Function

15–10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

9–0 RC9:0 Refresh Counter Value:

Write the counter value to these ten bits. The interval counter counts
down from this value. When the interval counter reaches one, the control
unit initiates a refresh request (provided it does not have a request
pending). The counter value is a function of DRAM specifications and
processor frequency (see the equation above).

Refresh Control
RFSCON
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4A4H
—
0000H

15 8

REN — — — — — CV9 CV8

7 0

CV7 CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

15 REN Refresh Control Unit Enable:

This bit enables or disables the refresh control unit.

0 = Disables refresh control unit
1 = Enables refresh control unit

14–10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

9–0 CV9:0 Counter Value:

These read-only bits represent the current value of the interval counter.
Write operations to these bits have no effect.
D-55

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.56 SCRn

Scratch Pad
SCR0, SCR1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

SCR0 SCR1
F4FFH F8FFH
03FFH 02FFH
XXH XXH

7 0

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

Bit
Number

Bit
Mnemonic Function

7–0 SP7:0 Writing and reading this register has no effect on SIOn operation.
D-56

SYSTEM REGISTER QUICK REFERENCE
D.57 SIOCFG

SIO and SSIO Configuration
SIOCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F836H
—
00H

7 0

S1M S0M — — — SSBSRC S1BSRC S0BSRC

Bit
Number

Bit
Mnemonic Function

7 S1M SIO1 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.

6 S0M SIO0 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SIO1 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate

generator.

0 S0BSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate

generator.
D-57

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.58 SSIOBAUD

SSIO Baud-rate Control
SSIOBAUD
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F484H
—
00H

7 0

BEN BV6 BV5 BV4 BV3 BV2 BV1 BV0

Bit
Number

Bit
Mnemonic Function

7 BEN Baud-rate Generator Enable:

Setting this bit enables the baud-rate generator. Clearing this bit disables
the baud-rate generator, clears the baud-rate count value, and forces the
baud rate clock to zero.

6–0 BV6:0 Baud-rate Value:

The baud-rate value (BV) is the reload value for the baud-rate
generator’s seven-bit down counter. The baud-rate generator’s output is
a function of BV and the baud-rate generator’s input (BCLKIN), as
follows.

 (Hz)

If you know the desired output baud-rate frequency, you can determine
BV as follows.

baud-rate output frequency (Hz)
BCLKIN

2BV 2+
----------------------=

BV
BCLKIN

2 baud-rate output frequency×
--- 

  1–=
D-58

SYSTEM REGISTER QUICK REFERENCE
D.59 SSIOCON1

SSIO Control 1
SSIOCON1
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F486H
—
C0H

7 0

TUE THBE TIE TEN ROE RHBF RIE REN

Bit
Number

Bit
Mnemonic Function

7 TUE Transmit Underrun Error:

The transmitter sets this bit to indicate a transmit underrun error in the
TEN transfer mode. Clear this bit to clear the error flag. If a one is written
to TUE, it is ignored and TUE retains its previous value.

6 THBE
(read only bit)

Transmit Holding Buffer Empty:

The transmitter sets this bit when the transmit buffer contents have been
transferred to the transmit shift register, indicating that the buffer is now
ready to accept new data. Writing data to the transmit buffer clears THBE.
When this bit is clear, the buffer is not ready to accept any new data.

5 TIE Transmitter Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the transmit buffer is empty.

1 = Setting this bit connects the transmit buffer empty internal signal to
the Interrupt Control Unit.

4 TEN Transmitter Enable:

0 = Disables the transmitter.
1 = Enables the transmitter.

3 ROE Receive Overflow Error:

The receiver sets this bit to indicate a receiver overflow error. Write zero
to this bit to clear the flag.

If a one is written to ROE, the one is ignored and ROE retains its previous
value.

2 RHBF
(read only bit)

Receive Holding Buffer Full:

The receiver sets this bit when the receive shift register contents have
been transferred to the receive buffer.

Reading the buffer clears this bit.

1 RIE Receive Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the receive buffer is full.

1 = Setting this bit connects the receiver buffer full internal signal to the
Interrupt Control Unit.

0 REN Receiver Enable:

0 = Clearing this bit disables the receiver.
1 = Setting this bit enables the receiver.
D-59

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.60 SSIOCON2

SSIO Control 2
SSIOCON2
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F488H
—
00H

7 0

— — — — — AUTOTXM TXMM RXMM

Bit
Number

Bit
Mnemonic Function

7–3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 AUTOTXM Automatic Transmit off mode for master mode

0 = Clearing this bit puts the TEN bit into normal operation
1 = Setting this bit and the TXMM bit causes TEN to be ignored. Every

time a word is loaded into the transmit shift register from the transmit
holding buffer it is transmitted out and then stops.

1 TXMM Transmit Master Mode:

0 = Clearing this bit puts the transmitter in slave mode. In slave mode, an
external device controls the transmit serial communications. An input
on the STXCLK pin clocks the transmitter.

1 = Setting this bit puts the transmitter in master mode. In master mode,
the internal baud-rate generator controls the transmit serial
communications. The baud-rate generator’s output clocks the
internal transmitter and appears on the STXCLK pin.

0 RXMM Receive Master Mode:

0 = Clearing this bit puts the receiver in slave mode. In slave mode, an
external device controls the receive serial communications. An input
on the SRXCLK pin clocks the receiver.

1 = Setting this bit puts the receiver in master mode. In master mode, the
internal baud-rate generator controls the receive serial
communications. The baud-rate generator’s output clocks the
internal receiver and appears on the SRXCLK pin.
D-60

SYSTEM REGISTER QUICK REFERENCE
D.61 SSIOCTR

D.62 SSIORBUF

Baud-rate Count Down
SSIOCTR
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F48AH
—
00H

7 0

BSTAT CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

7 BSTAT Baud-rate Generator Status:

0 = The baud-rate generator is disabled.
1 = The baud-rate generator is enabled.

6–0 CV6:0 Current Value:

These bits indicate the current value of the baud-rate down counter.

Receive Holding Buffer
SSIORBUF
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F482H
—
0000H

15 8

RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit
Number

Bit
Mnemonic Function

15–0 RB15:0 Receive Buffer Bits:

This register contains the last word received. The receive shift register
shifts bits in with the rising edge of the receiver clock pin. Data is shifted
in starting with the most-significant bit. The control logic then transfers
the received word from the receive shift register to SSIORBUF.
D-61

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.63 SSIOTBUF

D.64 TBRn

Transmit Holding Buffer
SSIOTBUF
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F480H
—
0000H

15 8

TB15 TB14 TB13 TB12 TB11 TB10 TB9 TB8

7 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

Bit
Number

Bit
Mnemonic Function

15–0 TB15:0 Transmit Buffer Bits:

These bits make up the next data word to be transmitted. The control
logic loads this word into the transmit shift register. The transmit shift
register shifts the bits out on the falling edge of the tranmitter clock pin.
The word is transmitted out starting with the most-significant bit (TB15).

Transmit Buffer
TBR0, TBR1
(write only)

Expanded Addr:
ISA Addr:
Reset State:

TBR0 TBR1
F4F8H F8F8H
03F8H 02F8H
XXH XXH

7 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

Bit
Number

Bit
Mnemonic Function

7–0 TB7:0 Transmit Buffer Bits:

These bits make up the next data word to be transmitted. The transmitter
loads this word into the transmit shift register. The transmit shift register
then shifts the bits out, along with the asynchronous communication bits
(start, stop, and parity). The data bits are shifted out least-significant bit
(TB0) first.

NOTE: The transmit buffer register shares an address port with other SIO registers. You must clear
bit 7 (DLAB) of LCRn before you can write to the transmit buffer register.
D-62

SYSTEM REGISTER QUICK REFERENCE
D.65 TMRCFG
.

Timer Configuration
TMRCFG
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F834H
—
00H

7 0

TMRDIS SWGTEN GT2CON CK2CON GT1CON CK1CON GT0CON CK0CON

Bit
Number

Bit
Mnemonic Function

7 TMRDIS Timer Disable:

0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.

6 SWGTEN Software GATEn Enable

0 = Connects GATEn to either the VCC pin or the TMRGATEn pin.
1 = Enables GT2CON, GT1CON, and GT0CON to control the

connections to GATE2, GATE1 and GATE0 respectively.

5 GT2CON Gate 2 Connection:

SWGTEN GT2CON

0 0 Connects GATE2 to VCC.
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.

4 CK2CON Clock 2 Connection:

0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.

3 GT1CON Gate 1 Connection:

SWGTEN GT1CON

0 0 Connects GATE1 to VCC.
0 1 Connects GATE1 to the TMRGATE1 pin.
1 0 Turns GATE1 off.
1 1 Turns GATE1 on.

2 CK1CON Clock 1 Connection:

0 = Connects CLKIN1 to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.

1 GT0CON Gate 0 Connection:

SWGTEN GT0CON

0 0 Connects GATE0 to VCC.
0 1 Connects GATE0 to the TMRGATE1 pin.
1 0 Turns GATE0 off.
1 1 Turns GATE0 on.

0 CK0CON Clock 0 Connection:

0 = Connects CLKIN0 to the internal PSCLK signal.
1 = Connects CLKIN0 to the TMRCLK0 pin.
D-63

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.66 TMRCON

Timer Control (Control Word Format)
TMRCON

Expanded Addr:
ISA Addr:
Reset State:

F043H
0043H
XXH

7 0

SC1 SC0 RW1 RW0 M2 M1 M0 CNTFMT

Bit
Number

Bit
Mnemonic Function

7–6 SC1:0 Select Counter:

Use these bits to specify a particular counter. The selections you make for
bits 5–0 define this counter’s operation.

00 = counter 0
01 = counter 1
10 = counter 2

11 is not an option for TMRCON’s control word format. Selecting 11
accesses TMRCON’s read-back format, which is shown in Figure 10-29.

5–4 RW1:0 Read/Write Select:

These bits select a read/write option for the counter specified by bits 7–6.

01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte

00 is not an option for TMRCON’s control word format. Selecting 00
accesses TMRCON’s counter-latch format, which is shown in Figure
10-27.

3–1 M2:0 Mode Select:

These bits select an operating mode for the counter specified by bits 7–6.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5

X is a don’t care.

0 CNTFMT Count Format:

This bit selects the count format for the counter specified by bits 7–6.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)
D-64

SYSTEM REGISTER QUICK REFERENCE
D.67 TMRn

Timer n (Read Format)
TMRn (n = 0–2)

Expanded Addr:

ISA Addr:

Reset State:

F040H, F041H
F042H
0040H, 0041H
0042H
XXH

7 0

CV7 CV6 CV5 CV4 CV3 CV2 CV1 CV0

Bit
Number

Bit
Mnemonic Function

7–0 CV7:0 Count Value:

These bits contain the counter’s count value. When reading the
counter’s count value, follow the read selection specified in the counter’s
control word.
D-65

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Timer n (Status Format)
TMRn (n = 0–2)

Expanded Addr:

ISA Addr:

Reset State:

F040H, F041H
F042H
0040H, 0041H
0042H
XXH

7 0

OUTPUT NULCNT RW1 RW0 M2 M1 M0 CNTFMT

Bit
Number

Bit
Mnemonic Function

7 OUTPUT Output Status:

This bit indicates the current state of the counter’s output signal.

0 = OUTn is low
1 = OUTn is high

6 NULCNT Count Status:

This bit indicates whether the latest count written to the counter has
been loaded. Some modes require a gate-trigger before the counter
loads new count values.

0 = the latest count written to the counter has been loaded
1 = a count has been written to the counter but has not yet been loaded

5–4 RW1:0 Read/Write Select Status:

These bits indicate the counter’s programmed read/write selection.

00 = Never occurs
01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte

3–1 M2:0 Mode Status:

These bits indicate the counter’s programmed operating mode.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5

X is a don’t care.

0 CNTFMT Counter Format Status:

This bit indicates the counter’s programmed count format.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)
D-66

SYSTEM REGISTER QUICK REFERENCE
D.68 UCSADH

See “CSnADH (UCSADH)” on page D-8.

D.69 UCSADL

See “CSnADL (UCSADL)” on page D-9.

D.70 UCSMSKH

See “CSnMSKH (UCSMSKH)” on page D-10.

D.71 UCSMSKL

See “CSnMSKL (UCSMSKL)” on page D-11.
D-67

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.72 WDTCNTH AND WDTCNTL

WDT Counter Value (High)
WDTCNTH
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F4C4H
—
003FH

15 8

WC31 WC30 WC29 WC28 WC27 WC26 WC25 WC24

7 0

WC23 WC22 WC21 WC20 WC19 WC18 WC17 WC16

WDT Counter Value (Low)
WDTCNTL
(read only)

Expanded Addr:
ISA Addr:
Reset State:

F4C6H
—
FFFFH

15 8

WC15 WC14 WC13 WC12 WC11 WC10 WC9 WC8

7 0

WC7 WC6 WC5 WC4 WC3 WC2 WC1 WC0

Bit Number Bit
Mnemonic Function

High 15–0 WC31:16 WDT Counter Value High Word and Low Word:

Read the high word of the counter value from WDTCNTH and the low
word from WDTCNTL.

Low 15–0 WC15:0
D-68

SYSTEM REGISTER QUICK REFERENCE
D.73 WDTRLDH AND WDTRLDL

WDT Reload Value (High)
WDTRLDH
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4C0H
—
003FH

15 8

WR31 WR30 WR29 WR28 WR27 WR26 WR25 WR24

7 0

WR23 WR22 WR21 WR20 WR19 WR18 WR17 WR16

WDT Reload Value (Low)
WDTRLDL
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4C2H
—
FFFFH

15 8

WR15 WR14 WR13 WR12 WR11 WR10 WR9 WR8

7 0

WR7 WR6 WR5 WR4 WR3 WR2 WR1 WR0

Bit
Number

Bit
Mnemonic Function

High 15–0 WR31:16 WDT Reload Value (High Word and Low Word):

Write the high word of the reload value to WDTRLDH and the low word
to the WDTRLDL.

Low 15–0 WR15:0
D-69

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
D.74 WDTSTATUS

.

WDT Status
WDTSTATUS
(read/write)

Expanded Addr:
ISA Addr:
Reset State:

F4CAH
—
00H

7 0

WDTEN — — — — — BUSMON CLKDIS

Bit
Number

Bit
Mnemonic Function

7 WDTEN Watchdog Mode Enabled:

This read-only bit indicates whether watchdog mode is enabled. Only a
lockout sequence can set this bit and only a device reset can clear it.

0 = Watchdog mode disabled
1 = Watchdog mode enabled

6–2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 BUSMON Bus Monitor Enable:

0 = Disables bus monitor mode
1 = Enables bus monitor mode

Read this bit to determine the current status. A lockout sequence clears
BUSMON and prevents writes to the WDTSTATUS register.

0 CLKDIS Clock Disable:

Write to this bit to stop or restart the clock to the WDT; read it to
determine the current clock status. A lockout sequence clears CLKDIS
and prevents writing to this register.

0 = Clock enabled
1 = Processor clock (frequency=CLK2/2) disabled (stopped)
D-70

E
INSTRUCTION SET
SUMMARY

 set.

able

nts.

s, add

er

ment

ress:
APPENDIX E
INSTRUCTION SET SUMMARY

This appendix provides reference information for the Intel386™ processor family instruction

The appendix is organized as follows:

• Instruction Encoding and Clock Count Summary (see below)

• Instruction Encoding (page E-22)

E.1 INSTRUCTION ENCODING AND CLOCK COUNT SUMMARY

To calculate elapsed time for an instruction, multiply the instruction clock count, as listed in T
E-1, by the processor clock period (e.g., 62.5 ns for 16 MHz).

Instruction clock count assumptions:

• The instruction has been prefetched, decoded, and is ready for execution.

• Bus cycles do not require wait states.

• There are no local bus HOLD requests delaying processor access to the bus.

• No exceptions are detected during instruction execution.

• When an effective address is calculated, it does not use two general register compone
One register, scaling and displacement can be used within the clock counts shown.
However, when the effective address calculation uses two general register component
1 clock to the clock count shown.

Instruction clock count notation:

• When two clock counts are given, the smaller refers to a register operand and the larg
refers to a memory operand.

• n = number of times repeated.

• m = number of components in the next instruction executed, where the entire displace
(if any) counts as one component, the entire immediate data (if any) counts as one
component, and all other bytes of the instruction and prefix(es) of each count as one
component.

Misaligned or 32-bit operand accesses:

• When instructions access a misaligned 16-bit operand or 32-bit operand on even add

— add 2* clocks for read or write

— add 4** clocks for read and write

• When instructions access a 32-bit operand on odd address:

— add 4* clocks for read or write

— add 8** clocks for read and write
E-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

f the
 defi-
Wait states:

Wait states add 1 clock per wait state to instruction execution for each data access.

Table E-1 lists the instructions with their formats and execution times. The description o
notes for Table E-1 begins on page E-20. See “Instruction Encoding” on page E-22 for the
nition of the terms used in this table.

Table E-1. Instruction Set Summary (Sheet 1 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

GENERAL DATA TRANSFER

MOV = Move

register to
register/memory 1 0 0 0 1 0 0 w mod reg r/m

2/2 2/2* b h

register/memory to
register 1 0 0 0 1 0 1 w mod reg r/m

2/4 2/4* b h

immediate to
register/memory

1 1 0 0 0 1 1 w mod 0 0 0 r/m immediate data
2/2 2/2* b h

immediate to register
(short form)

1 0 1 1 w reg immediate data 2 2

memory to accumulator
(short form)

1 0 1 0 0 0 0 w full displacement 4* 4* b h

accumulator to memory
(short form)

1 0 1 0 0 0 1 w full displacement 2* 2* b h

register memory to
segment register 1 0 0 0 1 1 1 0 mod sreg3 r/m

2/5 22/23 b h, i, j

segment register to
register/memory 1 0 0 0 1 1 0 0 mod sreg3 r/m

2/2 2/2 b h

MOVSX = Move with sign extension

register from
register/memory

0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 w mod reg r/m
3/6* 3/6* b h

MOVZX = Move with zero extension

register from
register/memory

0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 w mod reg r/m 3/6* 3/6* b h

PUSH = Push

register/memory 1 1 1 1 1 1 1 1 mod 1 1 0 r/m 5/7* 7/9* b h

register (short form) 0 1 0 1 0 reg 2 4 b h

segment register (ES,
CS, SS, or DS)
(short form)

000 sreg2 110
2 4 b h

segment register (ES,
CS, SS, or DS, FS or
GS)

0 0 0 0 1 1 1 1 10 sreg3 000
2 4 b h
E-2

INSTRUCTION SET SUMMARY
immediate 0 1 1 0 1 0 s 0 immediate data 2 4 b h

PUSHA = Push All 0 1 1 0 0 0 0 0 18 34 b h

POP = Pop

register/memory 1 0 0 0 1 1 1 1 mod 0 0 0 r/m 5/7 7/9 b h

register (short form) 0 1 0 1 1 reg 6 6 b h

segment register (ES,
CS, SS, or DS)
(short form)

000 sreg2 111
7 25 b h, i, j

segment register (ES,
CS, SS, or DS) FS or
GS

0 0 0 0 1 1 1 1 10 sreg3 001
7 25 b h, i, j

POPA = Pop all 0 1 1 0 0 0 0 1 29 35 b h

XCHG = Exchange

register/memory
with register

1 0 0 0 0 1 1 w mod reg r/m 3/5** 3/5** b, f f, h

register with accumula-
tor (short form) 1 0 0 1 0 reg

3 3

IN = Input from
Clk Count Virtual

8086 Mode

fixed port 1 1 1 0 0 1 0 w port number †27 14* 8*/29* s/t, m

variable port 1 1 1 0 1 1 0 w †28 15* 9*/29* s/t, m

OUT = Output to

fixed port 1 1 1 0 0 1 1 w port number †27 14* 8*/29* s/t, m

variable port 1 1 1 0 1 1 1 w †28 15* 9*/29* s/t, m

LEA = Load EA to regis-
ter

1 0 0 0 1 1 0 1 mod reg r/m
2 2

SEGMENT CONTROL

LDS = Load pointer to
DS

1 1 0 0 0 1 0 1 mod reg r/m 7* 26*/28* b h, i, j

LES = Load pointer to
ES

1 1 0 0 0 1 0 0 mod reg r/m 7* 26*/28* b h, i, j

LFS = Load pointer to
FS

0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 mod reg r/m 7* 29*/31* b h, i, j

LGS = Load pointer to
GS 0 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 mod reg r/m

7* 26*/28* b h, i, j

LSS = Load pointer to
SS 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 0 mod reg r/m

7* 26*/28* b h, i, j

FLAG CONTROL

CLC = Clear carry flag 1 1 1 1 1 0 0 0 2 2

Table E-1. Instruction Set Summary (Sheet 2 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
CLD = Clear direction
flag 1 1 1 1 1 1 0 0

2 2

CLI = Clear interrupt
enable flag

1 1 1 1 1 0 1 0
8 8 m

CLTS = Clear task
switched flag

0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 5 5 c l

CMC = Complement
carry flag

1 1 1 1 0 1 0 1 2 2

LAHF = Load AH into
flag

1 0 0 1 1 1 1 1 2 2

POPF = Pop flags 1 0 0 1 1 1 0 1 5 5 b h, n

PUSHF = Push flags 1 0 0 1 1 1 0 0 4 4 b h

SAHF = Store AH into
flags 1 0 0 1 1 1 1 0

3 3

STC = Set carry flag 1 1 1 1 1 0 0 1 2 2

STD = Set direction flag 1 1 1 1 1 1 0 1

STI = Set interrupt
enable flag 1 1 1 1 1 0 1 1

8 8 m

ARITHMETIC INSTRUCTIONS

ADD = Add

register to register 0 0 0 0 0 0 d w mod reg r/m 2 2

register to memory 0 0 0 0 0 0 0 w mod reg r/m 7** 7** b h

memory to register 0 0 0 0 0 0 1 w mod reg r/m 6* 6* b h

immediate to
register/memory

1 0 0 0 0 0 s w mod 0 0 0 r/m immediate data
2/7** 2/7** b h

immediate to accumu-
lator (short form)

0 0 0 0 0 1 0 w immediate data 2 2

ADC = Add with carry

register to register 0 0 0 1 0 0 d w mod reg r/m 2 2

register to memory 0 0 0 1 0 0 0 w mod reg r/m 7** 7** b h

memory to register 0 0 0 1 0 0 1 w mod reg r/m 6* 6* b h

immediate to
register/memory

1 0 0 0 0 0 s w mod 0 1 0 r/m immediate data 2/7** 2/7** b h

immediate to accumu-
lator (short form)

0 0 0 1 0 1 0 w immediate data 2 2

INC = Increment

register/memory 1 1 1 1 1 1 1 w mod 0 0 0 r/m 2/6** 2/6** b h

register (short form) 0 1 0 0 0 reg 2 2

Table E-1. Instruction Set Summary (Sheet 3 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-4

INSTRUCTION SET SUMMARY
SUB = Subtract

register from register 0 0 1 0 1 0 d w mod reg r/m 2 2

register from memory 0 0 1 0 1 0 0 w mod reg r/m 7** 7** b h

memory from register 0 0 1 0 1 0 1 w mod reg r/m 6* 6* b h

immediate from
register/memory 1 0 0 0 0 0 s w mod 101 r/m immediate data

2/7** 2/7** b h

immediate from accu-
mulator (short form)

0 0 1 0 1 1 0 w immediate data
2 2

SBB = Subtract with borrow

register from register 0 0 0 1 1 0 d w mod reg r/m 2 2

register from memory 0 0 0 1 1 0 0 w mod reg r/m 7** 7** b h

memory from register 0 0 0 1 1 0 1 w mod reg r/m 6* 6* b h

immediate from
register/memory

1 0 0 0 0 0 s w mod 0 1 1 r/m immediate data 2/7** 2/7** b h

immediate from accu-
mulator (short form)

0 0 0 1 1 1 0 w immediate data 2 2

DEC = Decrement

register/memory 1 1 1 1 1 1 1 w reg 0 0 1 r/m 2/6 2/6 b h

register (short form) 0 1 0 0 1 reg 2 2

CMP = Compare

register with register 0 0 1 1 1 0 d w mod reg r/m 2 2

memory with register 0 0 1 1 1 0 0 w mod reg r/m 5* 5* b h

register with memory 0 0 1 1 1 0 1 w mod reg r/m 6* 6* b h

immediate with
register/memory

1 0 0 0 0 0 s w mod 1 1 1 r/m immediate
data

2/5* 2/5* b h

immediate with accu-
mulator (short form) 0 0 1 1 1 1 0 w

immediate
data

2 2

NEG = Change sign 1 1 1 1 0 1 1 w mod 0 1 1 r/m 2/6* 2/6* b h

AAA = ASCII adjust for
addition 0 0 1 1 0 1 1 1

4 4

AAS = ASCII adjust for
subtraction

0 0 1 1 1 1 1 1
4 4

DAA = Decimal adjust
for addition

0 0 1 0 0 1 1 1 4 4

DAS = Decimal adjust for
subtraction

0 0 1 0 1 1 1 1 4 4

Table E-1. Instruction Set Summary (Sheet 4 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
MUL = multiply (unsigned)

accumulator with
register/memory 1 1 1 1 0 1 1 w mod 1 0 0 r/m

multiplier
— byte

— word

— doubleword

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

b, d

b, d

b, d

d, h

d, h

d, h

IMUL = Integer multiply (signed)

accumulator with regis-
ter/memory

1 1 1 1 0 1 1 w mod 1 0 1 r/m

multiplier
— byte

— word

— doubleword

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

b, d

b, d

b, d

d, h

d, h

d, h

register with regis-
ter/memory

0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 mod reg r/m

multiplier
— byte

— word

— doubleword

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

12-17/
15-20*
12-25/
15-28*
12-41/
17-46*

b, d

b, d

b, d

d, h

d, h

d, h

register/memory with
immediate to register

0 1 1 0 1 0 s 1 mod reg r/m immediate data

— word

— doubleword

13-26

13-42

13-26/
14-27
13-42/
16-45

b, d

b, d

d, h

d, h

DIV = Divide (unsigned)

Accumulator by
register/memory

1 1 1 1 0 1 1 w mod 1 1 0 r/m

divisor
— byte
— word
— doubleword

14/17
22/25
38/43

14/17
22/25
38/43

b, e
b, e
b, e

e, h
e, h
e, h

Table E-1. Instruction Set Summary (Sheet 5 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-6

INSTRUCTION SET SUMMARY
IDIV = Integer divide (signed)

Accumulator by
register/memory 1 1 1 1 0 1 1 w mod 111 r/m

divisor
— byte
— word
— doubleword

19/22
27/30
43/48

19/22
27/30
43/48

b, e
b, e
b, e

e, h
e, h
e, h

AAD = ASCII adjust for
divide

1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 19 19

AAM = ASCII adjust for
multiply 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0

17 17

CBW = Convert byte to
word 1 0 0 1 1 0 0 0

3 3

CWD = Convert word to
double-word

1 0 0 1 1 0 0 1
2 2

LOGIC

shift rotate instructions
not through carry (ROL, ROR, SAL , SAR, SHL, and SHR)

register/memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 3/7** 3/7** b h

register/memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 3/7* 3/7* b h

register/memory by
immediate count

1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 3/7* 3/7* b h

through carry (RCL and RCR)

register/memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 9/10* 9/10* b h

register/memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 9/10* 9/10* b h

register/memory by
immediate count

1 1 0 0 0 0 0 w mod TTT r/m immed 8-bit data 9/10* 9/10* b h

T T T
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1

Instruction
ROL
ROR
RCL
RCR
SHL/SAL
SHR
SAR

SHLD = Shift left double

register/memory by
immediate

0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 mod reg r/m
immed
8-bit data

3/7** 3/7**

register/memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 mod reg r/m 3/7** 3/7**

Table E-1. Instruction Set Summary (Sheet 6 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
SHRD = Shift right double

register/memory by
immediate 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 mod reg r/m

immed
8-bit data

3/7** 3/7**

register/memory by CL 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1 mod reg r/m 3/7** 3/7**

AND = And

register to register 0 0 1 0 0 0 d w mod reg r/m 2 2

register to memory 0 0 1 0 0 0 0 w mod reg r/m 7** 7** b h

memory to register 0 0 1 0 0 0 1 w mod reg r/m 6* 6* b h

immediate to
register/memory

1 0 0 0 0 0 0 w mod 1 0 0 r/m immediate data
2/7* 2/7* b h

immediate to accumu-
lator (short form)

0 0 1 0 0 1 0 w immediate data 2 2

TEST= And function to flags, no result

register/memory
and register

1 0 0 0 0 1 0 w mod reg r/m 2/5* 2/5* b h

immediate data and
register/memory

1 1 1 1 0 1 1 w mod 0 0 0 r/m immediate data 2/5* 2/5* b h

immediate data and
accumulator (short
form)

1 0 1 0 1 0 0 w immediate
data

2 2

OR = Or

register to register 0 0 0 0 1 0 d w mod reg r/m 2 2

register to memory 0 0 0 0 1 0 0 w mod reg r/m 7** 7** b h

memory to register 0 0 0 0 1 0 1 w mod reg r/m 6* 6* b h

immediate to
register/memory

1 0 0 0 0 0 0 w mod 0 0 1 r/m immediate data
2/7** 2/7** b h

immediate to accumu-
lator (short form)

0 0 0 0 1 1 0 w immediate data 2 2

XOR = Exclusive or

register to register 0 0 1 1 0 0 d w mod reg r/m 2 2

register to memory 0 0 1 1 0 0 0 w mod reg r/m 7** 7** b h

memory to register 0 0 1 1 0 0 1 w mod reg r/m 6* 6* b h

immediate to
register/memory

1 0 0 0 0 0 0 w mod 1 1 0 r/m immediate data 2/7** 2/7** b h

immediate to accumu-
lator (short form)

0 0 1 1 0 1 0 w immediate data 2 2

NOT= Invert
register/memory 1 1 1 1 0 1 1 w mod 0 1 0 r/m

2/6** 2/6** b h

Table E-1. Instruction Set Summary (Sheet 7 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-8

INSTRUCTION SET SUMMARY
STRING MANIPULATION INSTRUCTIONS Clk Count
Virtual

8086 ModeCMPS = Compare
byte word 1 0 1 0 0 1 1 w

10* 10* b h

INS = Input byte/word
from DX port

0 1 1 0 1 1 0 w
†30 17 10*/32** b s/t, h, m

LODS = Load byte/word
to AL/AX/EAX

1 0 1 0 1 1 0 w 5 5* b h

MOVS = Move byte word 1 0 1 0 0 1 0 w 7 7** b h

OUTS = Output
byte/word to DX port

0 1 1 0 1 1 1 w †31 18 11*/33* b s/t, h, m

SCAS = Scan byte word 1 0 1 0 1 1 1 w 7* 7* b h

STOS = Store byte/word
from AL/AX/EX

1 0 1 0 1 0 1 w 4* 4* b h

XLAT = Translate String 1 1 0 1 0 1 1 1 5* 5* h

REPEATED STRING MANIPULATION
Repeated by count in CX or ECX:

REPE CMPS = Compare string

find non-match 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 w Clk Count
Virtual

8086 Mode

5 + 9n** 5 + 9n** b h

find match 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 w 5 + 9n** 5 + 9n** b h

REP INS = Input string 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 w †31+6n 17 + 7n* 11 + 7n*/
32+ 6n*

b s/t, h, m

REP LODS = Load string 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 w 5 + 6n* 5 + 6n* b h

REP MOVS = Move
string

1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 w 7 + 4n* 7 + 4n** b h

REP OUTS = Output
string

1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 w †30+8n 16 + 8n* 10 + 8n*/
31+ 8n*

b s/t, h, m

REPE SCAS = Scan
string
Find non-AL/AX/EAX

1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 w
5 + 8n* 5 + 8n* b h

REPNE SCAS = Scan
string
Find AL/AX/EAX

1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 w
5 + 8n* 5 + 8n* b h

REP STOS = Store
string

1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 w 5 + 5n* 5 + 5n* b h

BIT MANIPULATION

BSF = scan bit forward 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 mod reg r/m 10 + 3n* 10 + 3n* b h

BSR = scan bit reverse 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 mod reg r/m 10 + 3n* 10 + 3n* b h

BT = test bit

register/memory,
immediate

0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 0 r/m immed
8-bit data

3/6* 3/6* b h

Table E-1. Instruction Set Summary (Sheet 8 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
register/memory,
register 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 mod reg r/m

3/12* 3/12* b h

BTC = test bit and complement

register/memory,
immediate

0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 1 r/m
immed
8-bit data

6/8* 6/8* b h

register/memory,
register

0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 mod reg r/m 6/13* 6/13* b h

BTR = test bit and reset

register/memory,
immediate

0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 1 0 r/m immed
8-bit data

6/8* 6/8* b h

register/memory,
register

0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 mod reg r/m 6/13* 6/13* b h

BTS = test bit and set

register/memory,
immediate 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 mod 1 0 1r/m

immed
8-bit data

6/8* 6/8* b h

register/memory,
register 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 mod reg r/m

6/13* 6/13* b h

CONTROL TRANSFER

CALL = Call

direct within segment 1 1 1 0 1 0 0 0 full displacement 7 + m* 9 + m* b r

reg/memory indirect
within segment

1 1 1 1 1 1 1 1 mod 0 1 0 r/m
7 + m*/
10 + m*

9 + m*/
12 + m*

b h, r

direct intersegment 1 0 0 1 1 0 1 0 unsigned full offset, selector 17 + m* 42 + m* b j, k, r

Protected mode only (direct intersegment)

Via call gate to same privilege level 64 + m h, j, k, r

Via call gate to different privilege level (no parameters) 98 + m h, j, k, r

Via call gate to different privilege level (x parameters) 106+8x+
m

h, j, k, r

From 286 task to 286 TSS 285 h, j, k, r

From 286 task to Intel386 SX CPU TSS 310 h, j, k, r

From 286 task to virtual 8086 task (Intel386 SX CPU TSS) 229 h, j, k, r

From Intel386 SX CPU task to 286 TSS 285 h, j, k, r

From Intel386 SX CPU task to Intel386 SX CPU TSS 392 h, j, k, r

From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) 309 h, j, k, r

indirect intersegment 1 1 1 1 1 1 1 1 mod 0 1 1 r/m 30 + m 46 + m b h, j, k, r

Protected mode only (indirect intersegment)

Via call gate to same privilege level 68 + m h, j, k, r

Table E-1. Instruction Set Summary (Sheet 9 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-10

INSTRUCTION SET SUMMARY
Via call gate to different privilege level (no parameters) 102 + m h, j, k, r

Via call gate to different privilege level (x parameters) 110+8x+
m

h, j, k, r

From 286 task to 286 TSS h, j, k, r

From 286 task to Intel386 SX CPU TSS h, j, k, r

From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h, j, k, r

From Intel386 SX CPU task to 286 TSS h, j, k, r

From Intel386 SX CPU task to Intel386 SX CPU TSS 399 h, j, k, r

From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) h, j, k, r

JMP = Unconditional jump

short 1 1 1 0 1 0 1 1 8-bit displacement 7 + m 7 + m r

direct within segment 1 1 1 0 1 0 0 1 full displacement 7 + m 7 + m r

reg/memory indirect
within segment

1 1 1 1 1 1 1 1 mod 1 0 0 r/m
9 + m/
14 + m

9 + m/
14 + m

b h, r

direct intersegment 1 1 1 0 1 0 1 0 unsigned full offset, selector 16 + m 31 + m j, k, r

Protected mode only (direct intersegment)

Via call gate to same privilege level 53 + m h, j, k, r

From 286 task to 286 TSS h, j, k, r

From 286 task to Intel386 SX CPU TSS h, j, k, r

From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h, j, k, r

From Intel386 SX CPU task to 286 TSS h, j, k, r

From Intel386 SX CPU task to Intel386 SX CPU TSS h, j, k, r

From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) 395 h, j, k, r

indirect intersegment 1 1 1 1 1 1 1 1 mod 1 0 1 r/m 17 + m 31 + m b h, j, k, r

Protected mode only (indirect intersegment)

Via call gate to same privilege level 49 + m h, j, k, r

From 286 task to 286 TSS h, j, k, r

From 286 task to Intel386 SX CPU TSS h, j, k, r

From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h, j, k, r

From Intel386 SX CPU task to 286 TSS h, j, k, r

From Intel386 SX CPU task to Intel386 SX CPU TSS 328 h, j, k, r

From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) h, j, k, r

RET = Return from CALL

within segment 1 1 0 0 0 0 1 1 12 + m b g, h, r

Table E-1. Instruction Set Summary (Sheet 10 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
within segment adding
immed to SP 1 1 0 0 0 0 1 0 16-bit displacement

12 + m b g, h, r

intersegment
1 1 0 0 1 0 1 1

36 + m b g, h, j, k,
r

intersegment adding
immed to SP

1 1 0 0 1 0 1 0 16-bit displacement 36 + m b g, h, j, k,
r

Protected mode only (RET):

to different privilege level

Intersegment 72 h, j, k, r

Intersegment adding immed to SP 72 h, j, k, r

CONDITIONAL JUMPS
(times are jump “Taken or not Taken”)

JO = jump on overflow

8-bit displacement 0 1 1 1 0 0 0 0 8-bit displacement 7 + m
or 3

7 + m
or 3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 Full displacement

7 + m
or 3

7 + m
or 3

r

JNO = Jump on not overflow

8-bit displacement
0 1 1 1 0 0 0 1 8-bit displacement

7 + m
or 3

7 + m
or 3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 Full displacement

7 + m
or 3

7 + m
or 3

r

JB/JNAE = jump on below/not above or equal

8-bit displacement 0 1 1 1 0 0 1 0 8-bit displacement 7 + m
or 3

7 + m
or 3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 Full displacement 7 + m
or 3

7 + m
or 3

r

JNB/JAE = jump on not below/above or equal

8-bit displacement 0 1 1 1 0 0 1 1 8-bit displacement 7 + m
or 3

7 + m
or 3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 Full displacement

7 + m
or 3

7 + m
or 3

r

JE/JZ= jump on equal/zero

8-bit displacement
0 1 1 1 0 1 0 0 8-bit displacement

7 + m
or 3

7 + m
or 3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 Full displacement

7 + m
or 3

7 + m
or 3

r

JNE/JNZ = jump on not equal/not zero

8-bit displacement 0 1 1 1 0 1 0 1 8-bit displacement 7 + m
or 3

7 + m
or 3

r

Table E-1. Instruction Set Summary (Sheet 11 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-12

INSTRUCTION SET SUMMARY
Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 Full displacement

7 + m
or 3

7 + m
or 3

r

JBE/JNA = jump on below or equal/not above

8-bit displacement
0 1 1 1 0 1 1 0 8-bit displacement

7 + m
or 3

7 + m
or 3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 Full displacement 7 + m
or 3

7 + m
or 3

r

JNBE/JA = jump on not below or equal/above

8-bit displacement 0 1 1 1 0 1 1 1 8-bit displacement 7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 Full displacement 7 + m or
3

7 + m or
3

r

JS = jump on sign

8-bit displacement
0 1 1 1 1 0 0 0 8-bit displacement

7 + m or
3

7 + m or
3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 Full displacement

7 + m or
3

7 + m or
3

r

JNS = jump on not sign

8-bit displacement
0 1 1 1 1 0 0 1 8-bit displacement

7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 Full displacement 7 + m or
3

7 + m or
3

r

JP/JPE = jump on parity/parity even

8-bit displacement 0 1 1 1 1 0 1 0 8-bit displacement 7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 Full displacement 7 + m or
3

7 + m or
3

r

JNP/JPO = jump on not parity/parity odd

8-bit displacement
0 1 1 1 1 0 1 1 8-bit displacement

7 + m or
3

7 + m or
3

r

Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 Full displacement

7 + m or
3

7 + m or
3

r

JL/JNGE = jump on less/not greater or
equal

8-bit displacement 0 1 1 1 1 1 0 0 8-bit displacement 7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 Full displacement 7 + m or
3

7 + m or
3

r

JNL/JGE = jump on not less/greater or equal

8-bit displacement 0 1 1 1 1 1 0 1 8-bit displacement 7 + m or
3

7 + m or
3

r

Table E-1. Instruction Set Summary (Sheet 12 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Full displacement
0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 Full displacement

7 + m or
3

7 + m or
3

r

JLE/JNG = jump on less or equal/not greater

8-bit displacement
0 1 1 1 1 1 1 0 8-bit displacement

7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 Full displacement 7 + m or
3

7 + m or
3

r

JNLE/JG = jump on not less or equal/greater

8-bit displacement 0 1 1 1 1 1 1 1 8-bit displacement 7 + m or
3

7 + m or
3

r

Full displacement 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 Full displacement 7 + m or
3

7 + m or
3

r

JCXZ = jump on CX zero 1 1 1 0 0 0 1 1 8-bit displacement
9 + m or

5
9 + m or

5
r

JECXZ = jump on ECX
zero 1 1 1 0 0 0 1 1 8-bit displacement

9 + m or
5

9 + m or
5

r

(Address size prefix differentiates JCXZ from JECXZ)

LOOP = loop CX times 1 1 1 0 0 0 1 0 8-bit displacement 11 + m 11 + m r

LOOPZ/LOOPE = loop
with zero/equal

1 1 1 0 0 0 0 1 8-bit displacement
11 + m 11 + m r

LOOPNZ/LOOPNE =
loop while not zero

1 1 1 0 0 0 0 0 8-bit displacement 11 + m 11 + m r

CONDITIONAL BYTE SET

(Note: Times are register/memory)

SETO = set byte on overflow

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNO = set byte on not overflow

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 mod 0 0 0 r/m 4/5* 4/5* h

SETB/SETNAE = set byte on below/not above or equal

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNB = set byte on below/above or equal

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 mod 0 0 0 r/m 4/5* 4/5* h

SETE/SETZ = set byte on equal/zero

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNE/SETNZ = set byte on not equal/not zero

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 mod 0 0 0 r/m 4/5* 4/5* h

Table E-1. Instruction Set Summary (Sheet 13 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-14

INSTRUCTION SET SUMMARY
SETBE/SETNA = set byte on below or equal/not above

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNBE/SETA = set byte on not below or equal/above

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 mod 0 0 0 r/m 4/5* 4/5* h

SETS = set byte on sign

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNS = set byte on not sign

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 mod 0 0 0 r/m 4/5* 4/5* h

SETP/SETPE = set byte on parity/parity
even

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 01 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNP/SETPO = set byte on not parity/parity odd

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 mod 0 0 0 r/m 4/5* 4/5* h

SETL/SETNGE = set byte on less/not greater or equal

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNL/SETGE = set byte on not less/greater or equal

to register/memory 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 mod 0 0 0 r/m 4/5* 4/5* h

SETLE/SETNG = set byte on less or equal/not greater

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 mod 0 0 0 r/m 4/5* 4/5* h

SETNLE/SETG = set byte on not less or equal/greater

to register/memory 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 mod 0 0 0 r/m 4/5* 4/5* h

ENTER = enter proce-
dure

1 1 0 0 1 0 0 0 16-bit displacement, 8-bit level

L = 0
L = 1
L > 1

10
14

17+8(n -
1)

10
14

17+8(n -
1)

b
b

h
h

LEAVE = leave proce-
dure 1 1 0 0 1 0 0 1

4 4 b h

INTERRUPT INSTRUCTIONS

INT = Interrupt:

Type specified 1 1 0 0 1 1 0 1 type 37 b

Type 3 1 1 0 0 1 1 0 0 33 b

INTO = Interrupt 4 if
overflow flag set 1 1 0 0 1 1 1 0

If OF = 1 35 b, e

If OF = 0 3 3 b, e

Table E-1. Instruction Set Summary (Sheet 14 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
BOUND = Interrupt 5 if
Detect value out of range 0 1 1 0 0 0 1 0 mod reg r/m

If out of range 44 b, e e, g, h, j,
k, r

If in range 10 10 b, e e, g, h, j,
k, r

Protected Mode Only (INT)
INT: Type Specified

Via interrupt or Trap Gate
To same privilege level

71 g, j, k, r

Via Interrupt or Trap Gate
To different privilege level

111 g, j, k, r

From 286 task to 286 TSS via Task Gate 438 g, j, k, r

From 286 task to Intel 386 SX CPU TSS via Task Gate 465 g, j, k, r

From 286 task to virtual 8086 mode via Task Gate 382 g, j, k, r

From Intel386 SX CPU task to 286 TSS via Task Gate 440 g, j, k, r

From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 467 g, j, k, r

From Intel386 SX CPU task to virtual 8086 mode via Task Gate 384 g, j, k, r

From virtual 8086 mode to 286 TSS via Task Gate 445 g, j, k, r

From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 472 g, j, k, r

From virtual 8086 mode to privilege level 0 via trap gate or interrupt gate 275 g, j, k, r

INT: TYPE 3

Via interrupt or Trap Gate
To same privilege level

71 g, j, k, r

Via Interrupt or Trap Gate
To different privilege level

111 g, j, k, r

From 286 task to 286 TSS via Task Gate 382 g, j, k, r

From 286 task to Intel 386 SX CPU TSS via Task Gate 409 g, j, k, r

From 286 task to virtual 8086 mode via Task Gate 326 g, j, k, r

From Intel386 SX CPU task to 286 TSS via Task Gate 384 g, j, k, r

From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 411 g, j, k, r

From Intel386 SX CPU task to virtual 8086 mode via Task Gate 328 g, j, k, r

From virtual 8086 mode to 286 TSS via Task Gate 389 g, j, k, r

From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 416 g, j, k, r

From virtual 8086 mode to privilege level 0 via trap gate or interrupt gate 223

Table E-1. Instruction Set Summary (Sheet 15 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-16

INSTRUCTION SET SUMMARY
INTO:

Via interrupt or Trap Gate
To same privilege level

71 g, j, k, r

Via Interrupt or Trap Gate
To different privilege level

111 g, j, k, r

From 286 task to 286 TSS via Task Gate 384 g, j, k, r

From 286 task to Intel 386 SX CPU TSS via Task Gate 411 g, j, k, r

From 286 task to virtual 8086 mode via Task Gate 328 g, j, k, r

From Intel386 SX CPU task to 286 TSS via Task Gate Intel386
DX

g, j, k, r

From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 413 g, j, k, r

From Intel386 SX CPU task to virtual 8086 mode via Task Gate 329 g, j, k, r

From virtual 8086 mode to 286 TSS via Task Gate 391 g, j, k, r

From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 418 g, j, k, r

From virtual 8086 mode to privilege level 0 via trap gate or interrupt gate 223

BOUND:

Via interrupt or Trap Gate
To same privilege level

71 g, j, k, r

Via Interrupt or Trap Gate
To different privilege level

111 g, j, k, r

From 286 task to 286 TSS via Task Gate 358 g, j, k, r

From 286 task to Intel 386 SX CPU TSS via Task Gate 388 g, j, k, r

From 286 task to virtual 8086 mode via Task Gate 335 g, j, k, r

From Intel386 SX CPU task to 286 TSS via Task Gate 368 g, j, k, r

From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 398 g, j, k, r

From Intel386 SX CPU task to virtual 8086 mode via Task Gate 347 g, j, k, r

From virtual 8086 mode to 286 TSS via Task Gate 368 g, j, k, r

From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 398 g, j, k, r

From virtual 8086 mode to privilege level 0 via trap gate or interrupt gate 223

INTERRUPT RETURN

IRET = Interrupt return 1 1 0 0 1 1 1 1
24 g, h, j, k,

r

Protected Mode Only
(IRET)

To same privilege level (within task) 42 g, h, j, k,
r

Table E-1. Instruction Set Summary (Sheet 16 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
To different privilege level (within task) 86 g, h, j, k,
r

From 286 task to 286 TSS 285 g, h, j, k,
r

From 286 task to Intel386 SX CPU TSS 318 g, h, j, k,
r

From 286 task to virtual 8086 task 267 g, h, j, k,
r

From 286 task to virtual 8086 mode (within task) 113

From Intel386 SX CPU task to 286 TSS 324 g, h, j, k,
r

From Intel386 SX CPU task to Intel386 SX CPU TSS 328 g, h, j, k,
r

From Intel386 SX CPU task to virtual 8086 task 377 g, h, j, k,
r

From Intel386 SX CPU task to virtual 8086 mode (within task) 113

PROCESSOR CONTROL INSTRUCTIONS

HLT = Halt 1 1 1 1 0 1 0 0 7 7 l

MOV = Move to and from control/debug/test registers

CR0/CR2/CR3 from
register

0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 e e e reg
10/4/5 10/4/5 l

register from CR0-3 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 e e e reg 6 6 l

DR0-3 from register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 e e e reg 22 22 l

DR6-7 from register 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 e e e reg 16 16 l

register from DR6-7 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 e e e reg 14 14 l

register from DR0-3 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 e e e reg 22 22 l

TR6-7 from register 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 e e e reg 12 12 l

register from TR6-7 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 e e e reg 12 12 l

NOP = No operation 1 0 0 1 0 0 0 0 3 3

WAIT = Wait until BUSY#
pin is negated

1 0 0 1 1 0 1 1 6 6

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension
Escape

1 1 0 1 1 T T T mod L L L r/m See
Intel387

SX
datashe

et for
clock

counts

h

TTT and LLL bits are opcode
information for coprocessor

Table E-1. Instruction Set Summary (Sheet 17 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-18

INSTRUCTION SET SUMMARY
PREFIX BYTES

Address size prefix 0 1 1 0 0 1 1 1 0 0

LOCK = Bus lock prefix 1 1 1 1 0 0 0 0 0 0 m

Operand size prefix 0 1 1 0 0 1 1 0 0 0

Segment override prefix

CS: 0 0 1 0 1 1 1 0 0 0

DS: 0 0 1 1 1 1 1 0 0 0

ES: 0 0 1 0 0 1 1 0 0 0

FS: 0 1 1 0 0 1 0 0 0 0

GS: 0 1 1 0 0 1 0 1 0 0

SS: 0 0 1 1 0 1 1 0 0 0

PROTECTION CONTROL

ARPL = adjust requested privilege level

from register/memory 0 1 1 0 0 0 1 1 mod reg r/m N/A 20/21** a h

LAR = load access rights

from register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 mod reg r/m N/A 15/16* a g, h, j, p

LGDT = load global descriptor

table register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 0 r/m 11* 11* b, c h, l

LIDT = load interrupt descriptor

table register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 1 1 r/m 11* 11* b, c h, l

LLDT = load local descriptor

table register to
register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 1 0 r/m

N/A 20/24* a g, h, j, l

LMSW = load machine status word

from register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 1 0 r/m 10/13 10/13* b, c h, l

LSL = load segment limit

from register memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 mod reg r/m

Byte-Granular limit
Page-Granular limit

N/A
N/A

20/21*
25/26*

a
a

g, h, j, p
g, h, j, p

LTR = load task register

from register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m N/A 23/27* a g, h, j, l

SGDT = store global descriptor

table register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 0 r/m 9* 9* b, c h

SIDT = store interrupt descriptor

Table E-1. Instruction Set Summary (Sheet 18 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
NOTES:

Notes a through c apply to Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6
(invalid opcode).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that
partially or fully extends beyond the maximum CS, DS, ES, FS, or GS limit, FFFFH. Exception 12 fault
(stack segment limit violation or not present) will occur in Real Mode if an operand reference is made
that partially or fully extends beyond the maximum SS limit.

c. This instruction may be executed in Real Mode, its purpose is primarily to initialize the CPU for
Protected Mode.

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode:

d. The Intel386 SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on
the position of the most significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use this formula:

Actual Clock = if m < > 0 then max ([log2 |m|], 3) + b clocks:
if m = 0 then 3 + b clocks

In this formula, m is the multiplier, and

b = 9 for register to register
b = 12 for memory to register

table register 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 0 0 1 r/m 9* 9* b, c h

SLDT = store local descriptor table

to register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 0 r/m N/A 2/2* a h

SMSW = store machine
status word 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 mod 1 0 0 r/m

2/2* 2/2* b, c h, l

STR = store task register

to register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 0 0 1 r/m N/A 2/2* a h

VERR = verify read access

register/memory 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 mod 1 0 0 r/m N/A 10/11* a g, h, j, p

VERW = verify write
access

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
mod 1 0 1 r/m

N/A 15/16* a g, h, j, p

Table E-1. Instruction Set Summary (Sheet 19 of 19)

Instruction Format

Clock Count Notes

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode

Real
Ad-

dress
Mode

or
Virtual
 8086
Mode

Pro-
tected
Virtual
 Ad-

dress
Mode
E-20

INSTRUCTION SET SUMMARY
b = 10 for register with immediate to register
b = 11 for memory with immediate to register.

e. An exception may occur, depending on the value of the operand.

f. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.

g. LOCK# is asserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS, or
GS cannot be used due to either a segment limit violation or access rights violation. If a stack limit is
violated, an exception 12 (stack segment limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an
exception 13 fault (general protection violation). The segment’s descriptor must indicate “present” or
exception 11 (CS, DS, ES, FS, GS not present.) If the SS register is loaded and a stack segment not
present is detected, an exception 12 (stack segment limit violation or not present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert
LOCK# to maintain descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an
exception 13 (general protection violation) if an applicable privilege rule is violated.

l. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level)

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the
flag register are updated only if CPL = 0.

o. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into CR0 when resetting
the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection
exception; rather the zero flag is cleared.

q. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception
13 fault (general protection exception) will occur before the ESC instruction is executed. An exception
12 fault (stack segment limit violation or not present) will occur if the stack limit is violated by the
operand’s starting address.

r. The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or
an exception 13 fault (general protection violation) will occur.

s. The instruction will execute in s clocks if CPL ≤ IOPL. If CPL > IOPL, the instruction will take t clocks.

† Clock count shown applies if I/O permission allows I/O to the port in virtual 8086 mode. If I/O bit map
denies permission, exception 13 (general protection fault occurs; refer to clock counts for INT 3
instruction.
E-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ting of
 data

s vary
pera-

llow-
 to be
-i

caled

place-

d field
in cer-
 list of
field.
E.2 INSTRUCTION ENCODING

All instruction encodings are subsets of the general instruction format shown in Figure E-1. In-
structions consist of one or two primary opcode bytes, possibly an address specifier consis
the “mod r/m” byte and “scaled index” byte, a displacement if required, and an immediate
field if required.

Within the primary opcode or opcodes, smaller encoding fields may be defined. These field
according to the class of operation. The fields define such information as direction of the o
tion, size of the displacements, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have an addressing mode byte fo
ing the primary opcode byte(s). This byte, the mod r/m byte, specifies the address mode
used. Certain encodings of the mod r/m byte indicate a second addressing byte, the scalendex-
base byte, which follows the mod r/m byte to fully specify the addressing mode.

Addressing modes can include a displacement immediately following the mod r/m byte, or s
index byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand follows any dis
ment bytes. The immediate operand, if specified, is always the last field of the instruction.

Figure E-1 illustrates several of the fields that can appear in an instruction, such as the mo
and the r/m field, but the figure does not show all fields. Several smaller fields also appear
tain instructions, sometimes within the opcode bytes themselves. Table E-2 is a complete
all fields appearing in the instruction set. Following Table E-2 are detailed tables for each

Figure E-1. General Instruction Format

T T T T T T T T T T T T T T T T mod T T T r/m ss index base d32 16 8 none data32 16 8 none

7 0 7 0 7 6 5 3 2 0 7 6 5 3 2 0

opcode
(one or two bytes)

(T represents an opcode bit)

“mod r/m”
byte

“s-i-b”
byte

address
displacement
(4,2,1 bytes

or none)

immediate
data

(4, 2, 1 bytes
or none)

register and address
mode specifier
E-22

INSTRUCTION SET SUMMARY

rthog-
ypes,
is or-

gment

 D bit
r both

er-
 com-

iding
s may
 or both
 and the
to the
2-bit
-bit ef-

e Vir-
ify

ixes is
E.2.1 32-bit Extensions of the Instruction Set

With the Intel386 EX processor the 8086/80186/80286 instruction set is extended in two o
onal directions: 32-bit forms of all 16-bit instructions are added to support the 32-bit data t
and 32-bit addressing modes are made available for all instructions referencing memory. Th
thogonal instruction set extension is accomplished having a Default (D) bit in the code se
descriptor, and by having 2 prefixes to the instruction set.

The instruction defaults to operations of 16 bits or 32 bits, depending on the setting of the
in the code segment descriptor, which gives the default length (either 32 bites or 16 bits) fo
operands and effective addresses when executing that code segment. In the Real Address Mode
or Virtual 8086 Mode, no code segment descriptors are used, but a D value of 0 is assumed int
nally by the Intel386 EX processor when operating in those modes (for 16-bit default sizes
patible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, allow overr
individually the Default selection of operand size and effective address size. These prefixe
precede any opcode bytes and affect only the instruction they precede. If necessary, one
prefixes may be placed before the opcode bytes. The presence of the Operand Size Prefix
Effective Address Prefix toggles the operand size or the effective address size, respectively,
value “opposite” from the default setting. For example, if the default operand size is for 3
data operations, then presence of the Operand Size Prefix toggles the instruction to use 32
fective address computations.

These 32-bit extensions are available in all modes, including the Real Address Mode or th
tual 8086 Mode. In these modes the default is always 16 bits, so prefixes are needed to spec
32-bit operands or addresses. For instructions with more than one prefix the order of pref
unimportant.

Table E-2. Fields Within Instructions

Field Name Description Number of
Bits

w

d

s

reg

mod r/m

ss

index

base

sreg2

sreg3

tttn

Specifies if data is byte of full size (full size is either 16 or 32 bits)

Specifies Direction of Data Operation

Specifies if an Immediate Data Field must be Sign-Extended

General Register Specifier

Address Mode Specifier (Effective Address can be a General Register)

Scale Factor for Scaled Index Address Mode

General Register to be used as Index Register

General Register to be used as Base Register

Segment Register Specifier for CS, SS, DS, ES

Segment Register Specifier for CS, SS, DS, ES, FS, GS

For Conditional Instructions, specifies a condition asserted
or a condition negated

1

1

1

3

2 for mod:
3 for r/m

2

3

3

2

3

4

NOTE: Figure E-1 shows encoding of individual instructions.
E-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

ntents

 so on.

it op-
es the

 bytes,
Unless specified otherwise, instructions with 8-bit and 16-bit operands do not affect the co
of the high-order bits of the extended registers.

E.2.2 Encoding of Instruction Fields

Within the instruction are several fields indicating register selection, addressing mode, and
The exact encodings of these fields are defined in the next several section.

E.2.2.1 Encoding of Operand Length (w) Field

For any given instruction performing a data operation, the instruction is executing as a 32-b
eration or a 16-bit operation. Within the constraints of the operation size, the w field encod
operand size as either one byte or the full operation size, as shown in Table E-3.

E.2.2.2 Encoding of the General Register (reg) Field

The general register is specified by the reg field, which may appear in the primary opcode
or as the reg field of the “mod r/m” byte, or as the r/m field of the “mod r/m” byte.

Table E-3. Encoding of Operand Length (w) Field

w Field Operand Size During 16-bit
Data Operations

Operand Size During 32-bit
Data Operations

0 8 bits 8 bits

1 16 bits 32 bits

Table E-4. Encoding of reg Field When w Field is not Present in Instruction

reg Field Register Selected During
16-bit Data Operations

 Register Selected During
32-bit Data Operations

000
001
010
011
100
101
110
111

AX
CX
DX
BX
SP
BP
SI
DI

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI
E-24

INSTRUCTION SET SUMMARY

t reg-
d GS
E.2.2.3 Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bit field allowing one of the four 80286 segmen
isters to be specified. The sreg field in other instructions is a 3-bit field, allowing the FS an
segment registers to be specified.

Table E-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field During 16-bit Data Operations

reg
Function of w Field

(when w = 0) (when w = 1)

000
001
010
011
100
101
110
111

AL
CL
DL
BL
AH
CH
DH
BH

AX
CX
DX
BX
SP
BP
SI
DI

Register Specified by reg Field During 32-bit Data Operations

reg
Function of w Field

(when w = 0) (when w = 1)

000
001
010
011
100
101
110
111

AL
CL
DL
BL
AH
CH
DH
BH

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

Table E-6. Encoding of the Segment Register (sreg) Field

2-Bit sreg2
Field Segment Register Selected 3-Bit sreg3

Field Segment Register Selected

00
01
10
11

ES
CS
SS
DS

000
001
010
011
100
101
110
111

ES
CS
SS
DS
FS
GS

do not use
do not use
E-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

-deter-
owing
 of ad-

 r/m =
-

n Fig-
r, may

ed. 16-
-bit ad-
ddress-

ssing
E.2.2.4 Encoding of Address Mode

Except for special instructions, such as PUSH or POP, where the addressing mode is pre
mined, the addressing mode for the current instruction is specified by addressing bytes foll
the primary opcode. The primary addressing byte is the “mod r/m” byte, and a second byte
dressing information, the “s-i-b” (scale-index-base) byte can be specified.

The s-i-b byte is specified when using 32-bit addressing mode and the “mod r/m” byte has
100 and mod = 00, 01, or 10. When the s-i-b byte is present, the 32-bit addressing mode is a func
tion of the mod, ss, index, and base fields.

The primary addressing byte, the “mod r/m” byte, also contains three bits (shown as TTT i
ure E-1) sometimes used as an extension of the primary opcode. The three bits, howeve
also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or 32-bit addressing is us
bit addressing uses 16-bit address components to calculate the effective address while 32
dressing uses 32-bit address components to calculate the effective address. When 16-bit a
ing is used, the “mod r/m” byte is interpreted as a 32-bit addressing mode specifier.

The following tables define all encodings of all 16-bit addressing modes and 32-bit addre
modes.
E-26

INSTRUCTION SET SUMMARY
Table E-7. Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address

00 000
00 001
00 010
00 011
00 100
00 101
00 110
00 111

01 000
01 001
01 010
01 011
01 100
01 101
01 110
01 111

DS:[BX + SI]
DS:[BX + DI]
SS:[BP + SI]
SS:[BP + DI]

DS:[SI]
DS:[DI]
DS:d16
DS:[BX]

DS:[BX + SI + d8]
DS:[BX + DI + d8]
SS:[BP + SI + d8]
SS:[BP + DI + d8]

DS:[SI + d8]
DS:[DI + d8]
SS:[BP + d8]
DS:[BX + d8]

10 000
10 001
10 010
10 011
10 100
10 101
10 110
10 111

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

DS:[BX + SI + d16]
DS:[BX + DI + d16]
SS:[BP + SI + d16]
SS:[BX + DI + d16]

DS:[SI + d16]
DS:[DI + d16]
SS:[BP + d16]
DS:[BX + d16]

register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below

Register Specified by r/m
During 16-bit Data Operations

mod r/m
Function of w Field

(when w = 0) (when w = 1)

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

AL
CL
DL
BL
AH
CH
DH
BH

AX
CX
DX
BX
SP
BP
SI
DI

Register Specified by r/m
During 32-bit Data Operations

mod r/m
Function of w Field

(when w = 0) (when w = 1)

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

AL
CL
DL
BL
AH
CH
DH
BH

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI
E-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL
Table E-8. Encoding of 32-bit Address Mode with “mod r/m” Byte (No s-i-b Byte Present)

mod r/m Effective Address mod r/m Effective Address

00 000
00 001
00 010
00 011
00 100
00 101
00 110
00 111

01 000
01 001
01 010
01 011
01 100
01 101
01 110
01 111

DS:[EAX]
DS:[ECX]
SS:[EDX]
SS:[EBX]

s-i-b is present
DS:[d32]
DS:[ESI]
DS:[EDI]

DS:[EAX + d8]
DS:[ECX + d8]
SS:[EDX + d8]
SS:[EBX + d8]
s-i-b is present
SS:[EBP + d8]
DS:[ESI + d8]
DS:[EDI + d8]

10 000
10 001
10 010
10 011
10 100
10 101
10 110
10 111

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

DS:[EAX + d32]
DS:[ECX + d32]
SS:[EDX + d32]
SS:[EBX + d32]
s-i-b is present
SS:[EBP + d32]
SS:[ESI + d32]
DS:[EDI + d32]

register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below
register - see tables below

Register Specified by r/m
During 16-bit Data Operations

mod r/m
Function of w Field

(when w = 0) (when w = 1)

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

AL
CL
DL
BL
AH
CH
DH
BH

AX
CX
DX
BX
SP
BP
SI
DI

Register Specified by r/m
During 32-bit Data Operations

mod r/m
Function of w Field

(when w = 0) (when w = 1)

11 000
11 001
11 010
11 011
11 100
11 101
11 110
11 111

AL
CL
DL
BL
AH
CH
DH
BH

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI
E-28

INSTRUCTION SET SUMMARY
Table E-9. Encoding of 32-bit Address Mode (“mod r/m” Byte and s-i-b Byte Present)

mod r/m Effective Address

00 000
00 001
00 010
00 011
00 100
00 101
00 110
00 111

01 000
01 001
01 010
01 011
01 100
01 101
01 110
01 111

10 000
10 001
10 010
10 011
10 100
10 101
10 110
10 111

DS:[EAX + (scaled index)]
DS:[ECX + (scaled index)]
DS:[EDX + (scaled index)]
DS:[EBX + (scaled index)]
SS:[ESP + (scaled index)]
DS:[d32 + (scaled index)]
DS:[ESI + (scaled index)]
DS:[EDI + (scaled index)]

DS:[EAX + (scaled index) + d8]
DS:[ECX + (scaled index) + d8]
DS:[EDX + (scaled index) + d8]
DS:[EBX + (scaled index) + d8]
SS:[ESP + (scaled index) + d8]
SS:[EBP + (scaled index) + d8]
DS:[ESI + (scaled index) + d8]
DS:[EDI + (scaled index) + d8]

DS:[EAX + (scaled index) + d32]
DS:[ECX + (scaled index) + d32]
DS:[EDX + (scaled index) + d32]
DS:[EBX + (scaled index) + d32]
SS:[ESP + (scaled index) + d32]
SS:[EBP + (scaled index) + d32]
DS:[ESI + (scaled index) + d32]
DS:[EDI + (scaled index) + d32]

NOTE: Mod field in “mod r/m” byte; ss, index, base fields in “s-i-b” byte.

ss Scale Factor

00
01
10
11

x1
x2
x4
x8

Index Index Register

000
001
010
011
100
101
110
111

EAX
ECX
EDX
EBX

no index reg†
EBP
ESI
EDI

† When index field is 100, indicating “no index register,”
the ss field must equal 00. If this is not true, the
effective address is undefined
E-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

red

ffect

ith n
st.
E.2.2.5 Encoding of Operation Direction (d) Field

In many two-operand instructions the d field is present to indicate which operand is conside
the source and which is the destination.

E.2.2.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immediate data fields. The s field has an e
only if the size of the immediate data is 8 bits and is being placed in a 16-bit or 32-bit destination.

E.2.2.7 Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and set on condition), tttn is encoded w
indicating to use the condition (n=0) or its negation (n=1), and ttt giving the condition to te

Table E-10. Encoding of Operation Direction (d) Field

d Direction of Operation

0 Register/Memory<--Register
“reg” field indicates source operand;

“mod r/m” or “mod ss index base” indicates destination operand.

1 Register<--Register/Memory
“reg” field indicates destination operand;

“mod r/m” or “mod ss index base” indicates source operand.

Table E-11. Encoding of Sign-Extend (s) Field

s Effect on Immediate Data8 Effect on Immediate Data 16|32

0 None None

1 Sign-Extend Data8 to fill
16-bit or 32-bit destination

None

Table E-12. Encoding of Conditional Test (tttn) Field

Mnemonic Condition tttn

O
NO

B/NAE
NB/AE

E/Z
NE/NZ
BE/NA
NBE/A

S
NS

P/PE
NP/PO
L/NGE
NL/GE
LE/NG
NLE/G

Overflow
No Overflow

Below/Not Above or Equal
Not Below/Above or Equal

Equal/Zero
Not Equal/Not Zero

Below or Equal/Not Above
Not Below or Equal/Above

Sign
Not Sign

Parity/Parity Even
Not Parity/Parity Odd

Less Than/Not Greater or Equal
Not Less Than/Greater or Equal

Less Than or Equal/Greater Than
Not Less or Equal/Greater Than

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
E-30

INSTRUCTION SET SUMMARY
E.2.2.8 Encoding of Control or Debug or Test Register (eee) Field

For the loading and storing of the Control, Debug and Test registers.

Table E-13. When Interpreted as Control Register Field

eee Code Reg Name

000
010
011

CR0
CR2
CR3

NOTE: Do not use any other encoding

Table E-14. When Interpreted as Debug Register Field

eee Code Reg Name

000
001
010
011
110
111

DR0
DR1
DR2
DR3
DR6
DR7

NOTE: Do not use any other encoding

Table E-15. When Interpreted as Test Register Field

eee Code Reg Name

110
111

TR6
TR7

NOTE: Do not use any other encoding
E-31

GLOSSARY

is man-

ol

e

f

ol

s

s
.

t
GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in th
ual. (Chapter 1, GUIDE TO THIS MANUAL, discusses notational conventions.)

Assert The act of making a signal active (enabled). The
polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symb
(#) suffix; active-high signals have no suffix. To
assert RD# is to drive it low; to assert HLDA is to
drive it high.

BIOS Basic input/output system. The interface between th
hardware and the operating system.

BIU Bus interface unit. The internal peripheral that
controls the external bus.

Boundary-scan The term boundary-scan refers to the ability to scan
(observe) the signals at the boundary (the pins) of a
device. A major component of the JTAG standard.

CSU Chip-select unit. The internal peripheral that selects
an external memory device during an external bus
cycle.

Clear The term clear refers to the value of a bit or the act o
giving it a value. If a bit is clear, its value is “0”;
clearing a bit gives it a “0” value.

Deassert The act of making a signal inactive (disabled). The
polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symb
(#) suffix; active-high signals have no suffix. To
deassert RD# is to drive it high; to deassert HLDA i
to drive it low.

DMA Direct memory access controller. The internal
peripheral that allows external or internal peripheral
to transfer information directly to or from the system
The two-channel DMA controller is an enhanced
version of the industry-standard 8237A DMA
peripheral.

DOS Address Space Addresses 0H–03FFH. The internal timers, interrup
controller, serial I/O ports, and DMA controller can
Glossary-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

s

so

is

r

e

S

l

e
be mapped into this space. In this manual, the term
DOS address and PC/AT address are synonymous.

DOS-compatible Mode The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller are mapped into the DOS address space.
This mode decodes only the lower 10 address bits,
the expanded address space is inaccessible.

Edge-triggered The mode in which the interrupt controller recognizes
a rising edge (low-to-high transition) on an interrupt
request signal as an interrupt request. The internal
peripherals use edge-triggered interrupt requests; th
is compatible with the PC/AT bus specification.
External peripherals can use either edge-triggered o
level-sensitive interrupt requests.

Enhanced DOS Mode The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller are mapped into both the DOS address
space and the expanded address space. This mode
decodes all 16 address bits. All internal peripherals
can be accessed in the expanded address space; th
internal timer, interrupt controller, serial I/O ports,
and DMA controller can also be accessed in the DO
address space.

Expanded Address Space Addresses 0F000H–0F8FFH. All internal peripheral
registers reside in this space. The internal timer,
interrupt controller, serial I/O ports, and DMA
controller can also be mapped into DOS (or PC/AT)
address space.

ICU Interrupt control unit. The internal peripheral that
receives interrupt requests from internal peripherals
and external pins, resolves priority, and presents the
requests to the CPU. The ICU is functionally identica
to two industry-standard 82C59A programmable
interrupt controllers connected in cascade.

Idle Mode The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

Interrupt Latency The delay between the time that the master 82C59A
presents an interrupt request to the CPU and the tim
that the interrupt acknowledge cycle begins.
Glossary-2

GLOSSARY

t

ts.

d

l

ce
Interrupt Response Time The amount of time required to complete an interrup
acknowledge cycle and transfer program control to
the interrupt service routine.

Interrupt Resolution The delay between the time that the interrupt
controller receives an interrupt request and the time
that the master 82C59A presents the request to the
CPU.

ISR Interrupt service routine. A user-supplied software
routine designed to service specific interrupt reques

JTAG Joint Test Action Group. The IEEE technical
subcommittee that developed the testability standar
published as Standard 1149.1-1990, IEEE Standard
Test Access Port and Boundary-Scan Architecture,
and its supplement, Standard 1149.1a-1993. The test-
logic unit is fully compliant with this standard.

Level-sensitive The mode in which the interrupt controller recognizes
a high level (logic one) on an interrupt request signa
as an interrupt request. Unlike an edge-triggered
interrupt request, a level-sensitive interrupt request
will continue to generate interrupts as long as it is
asserted.

LSB Least-significant bit of a byte or least-significant byte
of a word.

NonDOS Mode The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller are mapped into the expanded address
space. This mode decodes all 16 address bits. All
internal peripherals can be accessed only in the
expanded address space.

Nonintrusive DOS Mode The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller can be individually mapped out of the DOS
address space and replaced by the corresponding
external peripherals. This mode decodes only the
lower 10 address bits, so the expanded address space
is inaccessible.

Normally not-ready The term normally not-ready refers to a system in
which a bus cycle continues until the accessed devi
asserts READY#.
Glossary-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL

t

s

cle
e,
g

y

 in
-

PC/AT Address Space Addresses 0H–03FFH. The internal timers, interrup
controller, serial I/O ports, and DMA controller can
be mapped into this space. In this manual, the term
DOS address and PC/AT address are synonymous.

Pipelining A bus interface technique that controls the address
and status outputs so the outputs for the next bus cy
become valid before the end of the current bus cycl
allowing external bus cycles to overlap. By increasin
the amount of time available for external memory or
I/O devices to respond, pipelining allows systems to
achieve high bandwidth with relatively slow,
inexpensive components.

Powerdown Mode The power conservation mode that freezes both the
core clocks and the peripheral clocks.

RCU Refresh control unit. The module that simplifies the
interface between the processor and DRAM
components by providing the necessary bus control
and timing for refresh operations.

Reserved Bits Register bits that are not used in this device but ma
be used in future implementations. Avoid any
software dependence on these bits.

Set The term set refers to the value of a bit or the act of
giving it a value. If a bit is set, its value is “1”; setting
a bit gives it a “1” value.

SIO Unit Serial input/output unit. The internal peripheral that
allows the system to communicate with external
peripheral devices and modems.

SMM System management mode. The hardware and
software enhancement that reduces system power
consumption by allowing the device to execute
specific routines for power management.

SMRAM A 32-Kbyte memory partition (38000H–3FFFFH)
used for SMM. The upper 512 bytes (3FE00H–
3FFFFH) are reserved for the CPU and must reside
RAM; the remainder of the partition is used for user
supplied driver code and may reside in read-only
storage.

SSIO Unit Synchronous serial input/output unit. The internal
peripheral that provides 16-bit bidirectional serial
Glossary-4

GLOSSARY

any
 in

ns

c

are
communications. The transmitter and receiver can
operate independently (with different clocks) to
provide full-duplex communication.

State Time (or State) The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. With a 50 MHz external clock, one state time
equals 80 ns. Because the device can operate at m
frequencies, this manual defines time requirements
terms of state times rather than in specific units of
time.

TAP Test access port. The dedicated input and output pi
through which a tester communicates with the test-
logic unit. A major component of the JTAG standard.

TCU Timer/counter unit. The internal peripheral that
provides three independent 16-bit down-counters.

Test-logic Unit The module that facilitates testing of the device logi
and interconnections between the device and the
board. This module is fully compliant with IEEE
Standard 1149.1, commonly called the JTAG
standard.

UART Universal asynchronous receiver and transmitter. A
part of the SIO unit.

WDT Watchdog timer. An internal, 32-bit down-counter
that can operate as a general-purpose timer, a softw
watchdog timer, or a bus monitor.
Glossary-5

Index

INDEX

#, defined,1-3
82C59A, 9-1

A
Address bus,6-1
Address lines

new, 3-1
Address space

configuration register,4-6
expanded I/O,4-3

enabling/disabling,4-8
I/O decoding techniques,4-6
I/O for PC/AT systems,4-2
peripheral registers,4-15

Addressing modes,4-9–4-14
DOS-compatible mode,4-9–4-10
enhanced DOS mode,4-11, 4-13
nonDOS mode,4-11, 4-14
nonintrusive DOS mode,4-11, 4-12

AEN signal, deriving,B-2–B-3
AEOI mode, 9-9
aligned data transfers,6-9
Applications, typical,2-1
Architectural overview,2-1–2-4
Assert, defined,1-4
Asynchronous serial I/O unit, See Serial I/O unit
Automatic end of interrupt (AEOI) mode,9-9

B
Baud-rate generator,11-4–11-5, 13-5–13-6
BIU, See Bus interface unit
Block diagram

clock and power management unit,8-2
DMA unit, 12-2
I/O port, 16-2
JTAG test-logic unit,18-2
SIO unit, 11-2

baud-rate generator clock,11-4
modem control signals,11-29
receiver, 11-9
transmitter,11-7

SSIO unit, 13-2, 13-3
baud-rate generator clock,13-5

timer/counter unit,10-2
watchdog timer unit,17-2

BOUND, 18-2
Boundary scan register,18-1
Built-in self-test, 8-12
Bulletin board system (BBS),1-7
Bus arbiter

register addresses,4-15, D-1
Bus arbiter, configuration,5-3
Bus control arbitration,12-9
Bus cycle length adjustments for overlapping

chip-select regions,14-11, 14-12
Bus interface pins,6-3
Bus interface unit,3-4, 6-1–6-37

address bus,6-1
bus control pins,6-2
bus cycles,6-13–6-33

BS8, 6-31–6-33
halt/shutdown,6-26–6-27
interrupt acknowledge,6-23–6-25
pipelined, 6-19–6-23
read, 6-13–6-14
refresh, 6-28–6-30
write, 6-16–6-18

bus lock, 6-34–6-35
LOCK# signal duration,6-35
locked cycle activators,6-34
locked cycle timing,6-34

bus operation,6-5–6-14
bus state diagram,6-8, 6-20
bus states,6-7–6-8
bus status

definitions, 6-5
data bus,6-1

transfers and operand alignment,6-9
HOLD/HLDA, 6-20, 6-35

departures from PC/AT architecture,B-4
HOLD signal latency,6-37
timing, 6-36
Index-1

INTEL386™ EX MICROPROCESSOR USER’S MANUAL
operation during idle mode,8-5
overview, 6-1–6-3
pipelining, 6-8
ready logic,6-10
See also Bus control arbitration
signals,6-3–6-4

Bus signals, departures from PC/AT
architecture,B-2–B-3

Bus size control for chip-selects,14-11
BYPASS, 18-2

C
CAS#-before-RAS# refresh,15-1, 15-12
Chip-select unit,14-1–14-24

operation,14-2–14-12
bus cycle length adjustments,14-12
bus cycle length control,14-11
bus size control,14-11
defining a channel’s address block,14-2–
14-9
overlapping regions,14-11
system management mode support,14-10

overview, 14-1
programming,14-13–14-20

considerations,14-22
CSnADH, 14-17, D-8
CSnADL, 14-18, D-9
CSnMSKH, 14-19, D-10
CSnMSKL, 14-20, D-11
P2CFG register,14-16
PINCFG register,14-15
UCSADH, 14-17, D-8
UCSADL, 14-18, D-9
UCSMSKH, 14-19, D-10
UCSMSKL, 14-20, D-11

register addresses,4-17, D-3
registers,14-14–14-20
signals,14-13

Clear, defined,1-5
Clock and power management unit, 8-1–8-13

clock generation logic,8-1–8-3
controlling power management modes,8-8
controlling PSCLK frequency,8-7
design considerations

powerdown considerations,8-13
reset considerations,8-11

idle mode,8-9
overview, 8-1–8-7
power management logic,8-3–8-5
powerdown mode,8-10
registers,8-6

CLKPRS, 8-7
PWRCON, 8-8

reset considerations,8-11
signals,8-6
synchronization,8-3
timing diagram,8-9–8-11

Clock management
register addresses,4-19, D-5

Clock synchronization,8-3
Code Prefetch Unit,3-4
CompuServe forums, 1-7
Configuration

bus arbiter,5-3–5-5
core, 5-21–5-22
device, 5-1–5-37
DMA controller, 5-3
example,5-28–5-33
I/O ports, 5-23, 5-25, 5-26, 5-27, 9-18, 10-22,
11-18, 11-19, 11-20, 14-16, D-43, D-44,
D-45
interrupt control unit,5-7
pins, 5-23–5-27
Port92, 5-22
procedure,5-28
refresh control unit,5-3
serial I/O unit, 5-14
serial synchronous I/O unit,5-18
timer/counter unit,5-11
worksheets,5-34–5-37

Core
configuring, 5-21–5-22

Core architecture,2-1
Core overview

CX enhancements,3-1
Internal architecture,3-2

CPU-only reset,5-22, B-4
CSU, See Chip-select unit
Customer service,1-6
CX internal architecture,3-2
Index-2

INDEX
D
Deassert, defined,1-4
Decoding techniques, I/O address,4-6
Design considerations

clock and power management unit,8-11
input/output ports,16-10
interrupt control unit,9-29–9-30
JTAG test-logic unit,18-14
refresh control unit,15-11
synchronous serial I/O unit,13-25

Device configuration,5-1–5-37
procedure,5-28
register addresses,4-19, D-5
worksheets,5-34–5-37

DMA controller, 12-1–12-61
block diagram,12-2
configuring, 5-3
departures from PC/AT architecture,B-1–B-3
DMACLR command,12-50
DMACLRBP command,12-50
DMACLRMSK command,12-50
DMACLRTC command,12-50
interrupts,12-26–12-27
operation,12-5–12-27

8237A compatibility, 12-27
basic refresh cycle,15-5
buffer-transfer modes,12-12
bus control arbitration,12-9
bus cycle options for data transfers,12-5–
12-8
cascade mode,12-25–12-26
changing priority of DMA channel and
external bus requests,12-10
data-transfer modes

block, 12-18–12-20
demand,12-21–12-24
single, 12-14–12-17

DMA transfers,12-5
ending DMA transfers, 12-10
starting DMA transfers,12-9

overview, 12-1–12-4

programming,12-28–12-51
address and byte count registers,12-33
channel registers,12-33
considerations,12-50
DMA0BYCn, 12-33, D-24
DMA0REQn, 12-33, D-24
DMA0TARn, 12-33, D-24
DMA1BYCn, 12-33, D-24
DMA1REQn, 12-33, D-24
DMA1TARn, 12-33, D-24
DMABSR register,12-46
DMACFG, 5-6, 12-32, D-14
DMACFG register,12-32
DMACHR, 12-47, D-15
DMACHR register,12-47
DMACMD1, 12-35, D-16
DMACMD1 register, 12-35
DMACMD2, 12-37, D-17
DMACMD2 register, 12-37
DMAGRPMSK, 12-45, D-18
DMAIEN, 12-48, D-19
DMAIEN register, 12-48
DMAIS, 12-49, D-20
DMAIS register, 12-49
DMAMOD1, 12-39, D-21
DMAMOD1 register, 12-38
DMAMOD2, 12-41, D-22
DMAMOD2 register, 12-40–12-41
DMAMSK, 12-44, D-23
DMAOVFE register,12-34
DMASRR, 12-43, D-26
DMASRR register,12-42, 12-43
DMASTS, 12-36, D-27
DMASTS register,12-36
PINCFG register,12-28, 12-31

register addresses,4-15, D-1
registers,12-28
signals,12-4
using with external devices,5-3

Documents, related,1-5
DOS Address, defined,1-4
Index-3

INTEL386™ EX MICROPROCESSOR USER’S MANUAL
DOS compatibility
departures from PC/AT architecture

bus signals,B-2
CPU-only reset,B-4
DMA unit, B-1
HOLD, HLDA pins, B-4, B-5
interrupt control unit,B-4
SIO units, B-4

DRAM, refreshing,15-12
DRAM, See Refresh control unit

E
EISA compatibility, 4-3–4-5
ESE bit programming,4-8
Exceptions and interrupts, relative priority,7-7
Execution Unit,3-4, 3-5
Expanded address, defined,1-4
Expanded I/O address space,4-3

enabling/disabling,4-8

F
FaxBack service,1-6
Flow diagram

CSU bus cycle length adjustment,14-12
demand data-transfer mode,12-22–12-24
DMA block data-transfer mode,12-19–12-20
DMA cascade mode,12-26
DMA demand data-transfer mode,12-22
DMA single data-transfer mode,12-15–12-17
interrupt process,9-11, 9-12, 9-13
SIO reception,11-11
SIO transmission,11-8

H
HALT cycle

Ready generation,8-10
HALT restart from SMM,7-9
HOLD, HLDA

departures from PC/AT architecture,B-4, B-5
timing, 6-20, 6-35

I
I/O ports, See Input/output ports
I/O restart from SMM,7-9
ICU, See Interrupt control unit

IDCODE, 18-2
Identifier registers,3-6, 7-15
Idle mode,8-9

bus interface unit operation during,8-5
SMM interaction with,8-5
timing diagram,8-9
watchdog timer unit operation during,8-5

IEEE Standard Test Access Port and
Boundary-Scan Architecture,18-1

Input/output ports,16-1–16-10
block diagram,16-2
design considerations,16-10
overview, 16-1–16-5
pin multiplexing, 16-5
pin reset status,16-5
programming

initialization sequence,16-10
pin configuration,16-7
PnCFG register,16-7
PnDIR register,16-8
PnLTC register,16-8
PnPIN register,16-9

register addresses,4-19, D-5
registers,16-6
signals,16-5

Instruction Decode Unit,3-4
Instruction Queue,3-5
Instruction Register (IR),18-7
Instructions, notational conventions,1-3
Interrupt control unit,9-1–9-30

configuring, 5-7
departure from PC/AT architecture,B-4
design considerations,9-29
interrupt acknowledge cycle,9-29–9-30
interrupt detection,9-29
interrupt polling, 9-14–9-15
interrupt priority, 9-6–9-8

assigning an interrupt level,9-6
changing the default interrupt structure,9-7
determining priority,9-7–9-8

interrupt process,9-9–9-14
interrupt sources,9-4
interrupt service routine,6-23
interrupt vectors,9-8
Index-4

INDEX
operation,9-4–9-16
overview, 9-1
programming,9-15–9-32

considerations,9-32
ICW1, 9-20, D-28
ICW1 register,9-20
ICW2, 9-21, D-29
ICW2 register,9-21
ICW3, 9-22, 9-23, D-29, D-30
ICW3 register,9-22, 9-23
ICW4, 9-24, D-30
ICW4 register,9-24
IERn, 11-27, D-32
IIRn, 11-28, D-33
INTCFG, 5-10, 9-19, D-34
INTCFG register,9-19
OCW1, 9-25, D-40
OCW1 register,9-25
OCW2, 9-26, D-41
OCW2 register,9-26
OCW3, 9-27, D-42
OCW3 register,9-27
P3CFG register,9-18
POLL, 9-28, D-49
POLL register,9-28

register addresses,4-16, 4-17, D-2, D-3
registers,9-15–9-17
signals,9-5
spurious interrupts,9-30

Interrupt priority, 9-6–9-8
Interrupt service routine,6-23
Interrupts and exceptions, relative priority,7-7

J
JTAG reset,8-12
JTAG test-logic unit,18-1–18-14

block diagram,18-2
design considerations,18-14
operation,18-3–18-9

boundary-scan register,18-9
bypass register,18-8
identification code register,18-8
instruction register,18-7
test access port controller,18-4–18-6

instructions,18-7–18-8
state diagram,18-6

overview, 18-1–18-2
Resetting upon power-up,18-3
testing, 18-10–18-11

bypassing devices on a board,18-10
disabling the output drivers,18-11
identifying the device,18-10
sampling device operation and preloading
data, 18-10
testing the interconnections,18-10

timing information, 18-12–18-13

L
Literature, 1-8
Literature, ordering,1-5, 1-8
LOCK#, 6-34–6-35
lockout sequence,17-4

M
Manual contents, summary,1-1–1-2
Measurements, defined,1-3
Misaligned data transfers,6-9
Mode, 12-22

N
Naming conventions,1-3–1-4
Non-page mode,15-13
Nonspecific EOI command,9-14
Notational conventions,1-3–1-4
Numbers, conventions,1-3

O
Operand alignment

aligned, 6-9
misaligned,6-9

Operating mode,9-8

P
Page mode,15-12
Paging Unit,3-4, 3-5
PC/AT Address, defined, 1-4
PC/AT system architecture, departures from,B-1
Performance,2-1
Peripherals, internal

configuring, 5-3–5-37
DOS compatible,4-2
embedded application-specific,4-2
Index-5

INTEL386™ EX MICROPROCESSOR USER’S MANUAL
register locations,4-5, 4-15
Peripherals, summary,2-3
Physical address space,3-1
Pin configuration,5-23

PINCFG, 5-24, 10-23, 11-17, 12-31, 13-17,
14-15, D-46

Pin descriptions,A-1–A-10
Pin states after reset and during idle, powerdown,

and hold,A-9
Pipelined instructions, defined,3-2
Port configuration

P1CFG, 5-25, 11-18, D-43
P2CFG, 5-26, 11-19, 14-16, D-44
P3CFG, 5-27, 9-18, 10-22, 11-20, D-45
PnCFG, 16-7
PnDIR, 16-8, D-47
PnLTC, 16-8, D-48
PnPIN, 16-9, D-48
PORT92, 5-22, D-50

PORT92
register addresses,4-17, D-3

Power management
controlling modes,8-8, 17-4–17-6
logic, 8-3–8-7
programming

PWRCON, 8-8, 17-11, D-51
register addresses,4-19, D-5
See also Idle mode, powerdown mode, system
management mode

Powerdown mode
considerations,8-13
SMM interaction with,8-5
timing diagram,8-11

Powerup
Built-in self-test, 8-12
JTAG reset,8-12

Prefetch Queue,3-4
Priority of exceptions and interrupts,7-7
Programmed operating mode,9-8
Programming

chip-select unit,14-13–14-20
clock and power management unit,8-7–8-10
DMA controller, 12-28–12-51
ESE bit, 4-8

interrupt control unit,9-32
RCU, 15-6–15-10
REMAPCFG example,4-8
serial I/O unit, 11-15–11-32
SSIO, 13-17–13-25
timer/counter unit,10-20–10-33
watchdog timer unit,17-7–17-12

Programming considerations
chip-select unit,14-22
DMA controller, 12-50
serial I/O unit, 11-32
timer/counter unit,10-33

Protected mode,9-8
Protection Test Unit,3-5
PSCLK, 8-1–8-2, 8-7, 10-1, 10-3, 10-21, 13-1,

13-5, 13-18
PSCLK frequency

Controlling, 8-7
PSRAM, 15-11

R
RAS#-only refresh,15-1, 15-12
RCU, See Refresh control unit
Ready logic,6-10
Real mode,9-8
Refresh control unit,15-1–15-16

bus arbitration,15-5
configuring, 5-3
connections,15-3
design considerations,15-11
dynamic memory control,15-1
operation,15-5
overview, 15-2–15-5
programming,15-6–15-10

RFSADD, 15-10, D-54
RFSADD register, 15-10
RFSBAD, 15-9, D-54
RFSBAD register,15-9
RFSCIR, 15-7, D-55
RFSCIR register,15-7
RFSCON, 15-8, D-55
RFSCON register,15-8

refresh addresses,15-4
refresh intervals,15-4
refresh methods,15-1
Index-6

INDEX
register addresses,4-18, D-4
registers,15-6
signals,15-4

Register
naming conventions,1-4
organization,4-1–4-20

Register bits, notational conventions,1-4
Register names, notational conventions,1-4
Register, status during SMM,7-3
Registers

BOUND, 18-2
BYPASS, 18-2
CLKPRS, 8-6, 8-7, 13-16, 13-19, D-7
Component and revision ID,7-15
CSnADH, 14-14, 14-17, D-8
CSnADL, 14-14, 14-18, D-9
CSnMSKH, 14-14, 14-19, D-10
CSnMSKL, 14-14, 14-20, D-11
DLHn, 11-15, 11-22, D-12
DLLn, 11-15, 11-22, D-12
DMA0BYCn, 12-28, 12-33, D-24
DMA0REQn, 12-28, 12-33, D-24
DMA0TARn, 12-28, 12-33, D-24
DMA1BYCn, 12-28, 12-33, D-24
DMA1REQn, 12-28, 12-33, D-24
DMA1TARn, 12-28, 12-33, D-24
DMABSR, 12-29, 12-46, D-13
DMACFG, 5-6, 12-28, 12-32, D-14
DMACHR, 12-30, 12-47, D-15
DMACMD1, 12-28, 12-35, D-16
DMACMD2, 12-29, 12-37, D-17
DMAGRPMSK, 12-29, 12-45, D-18
DMAIEN, 12-30, 12-48, D-19
DMAIS, 12-30, 12-49, D-20
DMAMOD1, 12-29, 12-38, 12-39, D-21
DMAMOD2, 12-29, 12-40–12-41, D-22
DMAMSK, 12-29, 12-44, D-23
DMAOVFE, 12-30, 12-34
DMASRR, 12-29, 12-42, 12-43, D-26
DMASTS, 12-29, 12-36, D-27
ICW1, 9-20, D-28
ICW2, 9-21, D-29
ICW3, 9-22, 9-23, D-29, D-30
ICW4, 9-24, D-30

IDCODE, 18-2, D-31
Identifier, 7-15
IERn, 11-15, 11-27, D-32
IIRn, 11-16, 11-28, D-33
INTCFG, 5-10, 9-19, D-34
IR, 18-7, D-35
LCRn, 11-15, 11-25, D-36
LSRn, 11-15, 11-26, D-37
MCRn, 11-16, 11-29, 11-30, D-38
MSRn, 11-16, 11-31, D-39
OCW1, 9-25, D-40
OCW2, 9-26, D-41
OCW3, 9-27, D-42
P1CFG, 5-25, 11-15, 11-18, D-43
P2CFG, 5-26, 11-15, 11-19, 14-14, 14-16,
D-44
P3CFG, 5-27, 9-18, 10-4, 10-22, 11-15,
11-20, D-45
PINCFG, 5-24, 10-4, 10-23, 11-15, 11-17,
12-28, 12-31, 13-16, 13-17, 14-14, 14-15,
D-46
PnCFG, 11-15, 16-6, 16-7
PnDIR, 16-6, 16-8, D-47
PnLTC, 16-6, 16-8, D-48
PnPIN, 16-6, 16-9, D-48
POLL, 9-28, D-49
PORT92, 5-22, D-50
Port92, 5-22
PWRCON, 8-6, 8-8, 17-11, D-51
RBRn, 11-15, 11-24, D-52
REMAPCFG, 4-6, 4-7, D-53
RFSADD, 15-10, D-54
RFSBAD, 15-9, D-54
RFSCIR, 15-7, D-55
RFSCON, 15-8, D-55
SCRn, 11-16, 11-32, D-56
SIOCFG, 5-17, 11-15, 11-21, 13-16, 13-18,
D-57
SMM revision ID, 7-15
SSIOBAUD, 13-16, 13-20, D-58
SSIOCON1,13-16, 13-21, 13-22, D-59
SSIOCON2,13-16, 13-23
SSIOCTR, 13-16, 13-21, D-60
SSIORBUF, 13-16, 13-25, D-60
Index-7

INTEL386™ EX MICROPROCESSOR USER’S MANUAL
SSIOTBUF, 13-16, 13-24, D-61
TBRn, 11-15, 11-23, D-61
TMRCFG, 5-13, 10-4, 10-21, D-62
TMRCON, 10-4, 10-25, 10-28, 10-30, D-63
TMRn, 10-4, 10-26, 10-29, 10-32, D-64, D-65
UCSADH, 14-14, 14-17, D-8
UCSADL, 14-14, 14-18, D-9
UCSMSKH, 14-14, 14-19, D-10
UCSMSKL, 14-14, 14-20, D-11
WDTCLR, 17-7
WDTCNTH, 17-7, 17-8, D-67
WDTCNTL, 17-7, 17-8, D-67
WDTRLDH, 17-7, 17-10, D-68
WDTRLDL, 17-7, 17-10, D-68
WDTSTATUS, 17-7, 17-9, D-69

reload event,17-4
Reserved bits, defined,1-5
Reset

considerations,8-11
CPU-only, B-4

Resume instruction (RSM),7-15
RSM, See Resume instruction

S
Scratch pad registers

SCRn, 11-32, D-56
Segment Descriptor Cache,3-5
Segmentation Unit,3-4, 3-5
SERCLK, 8-1–8-2, 11-1, 11-4, 11-21, 13-1,

13-5, 13-18
Serial I/O unit, 11-1–11-45

block diagram,11-2
configuring, 5-14
departure from PC/AT architecture,B-3
DMA service, 5-3–5-5
operation,11-4–11-14

baud-rate generator,11-4–11-5
data transmission process flow,11-8
diagnostic mode,11-12
interrupt sources,11-13
modem control,11-12
receiver, 11-9–11-10
transmitter,11-6–11-8

overview, 11-1–11-3

programming
accessing multiplexed registers,11-16
considerations,11-32
DLHn register,11-22
DLLn register,11-22
IERn register,11-27
IIRn register,11-28
LCRn, 11-25, D-36
LCRn register,11-25
LSRn, 11-26, D-37
LSRn register,11-26
MCRn, 11-30, D-38
MCRn register,11-29–11-30
modem control signals,11-29–11-30
MSRn, 11-31, D-39
MSRn register, 11-31
P1CFG register,11-18
P2CFG register,11-19
P3CFG register,11-20
PINCFG register,11-17
RBRn, 11-24, D-52
RBRn register,11-24
SCRn register,11-32
SIOCFG, 5-17, 11-21, 13-18, D-57
SIOCFG register,11-21
TBRn, 11-23, D-61
TBRn register,11-23

register addresses,4-19, 4-20, D-5, D-6
registers,11-15–11-16
signals,11-3

Set, defined,1-5
Signal descriptions,A-1–A-10
Signal names, notational conventions,1-4
SIO, See Serial I/O unit
SMM, See System management mode
SMM, see System Management Mode,7-3
SMRAM, 7-2

chip-select unit support for,7-12
state dump area,7-14

Specific EOI command,9-14
SSIO, See Synchronous serial I/O unit
Synchronous serial I/O unit,13-1–13-25

configuring, 5-18
design considerations,13-25
DMA service, 5-3
master/slave mode arrangements,13-2–13-3
Index-8

INDEX
operation,13-5–13-15
baud-rate generator,13-5–13-6
receiver, 13-12–13-15
transmitter,13-6

overview, 13-1–13-4
programming,13-16–13-25

CLKPRS register,13-19
PINCFG, 13-17
SIOCFG register,13-18
SSIOBAUD, 13-20, D-58
SSIOBAUD register,13-20
SSIOCON1,13-22, D-59
SSIOCON1 register,13-21, 13-22, D-59
SSIOCON2 register,13-23
SSIOCTR, 13-21, D-60
SSIOCTR register,13-21
SSIORBUF, 13-25, D-60
SSIORBUF register,13-25
SSIOTBUF, 13-24, D-61
SSIOTBUF register,13-24

register addresses,4-18, D-4
registers,13-16
signals,13-4
SIOCFG, 5-17, 11-21, 13-18, D-57

System management mode,2-1, 7-1–7-15
CSU support,7-12, 14-10
HALT restart, 7-9
hardware interface,3-1, 7-1

SMI#, 7-1
SMIACT#, 7-2
SMRAM state dump area,7-14

I/O restart,7-1
identifier registers,3-6, 7-15
interaction with idle and powerdown,8-5
overview, 7-1
priority, 7-7
resume instruction,7-15
SMI# interrupt, 7-3, 7-11–7-15

during HALT cycle, 7-8
during I/O instruction,7-9
during SMM handler,7-10
HALT during SMM handler,7-11
SMI# during SMM operation,7-12

SMRAM, 7-2
state dump area,7-14–7-15

System register organization,4-1

address configuration register,4-6
address space, I/O for PC/AT systems,4-2
addressing modes,4-9

DOS-compatible mode,4-9
enhanced DOS mode,4-11
nonDOS mode,4-11
nonintrusive DOS mode,4-11

enabling/disabling expanded I/O space,4-8
expanded I/O address space,4-3
I/O address decoding techniques,4-6
organization of peripheral registers,4-5
overview, 4-1
peripheral register addresses,4-15
peripheral registers,4-2
processor core architecture,4-2
programming

ESE bit, 4-8
REMAPCFG example,4-8

T
TAP controller, 18-4
TAP Test Access Port,18-1
TCU, See Timer/counter unit
Technical support,1-7
Terminology, 1-4–1-5, Glossary-1–Glossary-5
Test access port,18-1
Test-logic unit, See JTAG test-logic unit
Timer/counter unit,10-1–10-33

configuring, 5-11
hardware triggerable one-shot, See Mode 1
hardware-triggered strobe, See Mode 5
initial count values,10-26
interrupt on terminal count, See Mode 0
mode 0,10-6–10-8

basic operation,10-7
disabling the count,10-7
writing a new count,10-8

mode 1,10-8–10-10
basic operation,10-9
retriggering the one-shot,10-9
writing a new count,10-10

mode 2,10-10–10-12
basic operation,10-11
disabling the count,10-11
writing a new count,10-12
Index-9

INTEL386™ EX MICROPROCESSOR USER’S MANUAL
mode 3,10-12–10-15
basic operation,10-13–10-14
basic operation (odd count),10-14
disabling the count,10-14
writing a new count,10-15

mode 4,10-16–10-17
basic operation,10-16
disabling the count,10-17
writing a new count,10-17

mode 5,10-18–10-19
basic operation,10-18
retriggering the strobe,10-19
writing a new count,10-19

operation,10-5–10-19
operations caused by GATEn, 10-6

overview, 10-1–10-4
programming

considerations,10-33
initializing the counters,10-24–10-25,
D-63
input and output signals,10-20–10-23
reading the counter,10-27–10-33

counter-latch command,10-27
read-back command,10-30
simple read,10-27

TMRCFG, 5-13, 10-21, D-62
TMRCON, 10-25, 10-28, D-63
TMRn, 10-29, 10-32, D-64, D-65
writing the counters,10-26

rate generator, See Mode 2
read-back commands, multiple,10-33
register addresses,4-16, D-2
registers,10-4

TMRCON, 10-30
TMRn, 10-26

signals,10-3
software-triggered strobe, See Mode 4
square wave, See Mode 3

Timing, 8-9
Timing diagram

basic external bus cycles,6-6
basic internal and external bus cycles,6-12
basic refresh cycle,6-29
BS8 cycle,6-33
counter mode 0,10-7
counter mode 1,10-9, 10-10

counter mode 2,10-11, 10-12
counter mode 3,10-13, 10-14, 10-15
counter mode 4,10-16, 10-17
counter mode 5,10-18, 10-19
DMA transfer, 12-9, 12-11, 12-21
entering and leaving idle mode,8-9
entering and leaving powerdown mode,8-11
HALT cycle, 6-27
interrupt acknowledge cycle,6-25, 9-29
JTAG test-logic unit,18-12, 18-13
LOCK# signal during pipelining,6-35
nonpipelined read cycle,6-15
nonpipelined write cycle,6-18
pipelined cycles,6-21
refresh cycle during HOLD/HLDA,6-30
SSIO receiver,13-15
SSIO transmitter,13-11

U
Units of measure, defined,1-3

V
Virtual-86 mode,9-8

W
Watchdog timer unit, 17-1–17-16

block diagram,17-2
design considerations,17-12
disabling the WDT,17-6
lockout sequence,17-4
operation,17-3–17-4

during idle mode,8-5
overview, 17-1–17-2
programming,17-5–17-6

bus monitor mode,17-5
general-purpose timer mode,17-4
software watchdog mode,17-5
WDTCNTH, 17-8, D-67
WDTCNTL, 17-8, D-67
WDTRLDH, 17-10, D-68
WDTRLDL, 17-10, D-68
WDTSTATUS, 17-9, D-69

register addresses,4-18, D-4
Index-10

INDEX
registers,17-7
WDTCLR, 17-7
WDTCNTH, 17-7
WDTCNTL, 17-7
WDTRLDH, 17-7
WDTRLDL, 17-7
WDTSTATUS, 17-7

reload event,17-4
signals,17-3

WDT, See Watchdog timer unit
Worksheets

peripheral configuration,5-34
pin configuration,5-34

World Wide Web,1-7
Index-11

	Intel386 EX Embedded Microprocessor User’s Manual
	CONTENTS
	CHAPTER 1 GUIDE TO THIS MANUAL
	1.1 Manual Contents
	1.2 Notational Conventions
	1.3 Special Terminology
	1.4 Related Documents
	1.5 Electronic Support Systems
	1.5.1 FaxBack Service
	1.5.2 Bulletin Board System (BBS)
	1.5.3 CompuServe Forums
	1.5.4 World Wide Web

	1.6 Technical Support
	1.7 Product Literature

	CHAPTER 2 ARCHITECTURAL OVERVIEW
	2.1 Intel386 EX Embedded Processor Core
	2.2 Integrated Peripherals

	CHAPTER 3 CORE OVERVIEW
	3.1 Intel386 CX Processor Enhancements
	3.1.1 System Management Mode
	3.1.2 Additional Address Lines

	3.2 Intel386 CX Processor Internal Architecture
	3.2.1 Core Bus Unit
	3.2.2 Instruction Prefetch Unit
	3.2.3 Instruction Decode Unit
	3.2.4 Execution Unit
	3.2.5 Segmentation Unit
	3.2.6 Paging Unit

	3.3 Core Intel386 EX Processor Interface

	CHAPTER 4 SYSTEM REGISTER ORGANIZATION
	4.1 Overview
	4.1.1 Intel386 Processor Core Architecture Registe...
	4.1.2 Intel386 EX Processor Peripheral Registers

	4.2 I/O Address Space for PC/AT Systems
	4.3 Expanded I/O Address Space
	4.4 Organization of Peripheral Registers
	4.5 I/O Address Decoding Techniques
	4.5.1 Address Configuration Register
	4.5.2 Enabling and Disabling the Expanded I/O Spac...
	4.5.2.1 Programming REMAPCFG Example

	4.6 Addressing Modes
	4.6.1 DOS-compatible Mode
	4.6.2 Nonintrusive DOS Mode
	4.6.3 Enhanced DOS Mode
	4.6.4 Non-DOS Mode

	4.7 Peripheral Register Addresses

	CHAPTER 5 DEVICE CONFIGURATION
	5.1 Introduction
	5.2 Peripheral Configuration
	5.2.1 DMA Controller, Bus Arbiter, and Refresh Uni...
	5.2.1.1 Using The DMA Unit with External Devices
	5.2.1.2 DMA Service to an SIO or SSIO Peripheral
	5.2.1.3 Using The Timer To Initiate DMA Transfers
	5.2.1.4 Limitations Due To Pin Signal Multiplexing...
	5.2.2 Interrupt Control Unit Configuration
	5.2.3 Timer/counter Unit Configuration
	5.2.4 Asynchronous Serial I/O Configuration
	5.2.5 Synchronous Serial I/O Configuration
	5.2.6 Chip-select Unit and Clock and Power Managem...
	5.2.7 Core Configuration

	5.3 Pin Configuration
	5.4 Device Configuration Procedure
	5.5 Configuration Example
	5.5.1 Example Design Requirements
	5.5.2 Example Design Solution

	CHAPTER 6 BUS INTERFACE UNIT
	6.1 Overview
	6.1.1 Bus Signal Descriptions

	6.2 Bus Operation
	6.2.1 Bus States
	6.2.2 Pipelining
	6.2.3 Data Bus Transfers and Operand Alignment
	6.2.4 Ready Logic

	6.3 Bus Cycles
	6.3.1 Read Cycle
	6.3.2 Write Cycle
	6.3.3 Pipelined Cycle
	6.3.4 Interrupt Acknowledge Cycle
	6.3.5 Halt/Shutdown Cycle
	6.3.6 Refresh Cycle
	6.3.7 BS8 Cycle
	6.3.7.1 Write Cycles
	6.3.7.2 Read Cycles

	6.4 Bus Lock
	6.4.1 Locked Cycle Activators
	6.4.2 Locked Cycle Timing
	6.4.3 LOCK# Signal Duration

	6.5 External Bus Master Support (Using HOLD, HLDA)...
	6.5.1 HOLD/HLDA Timing
	6.5.2 HOLD Signal Latency

	6.6 Design Considerations
	6.6.1 Interface To Intel387™ SX Math Coprocessor
	6.6.1.1 System Configuration
	6.6.1.2 Software Considerations

	6.6.2 SRAM/FLASH Interface
	6.6.3 PSRAM Interface
	6.6.4 Paged DRAM Interface
	6.6.5 Non-Paged DRAM Interface

	CHAPTER 7 SYSTEM MANAGEMENT MODE
	7.1 System Management Mode Overview
	7.2 SMM Hardware Interface
	7.2.1 System Management Interrupt Input (SMI#)
	7.2.2 SMM Active Output (SMIACT#)
	7.2.3 System Management RAM (SMRAM)

	7.3 System Management Mode Programming and Configu...
	7.3.1 Register Status During SMM
	7.3.2 System Management Interrupt
	7.3.2.1 SMI# Priority
	7.3.2.2 System Management Interrupt During HALT Cy...
	7.3.2.3 HALT Restart
	7.3.2.4 System Management Interrupt During I/O Ins...
	7.3.2.5 I/O Restart

	7.3.3 SMM Handler Interruption
	7.3.3.1 Interrupt During SMM Handler
	7.3.3.2 HALT During SMM Handler
	7.3.3.3 Idle Mode and Powerdown Mode During SMM
	7.3.3.4 SMI# During SMM Operation

	7.3.4 SMRAM Programming
	7.3.4.1 Chip-select Unit Support for SMRAM
	7.3.4.2 SMRAM State Dump Area

	7.3.5 Resume Instruction (RSM)

	7.4 The Intel386 EX Processor Identifier Registers...
	7.5 Programming Considerations
	7.5.1 System Management Mode Code Example

	CHAPTER 8 CLOCK AND POWER MANAGEMENT UNIT
	8.1 Overview
	8.1.1 Clock Generation Logic
	8.1.2 Power Management Logic
	8.1.2.1 SMM Interaction with Power Management Mode...
	8.1.2.2 Bus Interface Unit Operation During Idle M...
	8.1.2.3 Watchdog Timer Unit Operation During Idle ...

	8.1.3 Clock and Power Management Registers and Sig...

	8.2 Controlling the PSCLK Frequency
	8.3 Controlling Power Management Modes
	8.3.1 Idle Mode
	8.3.2 Powerdown Mode
	8.3.3 Ready Generation During HALT

	8.4 Design Considerations
	8.4.1 Reset Considerations
	8.4.2 Power-up Considerations
	8.4.2.1 Built-in Self Test
	8.4.2.2 JTAG Reset

	8.4.3 Powerdown Mode and Idle Mode Considerations

	8.5 Programming Considerations
	8.5.1 Clock and Power Management Unit Code Example...

	CHAPTER 9 INTERRUPT CONTROL UNIT
	9.1 Overview
	9.2 ICU operation
	9.2.1 Interrupt Sources
	9.2.2 Interrupt Priority
	9.2.2.1 Assigning an Interrupt Level
	9.2.2.2 Determining Priority

	9.2.3 Interrupt Vectors
	9.2.4 Interrupt Process
	9.2.5 Poll Mode

	9.3 Register Definitions
	9.3.1 Port 3 Configuration Register (P3CFG)
	9.3.2 Interrupt Configuration Register (INTCFG)
	9.3.3 Initialization Command Word 1 (ICW1)
	9.3.4 Initialization Command Word 2 (ICW2)
	9.3.5 Initialization Command Word 3 (ICW3)
	9.3.6 Initialization Command Word 4 (ICW4)
	9.3.7 Operation Command Word 1 (OCW1)
	9.3.8 Operation Command Word 2 (OCW2)
	9.3.9 Operation Command Word 3 (OCW3)
	9.3.10 Interrupt Request Register (IRR)
	9.3.11 In-Service Register (ISR)
	9.3.12 Poll Status Byte (POLL)

	9.4 Design Considerations
	9.4.1 Interrupt Acknowledge Cycle
	9.4.2 Interrupt Detection
	9.4.3 Spurious Interrupts
	9.4.4 Cascading Interrupt Controllers

	9.5 Programming Considerations
	9.5.1 Interrupt Control Unit Code Examples

	CHAPTER 10 TIMER/COUNTER UNIT
	10.1 Overview
	10.1.1 TCU Signals and Registers

	10.2 TCU Operation
	10.2.1 Mode 0 – Interrupt on Terminal Count
	10.2.2 Mode 1 – Hardware Retriggerable One-shot
	10.2.3 Mode 2 – Rate Generator
	10.2.4 Mode 3 – Square Wave
	10.2.5 Mode 4 – Software-triggered Strobe
	10.2.6 Mode 5 – Hardware-triggered Strobe

	10.3 Register Definitions
	10.3.1 Configuring the Input and Output Signals
	10.3.1.1 Hardware Control of GATEn
	10.3.1.2 Software Control of GATEn

	10.3.2 Initializing the Counters
	10.3.3 Writing the Counters
	10.3.4 Reading the Counter
	10.3.4.1 Simple Read
	10.3.4.2 Counter-latch Command
	10.3.4.3 Read-back Command

	10.4 Programming Considerations
	10.4.1 Timer/Counter Unit Code Examples

	CHAPTER 11 ASYNCHRONOUS SERIAL I/O UNIT
	11.1 Overview
	11.1.1 SIO Signals

	11.2 SIO Operation
	11.2.1 Baud-rate Generator
	11.2.2 SIOn Transmitter
	11.2.3 SIOn Receiver
	11.2.4 Modem Control
	11.2.5 Diagnostic Mode
	11.2.6 SIO Interrupt and DMA Sources
	11.2.6.1 SIO Interrupt Sources
	11.2.6.2 SIO DMA sources

	11.2.7 External UART Support

	11.3 Register Definitions
	11.3.1 Pin and Port Configuration Registers (PINCF...
	11.3.2 SIO and SSIO Configuration Register (SIOCFG...
	11.3.3 Divisor Latch Registers (DLLn and DLHn)
	11.3.4 Transmit Buffer Register (TBRn)
	11.3.5 Receive Buffer Register (RBRn)
	11.3.6 Serial Line Control Register (LCRn)
	11.3.7 Serial Line Status Register (LSRn)
	11.3.8 Interrupt Enable Register (IERn)
	11.3.9 Interrupt ID Register (IIRn)
	11.3.10 Modem Control Register (MCRn)
	11.3.11 Modem Status Register (MSRn)
	11.3.12 Scratch Pad Register (SCRn)

	11.4 Programming Considerations
	11.4.1 Asynchronous Serial I/O Unit Code Examples

	CHAPTER 12 DMA CONTROLLER
	12.1 Overview
	12.1.1 DMA Terminology
	12.1.2 DMA Signals

	12.2 DMA Operation
	12.2.1 DMA Transfers
	12.2.2 Bus Cycle Options for Data Transfers
	12.2.2.1 Fly-By Mode
	12.2.2.2 Two-Cycle Mode
	12.2.2.3 Programmable DMA Transfer Direction
	12.2.2.4 Ready Generation For DMA Cycles
	12.2.2.5 DMA Usage of the 4-Byte Temporary Registe...

	12.2.3 Starting DMA Transfers
	12.2.4 Bus Control Arbitration
	12.2.5 Ending DMA Transfers
	12.2.6 Buffer-transfer Modes
	12.2.6.1 Single Buffer-Transfer Mode
	12.2.6.2 Autoinitialize Buffer-Transfer Mode
	12.2.6.3 Chaining Buffer-Transfer Mode
	12.2.7 Data-transfer Modes
	12.2.7.1 Single Data-transfer Mode
	12.2.7.2 Block Data-transfer Mode
	12.2.7.3 Demand Data-transfer Mode

	12.2.8 Cascade Mode
	12.2.9 DMA Interrupts
	12.2.10 8237A Compatibility

	12.3 Register Definitions
	12.3.1 Pin Configuration Register (PINCFG)
	12.3.2 DMA Configuration Register (DMACFG)
	12.3.3 Channel Registers
	12.3.4 Overflow Enable Register (DMAOVFE)
	12.3.5 Command 1 Register (DMACMD1)
	12.3.6 Status Register (DMASTS)
	12.3.7 Command 2 Register (DMACMD2)
	12.3.8 Mode 1 Register (DMAMOD1)
	12.3.9 Mode 2 Register (DMAMOD2)
	12.3.10 Software Request Register (DMASRR)
	12.3.11 Channel Mask and Group Mask Registers (DMA...
	12.3.12 Bus Size Register (DMABSR)
	12.3.13 Chaining Register (DMACHR)
	12.3.14 Interrupt Enable Register (DMAIEN)
	12.3.15 Interrupt Status Register (DMAIS)
	12.3.16 Software Commands

	12.4 Design Considerations
	12.5 Programming Considerations
	12.5.1 DMA Controller Code Examples

	CHAPTER 13 SYNCHRONOUS SERIAL I/O UNIT
	13.1 Overview
	13.1.1 SSIO Signals

	13.2 SSIO Operation
	13.2.1 Baud-rate Generator
	13.2.2 Transmitter
	13.2.2.1 Transmit Mode using Enable Bit
	13.2.2.2 Autotransmit Mode
	13.2.2.3 Slave Mode

	13.2.3 Receiver

	13.3 Register Definitions
	13.3.1 Pin Configuration Register (PINCFG)
	13.3.2 SIO and SSIO Configuration Register (SIOCFG...
	13.3.3 Prescale Clock Register (CLKPRS)
	13.3.4 SSIO Baud-rate Control Register (SSIOBAUD)
	13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR...
	13.3.6 SSIO Control 1 Register (SSIOCON1)
	13.3.7 SSIO Control 2 Register (SSIOCON2)
	13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF)
	13.3.9 SSIO Receive Holding Buffer (SSIORBUF)

	13.4 Design Considerations
	13.5 Programming Considerations
	13.5.1 SSIO Example Code

	CHAPTER 14 CHIP-SELECT UNIT
	14.1 Overview
	14.2 CSU upon reset
	14.3 CSU Operation
	14.3.1 Defining a Channel’s Address Block
	14.3.2 System Management Mode Support
	14.3.3 Bus Cycle Length Control
	14.3.4 Bus Size Control
	14.3.5 Overlapping Regions

	14.4 Register Definitions
	14.4.1 Pin Configuration Register (PINCFG)
	14.4.2 Port 2 Configuration Register (P2CFG)
	14.4.3 Chip-select Address Registers
	14.4.4 Chip-select Mask Registers

	14.5 Design Considerations
	14.6 Programming Considerations
	14.6.1 Chip-Select Unit Code Example

	CHAPTER 15 REFRESH CONTROL UNIT
	15.1 Dynamic Memory Control
	15.1.1 Refresh Methods

	15.2 Refresh Control Unit Overview
	15.2.1 RCU Signals
	15.2.2 Refresh Intervals
	15.2.3 Refresh Addresses
	15.2.4 Bus Arbitration

	15.3 RCU Operation
	15.4 Register Definitions
	15.4.1 Refresh Clock Interval Register (RFSCIR)
	15.4.2 Refresh Control Register (RFSCON)
	15.4.3 Refresh Base Address Register (RFSBAD)
	15.4.4 Refresh Address Register (RFSADD)

	15.5 Design Considerations
	15.6 Programming Considerations
	15.6.1 Refresh Control Unit Example Code

	CHAPTER 16 INPUT/OUTPUT PORTS
	16.1 Overview
	16.1.1 Port Functionality

	16.2 Register Definitions
	16.2.1 Pin Configuration
	16.2.2 Initialization Sequence

	16.3 Design Considerations
	16.3.1 Pin Status During and After Reset

	16.4 Programming Considerations
	16.4.1 I/O Ports Code Example

	CHAPTER 17 WATCHDOG TIMER UNIT
	17.1 Overview
	17.1.1 WDT Signals

	17.2 Watchdog Timer Unit Operation
	17.2.1 Idle and Powerdown modes
	17.2.2 General-purpose Timer Mode
	17.2.3 Software Watchdog Mode
	17.2.4 Bus Monitor Mode

	17.3 Disabling the WDT
	17.4 Register Definitions
	17.5 Design Considerations
	17.6 Programming Considerations
	17.6.1 Writing to the WDT Reload Registers (WDTRLD...
	17.6.2 Minimum Counter Reload Value
	17.6.3 Watchdog Timer Unit Code Examples

	CHAPTER 18 JTAG TEST-LOGIC UNIT
	18.1 Overview
	18.2 Test-Logic Unit Operation
	18.2.1 Test Access Port (TAP)
	18.2.2 Test Access Port (TAP) Controller
	18.2.3 Instruction Register (IR)
	18.2.4 Data Registers

	18.3 Testing
	18.3.1 Identifying the Device
	18.3.2 Bypassing Devices on a Board
	18.3.3 Sampling Device Operation and Preloading Da...
	18.3.4 Testing the Interconnections (EXTEST)
	18.3.5 Disabling the Output Drivers

	18.4 Timing Information
	18.5 Design Considerations

	APPENDIX A SIGNAL DESCRIPTIONS
	APPENDIX B COMPATIBILITY WITH THE PC/AT* ARCHITECT...
	B.1 Hardware Departures from PC/AT System Architec...
	B.1.1 DMA Unit
	B.1.2 Industry Standard Bus (ISA) Signals
	B.1.3 Interrupt Control Unit
	B.1.4 SIO Units
	B.1.5 CPU-only Reset
	B.1.6 HOLD, HLDA Pins
	B.1.7 Port B

	B.2 Software Considerations for a PC/AT System Arc...
	B.2.1 Embedded Basic Input Output System (BIOS)
	B.2.2 Embedded Disk Operating System (DOS)
	B.2.3 Microsoft* Windows*

	APPENDIX C EXAMPLE CODE HEADER FILES
	C.1 Register Definitions for Code Examples
	C.2 Example Code Defines

	APPENDIX D SYSTEM REGISTER QUICK REFERENCE
	D.1 Peripheral Register Addresses
	D.2 CLKPRS
	D.3 CSnADH (UCSADH)
	D.4 CSnADL (UCSADL)
	D.5 CSnMSKH (UCSMSKH)
	D.6 CSnMSKL (UCSMSKL)
	D.7 DLLn and DLHn
	D.8 DMABSR
	D.9 DMACFG
	D.10 DMACHR
	D.11 DMACMD1
	D.12 DMACMD2
	D.13 DMAGRPMSK
	D.14 DMAIEN
	D.15 DMAIS
	D.16 DMAMOD1
	D.17 DMAMOD2
	D.18 DMAMSK
	D.19 DMAnBYCn, DMAnREQn and DMAnTARn
	D.20 DMAOVFE
	D.21 DMASRR
	D.22 DMASTS
	D.23 ICW1 (master and slave)
	D.24 ICW2 (master and slave)
	D.25 ICW3 (master)
	D.26 ICW3 (slave)
	D.27 ICW4 (master and slave)
	D.28 IDCODE
	D.29 IERn
	D.30 IIRn
	D.31 INTCFG
	D.32 IR
	D.33 LCRn
	D.34 LSRn
	D.35 MCRn
	D.36 MSRn
	D.37 OCW1 (master and slave)
	D.38 OCW2 (master and slave)
	D.39 OCW3 (master and slave)
	D.40 P1CFG
	D.41 P2CFG
	D.42 P3CFG
	D.43 PINCFG
	D.44 PNDIR
	D.45 PnLTC
	D.46 PnPIN
	D.47 POLL (master and slave)
	D.48 PORT92
	D.49 PWRCON
	D.50 RBRn
	D.51 REMAPCFG
	D.52 RFSADD
	D.53 RFSBAD
	D.54 RFSCIR
	D.55 RFSCON
	D.56 SCRn
	D.57 SIOCFG
	D.58 SSIOBAUD
	D.59 SSIOCON1
	D.60 SSIOCON2
	D.61 SSIOCTR
	D.62 SSIORBUF
	D.63 SSIOTBUF
	D.64 TBRn
	D.65 TMRCFG
	D.66 TMRCON
	D.67 TMRn
	D.68 UCSADH
	D.69 UCSADL
	D.70 UCSMSKH
	D.71 UCSMSKL
	D.72 WDTCNTH and WDTCNTL
	D.73 WDTRLDH and WDTRLDL
	D.74 WDTSTATUS

	APPENDIX E INSTRUCTION SET SUMMARY
	E.1 Instruction Encoding and Clock Count Summary
	E.2 Instruction Encoding
	E.2.1 32-bit Extensions of the Instruction Set
	E.2.2 Encoding of Instruction Fields
	E.2.2.1 Encoding of Operand Length (w) Field
	E.2.2.2 Encoding of the General Register (reg) Fie...
	E.2.2.3 Encoding of the Segment Register (sreg) Fi...
	E.2.2.4 Encoding of Address Mode
	E.2.2.5 Encoding of Operation Direction (d) Field
	E.2.2.6 Encoding of Sign-Extend (s) Field
	E.2.2.7 Encoding of Conditional Test (tttn) Field
	E.2.2.8 Encoding of Control or Debug or Test Regis...

	GLOSSARY
	INDEX

	Figures
	Figure 2�1. Intel386™ EX Embedded Processor Block ...
	Figure 3�1. Instruction Pipelining
	Figure 3�2. The Intel386™ CX Processor Internal Bl...
	Figure 4�1. PC/AT I/O Address Space (10-bit Decode...
	Figure 4�2. Expanded I/O Address Space (16-bit Dec...
	Figure 4�3. Address Configuration Register (REMAPC...
	Figure 4�4. Setting the ESE Bit Code Example
	Figure 4�5. DOS-Compatible Mode
	Figure 4�6. Example of Nonintrusive DOS-Compatible...
	Figure 4�7. Enhanced DOS Mode
	Figure 4�8. NonDOS Mode
	Figure 5�1. Peripheral and Pin Connections
	Figure 5�2. Configuration of DMA, Bus Arbiter, and...
	Figure 5�3. DMA Configuration Register (DMACFG)
	Figure 5�4. Interrupt Control Unit Configuration
	Figure 5�5. Interrupt Configuration Register (INTC...
	Figure 5�6. Timer/Counter Unit Configuration
	Figure 5�7. Timer Configuration Register (TMRCFG)
	Figure 5�8. Serial I/O Unit 0 Configuration
	Figure 5�9. Serial I/O Unit 1 Configuration
	Figure 5�10. SIO and SSIO Configuration Register (...
	Figure 5�11. SSIO Unit Configuration
	Figure 5�12. Configuration of Chip-select Unit and...
	Figure 5�13. Core Configuration
	Figure 5�14. Port 92 Configuration Register (PORT9...
	Figure 5�15. Pin Configuration Register (PINCFG)
	Figure 5�16. Port 1 Configuration Register (P1CFG)...
	Figure 5�17. Port 2 Configuration Register (P2CFG)...
	Figure 5�18. Port 3 Configuration Register (P3CFG)...
	Figure 6�1. Basic External Bus Cycles
	Figure 6�2. Simplified Bus State Diagram (Does Not...
	Figure 6�3. Ready Logic
	Figure 6�4. Basic Internal and External Bus Cycles...
	Figure 6�5. Nonpipelined Address Read Cycles
	Figure 6�6. Nonpipelined Address Write Cycles
	Figure 6�7. Complete Bus States (Including Pipelin...
	Figure 6�8. Pipelined Address Cycles
	Figure 6�9. Interrupt Acknowledge Cycles
	Figure 6�10. Halt Cycle
	Figure 6�11. Basic Refresh Cycle
	Figure 6�12. Refresh Cycle During HOLD/HLDA
	Figure 6�13. 16-bit Cycles to 8-bit Devices (Using...
	Figure 6�14. LOCK# Signal During Address Pipelinin...
	Figure 6�15. Intel386 EX Processor to Intel387 SX ...
	Figure 6�16. Intel386 EX Processor to SRAM/FLASH I...
	Figure 6�17. Intel386 EX Processor to PSRAM Interf...
	Figure 6�18. Intel386 EX Processor to Paged DRAM I...
	Figure 6�19. Intel386 EX Processor and Non-Paged D...
	Figure 7�1. Standard SMI#
	Figure 7�2. SMIACT# Latency
	Figure 7�3. SMI# During HALT
	Figure 7�4. SMI# During I/O Instruction
	Figure 7�5. SMI# Timing
	Figure 7�6. Interrupted SMI# Service
	Figure 7�7. HALT During SMM Handler
	Figure 8�1. Clock and Power Management Unit Connec...
	Figure 8�2. Clock Synchronization
	Figure 8�3. SMM Interaction with Idle and Powerdow...
	Figure 8�4. Clock Prescale Register (CLKPRS)
	Figure 8�5. Power Control Register (PWRCON)
	Figure 8�6. Timing Diagram, Entering and Leaving I...
	Figure 8�7. Timing Diagram, Entering and Leaving P...
	Figure 8�8. Reset Synchronization Circuit
	Figure 9�1. Interrupt Control Unit Configuration
	Figure 9�2. Methods for Changing the Default Inter...
	Figure 9�3. Interrupt Process – Master Request fro...
	Figure 9�4. Interrupt Process – Slave Request
	Figure 9�5. Interrupt Process – Master Request fro...
	Figure 9�6. Port 3 Configuration Register (P3CFG)
	Figure 9�7. Interrupt Configuration Register (INTC...
	Figure 9�8. Initialization Command Word 1 Register...
	Figure 9�9. Initialization Command Word 2 Register...
	Figure 9�10. Initialization Command Word 3 Registe...
	Figure 9�11. Initialization Command Word 3 Registe...
	Figure 9�12. Initialization Command Word 4 Registe...
	Figure 9�13. Operation Command Word 1 (OCW1)
	Figure 9�14. Operation Command Word 2 (OCW2)
	Figure 9�15. Operation Command Word 3 (OCW3)
	Figure 9�16. Poll Status Byte (POLL)
	Figure 9�17. Interrupt Acknowledge Cycle
	Figure 9�18. Spurious Interrupts
	Figure 9�19. Cascading External 82C59A Interrupt C...
	Figure 10�1. Timer/Counter Unit Signal Connections...
	Figure 10�2. Mode 0 – Basic Operation
	Figure 10�3. Mode 0 – Disabling the Count
	Figure 10�4. Mode 0 – Writing a New Count
	Figure 10�5. Mode 1 – Basic Operation
	Figure 10�6. Mode 1 – Retriggering the One-shot
	Figure 10�7. Mode 1 – Writing a New Count
	Figure 10�8. Mode 2 – Basic Operation
	Figure 10�9. Mode 2 – Disabling the Count
	Figure 10�10. Mode 2 – Writing a New Count
	Figure 10�11. Mode 3 – Basic Operation (Even Count...
	Figure 10�12. Mode 3 – Basic Operation (Odd Count)...
	Figure 10�13. Mode 3 – Disabling the Count
	Figure 10�14. Mode 3 – Writing a New Count (With a...
	Figure 10�15. Mode 3 – Writing a New Count (Withou...
	Figure 10�16. Mode 4 – Basic Operation
	Figure 10�17. Mode 4 – Disabling the Count
	Figure 10�18. Mode 4 – Writing a New Count
	Figure 10�19. Mode 5 – Basic Operation
	Figure 10�20. Mode 5 – Retriggering the Strobe
	Figure 10�21. Mode 5 – Writing a New Count Value
	Figure 10�22. Timer Configuration Register (TMRCFG...
	Figure 10�23. Port 3 Configuration Register (P3CFG...
	Figure 10�24. Pin Configuration Register (PINCFG)
	Figure 10�25. Timer Control Register (TMRCON – Con...
	Figure 10�26. Timer n Register (TMRn – Write Forma...
	Figure 10�27. Timer Control Register (TMRCON – Cou...
	Figure 10�28. Timer n Register (TMRn – Read Format...
	Figure 10�29. Timer Control Register (TMRCON – Rea...
	Figure 10�30. Timer n Register (TMRn – Status Form...
	Figure 11�1. Serial I/O Unit 1 Configuration
	Figure 11�2. SIOn Baud-rate Generator Clock Source...
	Figure 11�3. SIOn Transmitter
	Figure 11�4. SIOn Data Transmission Process Flow
	Figure 11�5. SIOn Receiver
	Figure 11�6. SIOn Data Reception Process Flow
	Figure 11�7. Pin Configuration Register (PINCFG)
	Figure 11�8. Port 1 Configuration Register (P1CFG)...
	Figure 11�9. Port 2 Configuration Register (P2CFG)...
	Figure 11�10. Port 3 Configuration Register (P3CFG...
	Figure 11�11. SIO and SSIO Configuration Register ...
	Figure 11�12. Divisor Latch Registers (DLLn and DL...
	Figure 11�13. Transmit Buffer Register (TBRn)
	Figure 11�14. Receive Buffer Register (RBRn)
	Figure 11�15. Serial Line Control Register (LCRn)
	Figure 11�16. Serial Line Status Register (LSRn)
	Figure 11�17. Interrupt Enable Register (IERn)
	Figure 11�18. Interrupt ID Register (IIRn)
	Figure 11�19. Modem Control Signals – Diagnostic M...
	Figure 11�20. Modem Control Signals – Internal Con...
	Figure 11�21. Modem Control Register (MCRn)
	Figure 11�22. Modem Status Register (MSRn)
	Figure 11�23. Scratch Pad Register (SCRn)
	Figure 12�1. DMA Unit Block Diagram
	Figure 12�2. DMA Temporary Buffer Operation for a ...
	Figure 12�3. DMA Temporary Buffer Operation for A ...
	Figure 12�4. Start of a Two-cycle DMA Transfer Ini...
	Figure 12�5. Changing the Priority of the DMA Chan...
	Figure 12�6. Buffer Transfer Ended by an Expired B...
	Figure 12�7. Buffer Transfer Ended by the EOP# Inp...
	Figure 12�8. Single Data-transfer Mode with Single...
	Figure 12�9. Single Data-transfer Mode with Autoin...
	Figure 12�10. Single Data-transfer Mode with Chain...
	Figure 12�11. Block Data-transfer Mode with Single...
	Figure 12�12. Block Data-transfer Mode with Autoin...
	Figure 12�13. Buffer Transfer Suspended by the Dea...
	Figure 12�14. Demand Data-transfer Mode with Singl...
	Figure 12�15. Demand Data-transfer Mode with Autoi...
	Figure 12�16. Demand Data-transfer Mode with Chain...
	Figure 12�17. Cascade Mode
	Figure 12�18. Pin Configuration Register (PINCFG)
	Figure 12�19. DMA Configuration Register (DMACFG)
	Figure 12�20. DMA Channel Address and Byte Count R...
	Figure 12�21. DMA Overflow Enable Register (DMAOVF...
	Figure 12�22. DMA Command 1 Register (DMACMD1)
	Figure 12�23. DMA Status Register (DMASTS)
	Figure 12�24. DMA Command 2 Register (DMACMD2)
	Figure 12�25. DMA Mode 1 Register (DMAMOD1)
	Figure 12�26. DMA Mode 2 Register (DMAMOD2)
	Figure 12�27. DMA Software Request Register (DMASR...
	Figure 12�28. DMA Software Request Register (DMASR...
	Figure 12�29. DMA Channel Mask Register (DMAMSK)
	Figure 12�30. DMA Group Channel Mask Register (DMA...
	Figure 12�31. DMA Bus Size Register (DMABSR)
	Figure 12�32. DMA Chaining Register (DMACHR)
	Figure 12�33. DMA Interrupt Enable Register (DMAIE...
	Figure 12�34. DMA Interrupt Status Register (DMAIS...
	Figure 13�1. Transmitter and Receiver in Master Mo...
	Figure 13�2. Transmitter in Master Mode, Receiver ...
	Figure 13�3. Transmitter in Slave Mode, Receiver i...
	Figure 13�4. Transmitter and Receiver in Slave Mod...
	Figure 13�5. Clock Sources for the Baud-rate Gener...
	Figure 13�6. SSIO Transmitter with Autotransmit Mo...
	Figure 13�7. SSIO Transmitter with Autotransmit Mo...
	Figure 13�8. Transmit Data by Polling
	Figure 13�9. Interrupt Service Routine for Transmi...
	Figure 13�10. Transmitter Master Mode, Single Word...
	Figure 13�11. Transmitter Master Mode, Single Word...
	Figure 13�12. Receive Data by Polling
	Figure 13�13. Interrupt Service Routine for Receiv...
	Figure 13�14. Receiver Master Mode, Single Word Tr...
	Figure 13�15. Pin Configuration Register (PINCFG)
	Figure 13�16. SIO and SSIO Configuration Register ...
	Figure 13�17. Clock Prescale Register (CLKPRS)
	Figure 13�18. SSIO Baud-rate Control Register (SSI...
	Figure 13�19. SSIO Baud-rate Count Down Register (...
	Figure 13�20. SSIO Control 1 Register (SSIOCON1)
	Figure 13�21. SSIO Control 2 Register (SSIOCON2)
	Figure 13�22. SSIO Transmit Holding Buffer (SSIOTB...
	Figure 13�23. SSIO Receive Holding Buffer (SSIORBU...
	Figure 14�1. Channel Address Comparison Logic
	Figure 14�2. Determining a Channel’s Address Block...
	Figure 14�3. Bus Cycle Length Adjustments for Over...
	Figure 14�4. Pin Configuration Register (PINCFG)
	Figure 14�5. Port 2 Configuration Register (P2CFG)...
	Figure 14�6. Chip-select High Address Register (CS...
	Figure 14�7. Chip-select Low Address Register (CSn...
	Figure 14�8. Chip-select High Mask Registers (CSnM...
	Figure 14�9. Chip-select Low Mask Registers (CSnMS...
	Figure 15�1. Refresh Control Unit Connections
	Figure 15�2. Refresh Clock Interval Register (RFSC...
	Figure 15�3. Refresh Control Register (RFSCON)
	Figure 15�4. Refresh Base Address Register (RFSBAD...
	Figure 15�5. Refresh Address Register (RFSADD)
	Figure 15�6. Connections to Ensure Refresh of All ...
	Figure 15�7. RAS# Only Refresh Logic: Paged Mode
	Figure 15�8. RAS# Only Refresh Logic: Non-Paged Mo...
	Figure 16�1. I/O Port Block Diagram
	Figure 16�2. Logic Diagram of a Bi-directional Por...
	Figure 16�3. Port n Configuration Register (PnCFG)...
	Figure 16�4. Port Direction Register (PnDIR)
	Figure 16�5. Port Data Latch Register (PnLTC)
	Figure 16�6. Port Pin State Register (PnPIN)
	Figure 17�1. Watchdog Timer Unit Connections
	Figure 17�2. WDT Counter Value Registers (WDTCNTH ...
	Figure 17�3. WDT Status Register (WDTSTATUS)
	Figure 17�4. WDT Reload Value Registers (WDTRLDH a...
	Figure 17�5. Power Control Register (PWRCON)
	Figure 18�1. Test Logic Unit Connections
	Figure 18�2. TAP Controller (Finite-State Machine)...
	Figure 18�3. Instruction Register (IR)
	Figure 18�4. Identification Code Register (IDCODE)...
	Figure 18�5. Internal and External Timing for Load...
	Figure 18�6. Internal and External Timing for Load...
	Figure B�1. Derivation of AEN Signal in a Typical ...
	Figure B�2. Derivation of AEN Signal for Intel386™...
	Figure E�1. General Instruction Format

	Tables
	Table 2�1. PC-compatible Peripherals
	Table 2�2. Embedded Application-specific Periphera...
	Table 4�1. Peripheral Register I/O Address Map in ...
	Table 4�2. Peripheral Register Addresses (Sheet 6 ...
	Table 5�1. Master’s IR3 Connections
	Table 5�2. Master’s IR4 Connections
	Table 5�3. Signal Pairs on Pins without a Multiple...
	Table 5�4. Example Pin Configuration Registers
	Table 5�5. Example DMACFG Configuration Register
	Table 5�6. Example TMRCFG Configuration Register
	Table 5�7. Example INTCFG Configuration Register
	Table 5�8. Example SIOCFG Configuration Register
	Table 5�9. Pin Configuration Register Design Woksh...
	Table 5�10. DMACFG Register Design Worksheet
	Table 5�11. TMRCFG Register Design Worksheet
	Table 5�12. INTCFG Register Design Worksheet
	Table 5�13. SIOCFG Register Design Worksheet
	Table 6�1. Bus Interface Unit Signals (Sheet 2 of ...
	Table 6�2. Bus Status Definitions
	Table 6�3. Sequence of Nonaligned Bus Transfers
	Table 7�1. CR0 Bits Cleared Upon Entering SMM
	Table 7�2. SMM Processor State Initialization Valu...
	Table 7�3. Relative Priority of Exceptions and Int...
	Table 8�1. Clock and Power Management Registers �
	Table 8�2. Clock and Power Management Signals �
	Table 9�1. 82C59A Master and Slave Interrupt Sourc...
	Table 9�2. ICU Registers�(Sheet 2 of 2)
	Table 10�1. TCU Signals �
	Table 10�2. TCU Associated Registers �
	Table 10�3. Operations Caused by GATEn �
	Table 10�4. GATEn Connection Options
	Table 10�5. Minimum and Maximum Initial Counts
	Table 10�6. Results of Multiple Read-back Commands...
	Table 11�1. SIO Signals
	Table 11�2. Maximum and Minimum Output Bit Rates
	Table 11�3. Divisor Values for Common Bit Rates
	Table 11�4. Status Signal Priorities and Sources
	Table 11�5. SIO Registers�(Sheet 2 of 2)
	Table 11�6. Access to Multiplexed Registers
	Table 12�1. DMA Signals
	Table 12�2. Operations Performed During Transfer
	Table 12�3. DMA Registers (Sheet 3 of 3)
	Table 12�4. DMA Software Commands
	Table 13�1. SSIO Signals
	Table 13�2. Maximum and Minimum Baud-rate Output F...
	Table 13�3. SSIO Registers �
	Table 14�1. CSU Signals
	Table 14�2. CSU Registers �
	Table 15�1. RCU Signals �
	Table 15�2. RCU Registers �
	Table 16�1. Pin Multiplexing �
	Table 16�2. I/O Port Registers
	Table 16�3. Control Register Values for I/O Port P...
	Table 17�1. WDT Signals �
	Table 17�2. WDT Registers �
	Table 18�1. Test Access Port Dedicated Pins
	Table 18�2. TAP Controller State Descriptions (She...
	Table 18�3. Example TAP Controller State Selection...
	Table 18�4. Test-logic Unit Instructions �
	Table 18�5. Boundary-scan Register Bit Assignments...
	Table A�1. Signal Description Abbreviations �
	Table A�2. Description of Signals Available at the...
	Table A�3. Pin State Abbreviations
	Table A�4. Pin States After Reset and During Idle,...
	Table D�1. Peripheral Register Addresses (Sheet 6 ...
	Table E�1. Instruction Set Summary��(Sheet 19 of 1...
	Table E�2. Fields Within Instructions
	Table E�3. Encoding of Operand Length (w) Field
	Table E�4. Encoding of reg Field When w Field is n...
	Table E�5. Encoding of reg Field When w Field is P...
	Table E�6. Encoding of the Segment Register (sreg)...
	Table E�7. Encoding of 16-bit Address Mode with “m...
	Table E�8. Encoding of 32-bit Address Mode with “m...
	Table E�9. Encoding of 32-bit Address Mode (“mod r...
	Table E�10. Encoding of Operation Direction (d) Fi...
	Table E�11. Encoding of Sign-Extend (s) Field
	Table E�12. Encoding of Conditional Test (tttn) Fi...
	Table E�13. When Interpreted as Control Register F...
	Table E�14. When Interpreted as Debug Register Fie...
	Table E�15. When Interpreted as Test Register Fiel...

