Intel386™ EXTB
Embedded
Microprocessor

Intel386™ EXTC
Embedded
Microprocessor

intel.

Intel386° EX
Embedded

Microprocessor
User’'s Manual

1996 Order Number 272485-002

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including in-
fringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcontroller products may have
minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-548-4725

COPYRIGHT © INTEL CORPORATION, 1996

Int9I® CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

11 MANUAL CONTENTS ...ttt ettt et rn e et e nn e e e en e e nne e en e 1-1

1.2 NOTATIONAL CONVENTIONSttt e e et 1-3

1.3 SPECIAL TERMINOLOGY

14 RELATED DOCUMENTS ...ttt ettt et e e e e

15 ELECTRONIC SUPPORT SYSTEMS ..ottt et e 1-6
151 FaXBACK SEIVICEoiiiiiiiii ettt et e e et enn e 1-6
152 Bulletin Board System (BBS)oooiiiiiiiioiii ettt 1-7
153 COMPUSEIVE FOIUMS ...ttt e ettt e e eeeee e e e e an e sn e e ee e bre e e nee s
154 WOrld WIde WED ...t e et e

1.6 TECHNICAL SUPPORTccovv..

1.7 PRODUCT LITERATURE

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 Intel386 EX EMBEDDED PROCESSOR CORE.........cuiiiiiiiiiiie et 2-1
2.2 INTEGRATED PERIPHERALS.coooiit ittt ettt ettt e 2-3
CHAPTER 3
CORE OVERVIEW
3.1 Intel386 CX PROCESSOR ENHANCEMENTSooiiiiiii e 3-1
3.1.1 System Management MOUEuiuviieieieiiiii i e e e e 3-1
3.1.2 Additional AAAreSS LINES ...ccooieiii it e et e eee e e e aeaeneeen e 3-1
3.2 Intel386 CX PROCESSOR INTERNAL ARCHITECTUREccccoiiiiiiieiiee e 3-2
3.2.1 (70T =0 = 10 L3 U o | S PP 3-4
3.2.2 INStruction PrefetCh UNIt ... e 3-4
3.2.3 INSLruCtion DECOAE UNIL ..cooieiiiiiiieic et et sttt e e e e aeaesenen e 3-4
3.24 EXECULION UNIL ...ieiiiiiitiiee e e st e e e e e e s e s e s e e e sttt e tee e aeeaeaesaeeneanan 3-5
3.25 Y= Te (g aTeT a1 = o 0 o PP 3-5
3.2.6 L=V 11 T 10 o PP EPRPPRPRPR 3-5
3.3 CORE Intel386 EX PROCESSOR INTERFACE.........ccoooiiiiiiiie e 3-6
CHAPTER 4
SYSTEM REGISTER ORGANIZATION
4.1 OVERVIEW ...ttt et ettt e e ettt e eh bttt e ea bttt e e ea e e e e en e s
41.1 Intel386 Processor Core Architecture Registers
4.1.2 Intel386 EX Processor Peripheral REQISErsviviiiiiiiiiii i
4.2 I/O ADDRESS SPACE FOR PC/AT SYSTEMS ...t
4.3 EXPANDED 1/O ADDRESS SPACE ..ottt ettt e
4.4 ORGANIZATION OF PERIPHERAL REGISTERS.coci ittt
4.5 I/O ADDRESS DECODING TECHNIQUES.oiiiiiiiiie e
45.1 Address Configuration REQISIENcccii it

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

45.2 Enabling and Disabling the Expanded /0O SPaCeccoooioeeiieiiiiieee e 4-8
45.2.1 Programming REMAPCFG EXampPlecoooiiiiiiiiie et 4-8
4.6 ADDRESSING MODEScoititiiiiiitii ettt sttt et sttt sae st st e e eeis 4-9
46.1 DOS-comMPAatiDIe MOAEccooiiiiiieii e ettt a s eee e ee s 4-9
4.6.2 NONINFUSIVE DOS MOGE ...ttt et e e 4-11
46.3 ENhanced DOS MOUEcooiiiiiiiieie ittt et n e 4-11
4.6.4 NON-DOS MOUE ...couiiiiiiiiie ettt ettt ettt et es et et nn e eebe e e ees 4-11
4.7 PERIPHERAL REGISTER ADDRESSES........coiitiiiiiiie ettt 4-15
CHAPTER 5
DEVICE CONFIGURATION
51 INTRODUGCTION ...ttt sttt et ettt st e ekttt sttt et eb e et sbe e naesnie e

5.2 PERIPHERAL CONFIGURATION
5.21 DMA Controller, Bus Arbiter, and Refresh Unit Configuration
5.2.1.1 Using The DMA Unit with External DeVICESccceieeiriiuieiiiriieee e
5.2.1.2 DMA Service to an SIO or SSIO Peripheralccccceiiiiiiniieee e
5.2.1.3 Using The Timer To Initiate DMA Transferscccccoiiiie i
5.2.1.4 Limitations Due To Pin Signal MUltipleXingcccccoeiriiieiiiiie e
5.2.2 Interrupt Control Unit Configurationceuiroiiiiin e e
5.2.3 Timer/counter Unit CoONfIQUIationcccueiiiiriiiiiiin e
5.2.4 Asynchronous Serial I/O Configurationcccoriiiiiiie e
5.2.5 Synchronous Serial 1/O Configurationcoceieoriiiinie i
5.2.6 Chip-select Unit and Clock and Power Management Unit Configuration 5-19
5.2.7 Core ConfigUIAtiONcooiii ittt et s s e e e e e aeaeeaeaeees e ean e sneaennnes 5-21
53 PIN CONFIGURATIONottt sttt ettt et sr et n e e 5-23
5.4 DEVICE CONFIGURATION PROCEDUREcccooeeiiiniii st 5-28
55 CONFIGURATION EXAMPLE...... .ottt ettt ettt et 5-28
5.5.1 Example Design REQUITEMENTScooei it e e e e e e e e aeeeeeeee e 5-28
5.5.2 Example Design SOIULIONc.ociiiiiir ittt s s e et rr e aeeaeaeseeaaean 5-29

CHAPTER 6
BUS INTERFACE UNIT

6.1 OVERVIEWoooviiiiiiiiiiieeee
6.1.1 Bus Signal Descriptions

6.2 BUS OPERATION ..ottt ettt ettt ettt e sin e ee s e sa b e en sabe e eeees
6.2.1 BUS SEALES ...ttt e et
6.2.2 [T 0= 1111 o PP PRPRPUPSPSRN
6.2.3 Data Bus Transfers and Operand Alignment
6.2.4 [LST= 1o 1Y 1o To Lo PRI

6.3 BUS CYCLES ...ttt ettt ettt ettt e et e e e e e san e eean e e
6.3.1 [T Lo [O o L= PP
6.3.2 Write Cycle
6.3.3 PIPEIINEA CYCIE ...ttt e e e e e e bbb aeeeeeeeas

Int9I® CONTENTS

6.3.4 Interrupt ACKNOWIEAQE CYCIEouiii ittt 6-23
6.3.5 Halt/ShULdOWN CYCI ...t et e e ee s 6-26
6.3.6 REFTESN CYCIE ... e et ee e e ne e 6-28
B.3.7 BSB CYCIE ettt ettt ettt e ene e 6-31
B.3.7.1 WIEE CYCIES ...t ettt et e et e e et e e e e nne s 6-31
6.3.7.2 Read Cycles PRSI 6-31
6.4 BUS LOCK ...ttt ettt ettt et ettt ekttt et et ekt ee e ehe e b e en s 6-34
6.4.1 LOCKEd CYClE ACHVALOISooiiiiieiie ittt ettt ettt e e e e e sne e 6-34
6.4.2 (o o3 (=0 I @3 Y/ox [T T3 111 o T USSP 6-34
6.4.3 LOCK# SigNal DUFALIONeieiiiiieiie ettt ettt ettt e e san e e sae e 6-35

6.5 EXTERNAL BUS MASTER SUPPORT (USING HOLD, HLDA)........cc.cccccesveeeriieennnn. 6-35
6.5.1 HOLD/HLDA TIiMING ettt eeie et ee e ete et een st e enes e saeeen sae e ene e e seeeeeneanesnneeeens
6.5.2 HOLD Signal LAtENCYcueiiieieieiie ettt e ettt et na e e e nne e eas

6.6 DESIGN CONSIDERATIONS ... oottt ettt ettt ettt e e seee e snte s enee e seeeeenn
6.6.1 Interface To Intel387™ SX Math Coprocessor

6.6.1.1 System Configurationccccceerinierieirenieiee e,

6.6.1.2 Software CoNSIAEratiONSceeiiiiiier it ee
6.6.2 SRAM/FLASH INTEITACE ...ttt ettt et
6.6.3 PSRAM INTEITACE ..ot e
6.6.4 Paged DRAM INEITACEuiuiiieieieiei et e e e eeeeeaa s
6.6.5 Non-Paged DRAM INtEIMACEcooiiiiii it e ee e e e

CHAPTER 7
SYSTEM MANAGEMENT MODE
7.1 SYSTEM MANAGEMENT MODE OVERVIEWccoouiiiiiiiiiie et 7-1
7.2 SMM HARDWARE INTERFACE ...ttt ettt ettt e 7-1
7.2.1 System Management Interrupt Input (SMI#) e
7.2.2 SMM Active Output (SMIACTH) eeevvveieieiiieee e
7.2.3 System Management RAM (SMRAM)
7.3 SYSTEM MANAGEMENT MODE PROGRAMMING AND CONFIGURATION
7.3.1 Register Status DUNNG SIMMoooooiiiii e e e e eeeaeeeee s

7.3.2 System Management Interrupt
7.3.2.1 SMIF PrIOFILY .ovuviviiiiiiieiie et es e e e e e s s e e aenes
7.3.2.2 System Management Interrupt During HALT Cycle

7.3.2.3 HALT RESEAIT ..ooiiiiiiiiiiie e et e e ae e e e e e e e e
7.3.2.4 System Management Interrupt During I/O INSrUCtioncccocvvviviiiiieieieneneneenn
7.3.2.5 IO RESIAN .ottt ettt ettt e e s
7.3.3 SMM Handler INtEITUPLIONcuviiiirieiie e e et e e e
7.3.3.1 Interrupt During SMM Handlercooeovvnivrvinnnnn.
7.3.3.2 HALT DUING SMM HaNAIET ...cooieiiiiiiiii ittt s
7.3.3.3 Idle Mode and Powerdown Mode During SMMccccccoviiiiiiniiiiininiiieie e e
7.3.3.4 SMI# DUrinNg SMM OPErationcooeieieiiiiiiiieiie it e ie e e e es s s e ee e e e
7.3.4 SMRAM PrOgGramMiNgcceeeeeeeeeieeeriieieiesesesess s assasneseseessseseeeeeesessesesesess s ssnssseseseses
7.3.4.1 Chip-select Unit Support for SMRAM ...t e

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

7.3.4.2 SMRAM State DUMP AFBA ..ccoeiieeiiiiiiei ettt ettt ee e e e e e ae e e e e ee s 7-14

7.35 Resume INStruction (RSM) ...ttt e 7-15

7.4 THE Intel386 EX PROCESSOR IDENTIFIER REGISTERSooooiiiiieeen e 7-15
7.5 PROGRAMMING CONSIDERATIONS.ccoiiiiii ettt e

75.1 System Management Mode Code Example

CHAPTER 8
CLOCK AND POWER MANAGEMENT UNIT
8.1 OVERVIEW ..ottt e ettt et et e et et ee e nne e een e e nn e eans

8.1.1 Clock Generation Logic

8.1.2 Power Management Logic
8.1.2.1 SMM Interaction with Power Management Modes
8.1.2.2 Bus Interface Unit Operation During ldle Modecccoiiiiiiiniiiinciiec e
8.1.2.3 Watchdog Timer Unit Operation During Idle Modecccceeiiiiiiiiiniiee e

8.1.3 Clock and Power Management Registers and Signalsccccooioieiiieniineinen e

8.2 CONTROLLING THE PSCLK FREQUENCY ..ottt e e e
8.3 CONTROLLING POWER MANAGEMENT MODEScooiiin e

8.3.1 [0 | LAY Fo o RSV

8.3.2 Powerdown Mode

8.3.3 Ready Generation During HALT

8.4 DESIGN CONSIDERATIONSoiiiie ittt et e n e s e ane e

8.4.1 ReSet CONSIAEIALIONSovviiiiii ettt e e e e e e ee e et et e e e e e

8.4.2 Power-up CoNSIAEIAtioNScoviiiiiiiii i e e e e ae e e eeaa s
8.4.2.1 Built-in Self Test
8.4.2.2 JTAG RESEL ..oeiiiiiiii ettt e e

8.4.3 Powerdown Mode and Idle Mode Considerationsccccveerineieeiiniiee e

8.5 PROGRAMMING CONSIDERATIONS......coiiiiiiiie ittt e e

8.5.1 Clock and Power Management Unit Code EXamplecccccccveevieienin v

CHAPTER 9
INTERRUPT CONTROL UNIT
9.1 OVERVIEW ...ttt ettt ettt e ettt e s eh bt e e et e e e aa it
9.2 ICU OPERATION. ...ttt ettt ettt ettt e et ee s e ea bt en sabe e ee e e
9.21 INTEITUPT SOUICES ...ttt e et ettt e e r e e s e e eee e e te e en e e eneeeeaee e
9.2.2 10 10=T (U] o o = (o] 1P EPRPPRP
9.2.2.1 Assigning an Interrupt Level
9.2.2.2 Determining Priority
9.2.3 Interrupt Vectorsccccuvvnene
9.24 Interrupt Process
9.25 POI IMOE ... e e bttt ean e ean

9.3 REGISTER DEFINITIONSottt ittt ettt et sttt e e e e
9.3.1 Port 3 Configuration Register (P3CFG)cooooiiiiiiiiiiie et
9.3.2 Interrupt Configuration Register (INTCFG)cooociiiiiie e s

Vi

Int9I® CONTENTS

9.3.3 Initialization Command Word 1 (ICWL)coociuiiiiiiieie e 9-20
9.34 Initialization Command Word 2 (ICW2) ...t 9-21
9.35 Initialization Command Word 3 (ICW3) ...t e 9-22
9.3.6 Initialization Command Word 4 (ICW4) ...t 9-24
9.3.7 Operation Command Word 1 (OCWIL)cooiiiiiiirieiie ettt 9-25
9.3.8 Operation Command Word 2 (OCW2)oooiiiiieieiae et 9-26
9.3.9 Operation Command Word 3 (OCW3)ooiiiiiieieiee et e 9-27
9.3.10 Interrupt Request RegiSter (IRR)oooiiiiiiiioiiii ettt e
9.3.11 In-Service RegiSter (ISR) ..ot et
9.3.12 POIl Status Byte (POLL)cuiiiiiiie et ettt et e e e
9.4 DESIGN CONSIDERATIONS......ccoiiiiiiiie e
9.4.1 Interrupt Acknowledge CyClecccooieiiieiiiiieiinenieen,
9.4.2 INterrupt DeteCtioNccoceeveeriiiiie e
9.4.3 SPUFIOUS INLEITUPLS ...eeviiiiiiiiie e e e e
9.4.4 Cascading Interrupt Controllerscccocoveeniiiiiieennnnns
9.5 PROGRAMMING CONSIDERATIONS
951 Interrupt Control Unit Code EXamples ..ot 9-32
CHAPTER 10
TIMER/COUNTER UNIT
10.1 OVERVIEW ..o ettt n et e en e e e sn e e nre e 10-1
10.1.1 TCU Signals and REQISIEIScccoeii ittt et es s s e e re e e e e re e e s aeaenen e 10-3
10.2 TCU OPERATION ..ottt e ettt et e nre e 10-5
10.2.1 Mode 0 — Interrupt on Terminal COUNEuuiviiieieiiririer e ee e e e aea e 10-6
10.2.2 Mode 1 — Hardware Retriggerable One-shotcccccoviiiiiiiiiiiiiiiiie e 10-8
10.2.3 MOdE 2 — RALE GENEIALOTeiuiviiiieiietieiee ettt e ettt ee s ettt ee e bt ee e e e abnbee e e esnnees
10.2.4 MOUE 3 — SQUATE WAVE ...oceiieieieiie ettt et e ee e e e e e e et s sttt e e e e aeeaeaenaaeas

10.2.5 Mode 4 — Software-triggered Strobe
10.2.6 Mode 5 — Hardware-triggered Strobe
10.3 REGISTER DEFINITIONS.......ccociiiiiie e
10.3.1 Configuring the Input and Output Signals
10.3.1.1 Hardware Control of GATENcoiiiiii et e
10.3.1.2 Software Control Of GATENcoo i
10.3.2 Initializing the COUNLEIS ... ettt et e ee e e e ee e e e
10.3.3 WIiting the COUNLEISeeiiiiiiiieie ettt et e e et ee e e e eb e e e e e enne e
10.3.4 Reading the COUNTETcuiiii ettt e et e e e e e e e en see e eas
10.3.4.1 SIMPIE REAA ..ottt ettt ee e e et a e ane e
10.3.4.2 Counter-latch Commandc........
10.3.4.3 Read-back Command
10.4 PROGRAMMING CONSIDERATIONS
10.4.1 Timer/Counter Unit Code EXamples ..ot

Vii

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

CHAPTER 11
ASYNCHRONOUS SERIAL 1/0O UNIT

111 OVERVIEW L.ttt et et e ettt et e e e e aeae e e e e e e e e et st ae e e are e seeeeaaeaeee s
0 0 O R] (@ 2 S T [= = SRS

11.2 SIO OPERATION .ottt e ee ettt e e sttt e ee e e e aeae e e e as e e e et e ae e e nre e aneeeaaeaeae s
O R = T T To R | (I =T T = L o PSPPSR
2 1 (@ T B -V 1 1 1 (Y PP
11.2.3 SION RECEIVEL .ouvuieieie e ee ettt ee e ettt ee e e e aeaes e e e e e e et re e ee e e aeeaeaenaeaenen e ens
11.2.4 Modem Control
11.2.5 Diagnostic Modeccccceviiiiiieiiiiiieeeene
11.2.6 SIO Interrupt and DMA SOUICESccccueieeereiineieeeeeene

11.2.6.1 SIO INtErrUPt SOUIMCES ..oeeveieiiiiieieieieieiee e

11.2.6.2 SIO DMA SOUICESooeiiaitieii e eie e ettt e e e e n e e e e e ee e e e
11.2.7 EXternal UART SUPPOIT ..ottt ettt sttt e e e e e ee e en e

11.3 REGISTER DEFINITIONSottt et

11.3.1 Pin and Port Configuration Registers (PINCFG and PnCFG [n=1-3]) ..ccccceeeunnes 11-17
11.3.2 SIO and SSIO Configuration Register (SIOCFG)
11.3.3 Divisor Latch Registers (DLLA and DLHN)cooiiiiiiiiiiiiie e
11.3.4 Transmit Buffer Register (TBRN)cccoeeiiiiiiiiiiiees

11.3.5 Receive Buffer Register (RBRn)
11.3.6 Serial Line Control Register (LCRn)
11.3.7 Serial Line Status Register (LSRn)
11.3.8 Interrupt Enable Register (IERN)
11.3.9 Interrupt ID Register (IIRN) ...cccovevveiiiennns
11.3.10 Modem Control Register (MCRD)

11.3.11 Modem Status Register (MSRN) ...t e
11.3.12 Scratch Pad RegiSter (SCRN) ..c.coii i e ettt ettt e e
11.4 PROGRAMMING CONSIDERATIONS.......cititiitit ittt et enee e
11.4.1 Asynchronous Serial I/O Unit Code EXamplescccoiiiiiiniiiiiii e
CHAPTER 12
DMA CONTROLLER
12,1 OVERVIEW ..ottt ettt ettt ettt ek e s et ebe et en e et ene e e
12.1.1 DMA TeIMINOIOGY .eeiieitieiieai ettt e ettt ee e e ettt ee e e e e e es se b eeee e eeeaeeae e ensaeaee e ennne e ean
12.1.2 DMA SIQNAIS ...ttt ettt ettt ettt e e e e e e e ae e ean
12,2 DMA OPERATION .. .citit ittt ettt ettt ettt ettt ettt et bt e e sttt en e enee
12.2.1 DMA TIANSTEIS ..o et e ar e e e ar e e re e e
12.2.2 Bus Cycle Options for Data Transferscoceiioieer e
12.2.2. 1 FIY-BY MOUE ..ottt ettt ettt e ettt e et e e saeae e e
12.2.2.2 Two-Cycle Modec..eeviiiiiiiiiiieee e
12.2.2.3 Programmable DMA Transfer Direction
12.2.2.4 Ready Generation For DMA Cyclesccccceervnnenn.
12.2.2.5 DMA Usage of the 4-Byte Temporary Register
12.2.3 Starting DMA TranSTerS ..ottt e e

viii

Int9I® CONTENTS

12.2.4 Bus Control ArbItrationoc.eeeieii oo e et e e e
12.2.5 ENAING DMA TraNSTEIS ...cuiiiiiiieit ettt ettt et e e e e
12.2.6 BuUffer-transfer MOAEScooouiiiiii it e e e e
12.2.6.1 Single Buffer-Transfer MOAecooiiiiiiiiiiiiie e
12.2.6.2 Autoinitialize Buffer-Transfer Mode
12.2.6.3 Chaining Buffer-Transfer Mode ...
12.2.7 Data-transfer MOUESooiiiiiiiiie ettt ettt et ee e et e e e e esneae
12.2.7.1 Single Data-transfer MOGEccueuiiiiiiiiiiie et
12.2.7.2 Block Data-transfer MOcoueuiiiioiiiiiie et
12.2.7.3 Demand Data-transfer Modeoooioiiiiin i
I T OF- L Tor= o [1Y o o =P
12.2.9 DMA INEEITUPLS ...eoieieieiteieiie e ee et e ettt e e ee e e e e e aeae s e s e se ss sn s e ne e nnerereeee e
12.2.10 8237A ComPaAtiDIlityoooiiiiiiiii et
12.3 REGISTER DEFINITIONS. ...ttt ettt ettt e et ee e e en
12.3.1 Pin Configuration Register (PINCFG)
12.3.2 DMA Configuration Register (DMACFG)cc.ucuiiiiiiiiiie et e 12-32
12.3.3 Channel REQISLEISeiiiiiii ittt ettt ettt e et ee e e eas 12-33
12.3.4 Overflow Enable Register (DMAOVFE) ..ottt 12-34
12.3.5 Command 1 Register (DMACMDL)cuiiiiiiiiiiii ettt e ree e e e 12-35
12.3.6 Status RegiSter (DMASTS)uiiiiiiieiieie et et e e e snae e 12-36
12.3.7 Command 2 Register (DMACMD2)ccooo it ee e s e e e 12-37
12.3.8 Mode 1 Register (DMAMODIL)oiiiiiiiiiiia et ettt e e 12-38
12.3.9 Mode 2 Register (DMAMOD2)cooiiiiiiiia ettt et 12-40
12.3.10 Software Request Register (DMASRR)ccoiiiiiiiiiiiiie e 12-42
12.3.11 Channel Mask and Group Mask Registers (DMAMSK and DMAGRPMSK)12-44
12.3.12 Bus Size Register (DMABSR)cooiiiiii ittt et ae e s e e aeaee e
12.3.13 Chaining Register (DMACHR)cceviviiiiiiiciiieeie e
12.3.14 Interrupt Enable Register (DMAIEN)cccocivvvvvnnnnn
12.3.15 Interrupt Status Register (DMAIS)
12.3.16 Software Commands
12.4 DESIGN CONSIDERATIONS
125 PROGRAMMING CONSIDERATIONS......ccoiiit ettt sttt e
12.5.1 DMA Controller Code EXamPIESccooiiiiiiiiiiiiiiiiii i e iees e ses e e ne e

CHAPTER 13
SYNCHRONOUS SERIAL I/O UNIT
131 OVERVIEW oottt ettt et et e e et et ae e st et tee e et e e e e e sae e e s e sarbe e e
R T O R S 1S 1 [@ IS T [= 1 PSPPI
13.2 SSIO OPERATION ...oiiiii it ettt ettt e ettt ee e et ae e e st et e e e e et e e e e e e sae e e e e sasbe e s
13.2.1 BaUud-rate GENEIALOIiuiuieiiiiietieies ettt e e e eeeeeaeses e s e s s st e be e e bee e baeaeaeseaenean
RS I - T 011 = PSPPI
13.2.2.1 Transmit Mode using Enable Bit
13.2.2.2 Autotransmit Mode
13.2.2.3 SIAVE MOUE .eiiiiiiie ittt e et e e e e n e e

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

13.2.3 RECEIVET oottt ettt et et r e et e nn e e e e 13-12
13.3 REGISTER DEFINITIONS ... oottt ettt ettt ettt sttt sttt enn e sne e 13-16
13.3.1 Pin Configuration Register (PINCFG)cooiuiiiiiiiiiee et et 13-17
13.3.2 SIO and SSIO Configuration Register (SIOCFG)ccoviiiiiiriiiiiiee e 13-18
13.3.3 Prescale Clock Register (CLKPRS)ooiiiiiii et 13-19
13.3.4 SSIO Baud-rate Control Register (SSIOBAUD)ccooiiuiiiiariiieee e e 13-20
13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR)cooiviiiiriiniiiiieie s e 13-21

13.3.6 SSIO Control 1 Register (SSIOCON1)
13.3.7 SSIO Control 2 Register (SSIOCONZ2)
13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF)
13.3.9 SSIO Receive Holding Buffer (SSIORBUF)

13.4 DESIGN CONSIDERATIONSottt ittt ittt ettt et n e sttt enn e
13.5 PROGRAMMING CONSIDERATIONS.......ceeitiitit ettt ettt et enne e
13.5.1 SSIO EXAMPIE COUEovuiiiiiitiiiiiie ettt ettt ettt et e e
CHAPTER 14
CHIP-SELECT UNIT
141 OVERVIEW ..ottt ettt ettt et et e et b et en e nn e e
14.2 CSU UPON RESET ...outiiiitiie ettt ettt ettt ettt ettt nn e ettt n s nn e eae e

14.3 CSU OPERATION ...cotiiiiiiiiiiine e e
14.3.1 Defining a Channel’s Address Block
14.3.2 System Management Mode Support
14.3.3 Bus Cycle Length Controlcccoeeve
14.3.4 Bus Size Controlcccoe...

14.3.5 OVerlapping REGIONS ..uiuiiiiiiiie e e e e e e e aeeee e
14.4 REGISTER DEFINITIONS.....coci ittt ettt et e e st e e e ee e sne e en
14.4.1 Pin Configuration Register (PINCFG)
14.4.2 Port 2 Configuration Register (P2CFG)ccocoviiiiiiiiiiiiie e e e e e s e seeinnne e 14-16
14.4.3 Chip-select AddresS REQISIEIS ...c.viiiiiiiiii et e e e e e e s s s s en e ne e 14-17
14.4.4 Chip-select Mask REQISLEIS ...i.iuiiiiiiiiiiiii ettt re e e e e e e e es s e s s en e ne e e 14-19
14.5 DESIGN CONSIDERATIONS......oiitiie ittt ettt st e e e et e e e sre s 14-21
146 PROGRAMMING CONSIDERATIONS......ccittitiiie ittt ettt et 14-22
14.6.1 Chip-Select Unit Code EXAMPIEcccoiviiiiiiiiiii et e e 14-22
CHAPTER 15

REFRESH CONTROL UNIT
151 DYNAMIC MEMORY CONTROL

15.1.1 REfreSh MEINOUS ...ouiviiiiiiiieii e e ae e e aeaeaen e
15.2 REFRESH CONTROL UNIT OVERVIEW ..ottt 15-2

15.2.1 RCU SIQNQAIS .oviiiieieii ettt ettt et ae e es st e e e ete b e e e e ern bt e s e e e e aan 15-4

15.2.2 REfreSN INEIVAISoeviiiiiiiie e e e ae e s ea e ean 154

Int9I® CONTENTS

15.2.3 Refresh ADAreSSESoooieiiiii et e
15.2.4 BUS AIDItFALIONeiiieiiii ettt e e e e
15.3 RCU OPERATION .. .coutii ittt ettt ettt ettt et sttt ettt ettt e e es ettt ene e enee
15.4 REGISTER DEFINITIONSiiiiitii ittt ittt sttt et e st e s en e ene e e
15.4.1 Refresh Clock Interval Register (RFSCIR)cccceene.
15.4.2 Refresh Control Register (RFSCON)ccccceeviiiieennns

15.4.3 Refresh Base Address Register (RFSBAD)
15.4.4 Refresh Address Register (RFSADD)cooiiiiiiiiaiiiin et ee e
15.5 DESIGN CONSIDERATIONSottt ettt ettt en e sttt enn e ene e
15.6 PROGRAMMING CONSIDERATIONS.......cieitiitie ettt ettt enne e
15.6.1 Refresh Control Unit EXample COOEcoiiuiiiiiiiiiiiii et
CHAPTER 16
INPUT/OUTPUT PORTS
16.1 OVERVIEW ..ottt ettt ettt ettt et et s bt b et en e e an e e n e 16-1
16.1.1 POrt FUNCHONAIILY ...oooiiiiiiie ettt et ettt et e e sie e e sae e ean 16-2
16.2 REGISTER DEFINITIONSooitiiitit ittt ettt ettt sn e s bt e ees e nn e e e 16-6
16.2.1 Pin Configuration
16.2.2 Initialization Sequence
16.3 DESIGN CONSIDERATIONSottt ittt ittt et ettt ettt et ab e enn e eie e 16-10
16.3.1 Pin Status During and After RESELccuvuiiiiiiiiiiiiee s ae e 16-10
16.4 PROGRAMMING CONSIDERATIONS.......cecitiititeieie ettt et 16-11
16.4.1 1/O Ports Code EXAMPIEccoceeiii ittt e e et es s s e st e e eeaeae e e e e e 16-11
CHAPTER 17
WATCHDOG TIMER UNIT
17.1 OVERVIEW ..ottt ettt ettt ettt et et e ettt en e nn e eae e 17-1
L17.0. 1 WDT SIGNAIS .veieie ettt sttt ettt ettt e s e et eh e et en e e nn e et an e e en e e 17-3
17.2 WATCHDOG TIMER UNIT OPERATION......ccctiiitiiie ittt e 17-3
17.2.1 Idle and POWErdOWN MOEScooiiiiuiiiie ettt sttt ettt et e e 17-4
17.2.2 General-purpose TIMEr MOGEccocuuiiiiiiiiiir e e e re e aeeaeaenen e 17-4
17.2.3 Software Watchdog MOAEccooeiii ittt e ae e s e e 17-5
17.2.4 BUS MONItOr MOGE ...ttt ettt ettt e e sin e ean 17-5
17.3 DISABLING THE WDT ..ciiiiiiiitieie ettt ettt ettt e st e nn e nne e 17-6
17.4 REGISTER DEFINITIONS......ccitiititciii ittt ettt ettt nn e ee e ne 17-7
17.5 DESIGN CONSIDERATIONSttt ettt ettt sttt ettt enn e 17-12
17.6 PROGRAMMING CONSIDERATIONS.......ccccotiitiieitie ettt 17-12

17.6.1 Writing to the WDT Reload Registers (WDTRLDH and WDTRLDL)17-12
17.6.2 Minimum Counter Reload ValUc.oooiiiiiiiiiieie e
17.6.3 Watchdog Timer Unit Code Examples

Xi

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

CHAPTER 18
JTAG TEST-LO GIC UNIT
18.1 OVERVIEW ..ottt ettt et ettt ettt et ekt s e ebe b et en e e en e ene e e 18-1
18.2 TEST-LOGIC UNIT OPERATION. ..ottt ettt sttt ettt e en e e enee 18-3
18.2.1 TeSt ACCESS POt (TAP) oottt e ettt e e e e eneae e ean 18-3
18.2.2 Test Access Port (TAP) CONLrOIEroooiiiiee et 18-4
18.2.3 Instruction REGISLEr (IR) ...ceeiiieiiiiei et ettt ettt et e e ee e 18-7
18.2.4 DaAt@ REQISLEISueiiiiiiiieiie ettt ee ettt ee ettt ee et e e et et et ee e et e e e ee e sre et e e e snnaeeeean 18-8
18.3 TESTING ..ottt ettt et sttt et b et b et e et ehe et et e en e eat e nbe e et e ennbeeae e 18-10
18.3.1 1dentifying the DEVICEccoiiiuiiiiii ettt et e e et 18-10
18.3.2 Bypassing Devices 0N @ BOardcccoooiuiiiiiiiiiiiie et 18-10
18.3.3 Sampling Device Operation and Preloading Datacocueeeriiiiiiii i 18-10
18.3.4 Testing the Interconnections (EXTEST) ...cooiiiiiiiiie e 18-10
18.3.5 Disabling the OULPUL DIIVEISc.oiiiiiiiiiie ittt ettt ee e sbe e e e enaea 18-11
18.4 TIMING INFORMATION ...ttt ettt ettt sttt sr e s st ene et en e 18-12
18.5 DESIGN CONSIDERATIONSottt ettt ettt ettt et enn e 18-14
APPENDIX A

SIGNAL DESCRIPTIONS

APPENDIX B
COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

B.1 HARDWARE DEPARTURES FROM PC/AT SYSTEM ARCHITECTURE B-1

B.1.1 DN T PR B-1
B.1.2 Industry Standard Bus (ISA) SIGNaAIScceceiiiiiiiiiii e e B-2
B.1.3 INterrupt CoNtrol UNIt ... st er e e e eeae s e s e s e e s e arn e rnanes B-4
B.1.4 15T 1@ 2 U 1 PP B-4
B.1.5 (1 o]V T T RS B-4
B.1.6 [(O T D o I A 1 SR B-4
B.1.7 o4 = SR B-5
B.2 SOFTWARE CONSIDERATIONS FOR A PC/AT SYSTEM ARCHITECTURE............ B-5
B.2.1 Embedded Basic Input Output System (BIOS)ccccovvviviiiiiiiie e eesnienins B-5
B.2.2 Embedded Disk Operating System (DOS)ccooviviiiiiiiiiir e ie e e s e nnenes B-5

B.2.3 Microsoft* Windows*

APPENDIX C
EXAMPLE CODE HEADER FILES

C.1 REGISTER DEFINITIONS FOR CODE EXAMPLEScoooooomsveorreicesneiresissseesie c-1

C.2 EXAMPLE CODE DEFINESccovvoeiiveooeceiissises s ess s C-6

Xii

Int9I® CONTENTS

APPENDIX D
SYSTEM REGISTER QUICK REFERENCE

D.1

D.2

D.3

D.4

D.5

D.6

D.7

D.8

D.9

D.10
D.11
D.12
D.13
D.14
D.15
D.16
D.17
D.18
D.19
D.20
D.21
D.22
D.23
D.24
D.25
D.26
D.27
D.28
D.29
D.30
D.31
D.32
D.33
D.34
D.35
D.36

PERIPHERAL REGISTER ADDRESSES.........ooiviveoeeeeeoeceseceeeeeeeeeees s D-1
CLKPRS ..ot ee et ettt eee e ee et D-7
CSnADH (UCSADH) R ... D-8
CSNADL (UCSADLY) ... eee e ee e D-9
CSAMSKH (UCSMSKH) ... veeovee oot eee e D-10
CSAMSKL (UCSMSKLY .. eeeeeeeeeeees oo D-11
DLLA AND DLH «oeoeev oottt
DIMABSR ... eee oot ettt ettt
DIMACFEG ... oottt et et
DIMACHR ..ottt ee et
DIMACMDL.... et ee e
DIMACMD2..... .ot
DIMAGRPMSK ... oooee oot et
DIMAIEN ..ot
DIMALS oottt ettt

0V 7Y Lo 1 OO
DMAMOD2 R

DIMAMSK ..ottt
DMANBYCn, DMANREQ A AND DMANTARI.c.c...vveeeeeeee oo D-24
DIMAOVFE ... ettt ee et D-25
DIMASRR ..ottt D-26
DIMASTS ..o eee et et ettt D-27
ICW1 (MASTER AND SLAVE)ovoveoeeeeee oo eee oo D-28
ICW2 (MASTER AND SLAVE)ooveveoeeeeee oo eee oo D-29
ICW3 (MASTER) ..o eoveeeee oo eeeeeee e es e eee e eee e D-29
ICW3 (SLAVE) ..o eee e D-30
ICW4 (MASTER AND SLAVE) D-30
IDCODE D-31

[T o USRS PUP PP D-37
IMICRI .. e e et e et e e e e e e D-38
VISR .. e e et e e e e e D-39

xii

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

D.37
D.38
D.39
D.40
D.41
D.42
D.43
D.44
D.45
D.46
D.47
D.48
D.49
D.50
D.51
D.52
D.53
D.54
D.55
D.56
D.57
D.58
D.59
D.60
D.61
D.62
D.63
D.64
D.65
D.66
D.67
D.68
D.69
D.70
D.71
D.72
D.73
D.74

Xiv

OCW1 (MASTER AND SLAVE)
OCW2 (MASTER AND SLAVE)
OCW3 (MASTER AND SLAVE)

POLL (MASTER AND SLAVE) ..ottt ettt e e e e sn e e
PORT92

SSIORBUF ..o e e e
SSIOTBUF ... e e e e e e e
TBRn...........

UCSADH..... e et e e n e e e ennne
UCSADL .. et et e e e e e e e e e
UCSMSKH ... et s e e e e e s e e e e
UCSMSKL . e et n e e e e e
WDTCNTH AND WDTCNTL. ... e
WDTRLDH AND WDTRLDL ...t e
WDTSTATUS e e e e e

Int9I® CONTENTS

APPENDIX E
INSTRUCTION SET SUMMARY
E.1l INSTRUCTION ENCODING AND CLOCK COUNT SUMMARYcceimirniriniieeeennnens E-1
E.2 INSTRUCTION ENCODINGcceitiiie ittt ettt ettt s e sae e siie s e ee e sne e e
E.2.1 32-bit Extensions of the INStruction Setcccooviiieriniin e
E.2.2 Encoding of INStruction FIeldScooo oot
E.2.2.1 Encoding of Operand Length (W) Field ...
E.2.2.2 Encoding of the General Register (reg) Fieldccoiiiiiiiniiie e
E.2.2.3 Encoding of the Segment Register (sreg) Field ...
E.2.2.4 Encoding of Address Modecccoeoviiveeniiienn.
E.2.2.5 Encoding of Operation Direction (d) Field
E.2.2.6 Encoding of Sign-Extend (S) Field ...
E.2.2.7 Encoding of Conditional Test (ttth) Fieldcccooiiiiin e
E.2.2.8 Encoding of Control or Debug or Test Register (eee) Fieldc.cccee... E-31
GLOSSARY
INDEX

XV

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

FIGURES
Figure
2-1 Intel386™ EX Embedded Processor Block Diagramc.coeieiiiiieiiiiiieen e
3-1 INSErUCTION PIPEIINING ..ottt ettt e e e en e e s
3-2 The Intel386™ CX Processor Internal Block Diagram
4-1 PC/AT 1/0 Address Space (10-bit Decode).........c...ccuu.e...
4-2 Expanded I/O Address Space (16-bit DECOUE)coieueeieeiiiiie e
4-3 Address Configuration Register (REMAPCFG).........uuiiiiiiiiiie i
4-4 Setting the ESE Bit Code Example
4-5 DOS-Compatible Modecoooiiiiiiiiiiie e
4-6 Example of Nonintrusive DOS-Compatible Mode
4-7 ENNanCed DOS MOUEcvueieiei et ettt e e e an e e
4-8 NONDOS MOGE ...ttt et et ettt et e an e e e e an e e nne e enes
5-1 Peripheral and Pin ConnNections...........ccccceeveeivieeen e,
5-2 Configuration of DMA, Bus Arbiter, and Refresh Unit
5-3 DMA Configuration Register (DMACFG).........ccccceeereinne.
5-4 Interrupt Control Unit CoNfigUratioN...........coooi i e
5-5 Interrupt Configuration Register (INTCFG)......cocuueiiiiiiiee e e e e
5-6 Timer/Counter Unit Configuration............cccocvoivieiiiiieeenne
5-7 Timer Configuration Register (TMRCFG).........ccccceeereue
5-8 Serial /0 Unit 0 Configuration............ccccceeveiieien e
5-9 Serial /O Unit 1 CoNfIQUIAtioNcooiuiiiiie et
5-10 SIO and SSIO Configuration Register (SIOCFG)........ccoiiiiiiieiriiieiie e
5-11 SSIO UNit CONFIQUIALIONoiiuitiie ettt e st e ee e en
5-12 Configuration of Chip-select Unit and Clock and Power Management Unit................5-20
5-13 Core CoNfIUIALIONei it ee e e ee e en
5-14 Port 92 Configuration Register (PORT92)
5-15 Pin Configuration Register (PINCFG)........ccccccvveveiiiieiiiiinnns
5-16 Port 1 Configuration Register (PLCFG)........ccccceeveieeeiinnne
5-17 Port 2 Configuration Register (P2CFG)......c.cuouiiiiiie sttt et ee e e e e e e
5-18 Port 3 Configuration Register (P3CFG)......c.cuvuiiiiiii sttt et e e e e e
6-1 BasiC EXtErNal BUS CYCIES......cuuiiiiiiii ittt e e et s e e et eee e aeaee s

6-2 Simplified Bus State Diagram (Does Not Include Address Pipelining or Hold states)..6-8
6-3 [T= 1o YA 1o o oSSR

6-4 Basic Internal and External Bus CYCIES.........coooiiiiiiiiiiiiiie e e e
6-5 Nonpipelined Address Read CYCIES.........ccoeiei i e e e e
6-6 Nonpipelined Address Write CycCleS........cccceeeveveieviivinenne,

6-7 Complete Bus States (Including Pipelined Address)

6-8 Pipelined Address CYCIES........uuiuveiiieieierieieiee e

6-9 Interrupt ACKNOWIEAQE CYCIESuuiiiiiiiie e e
6-10 [= 1L R o[S
6-11 Basic Refresh Cycle.......ccccovivieeieiiiiiiiiiins
6-12 Refresh Cycle During HOLD/HLDAcoooi it e
6-13 16-bit Cycles to 8-hit Devices (USING BS8H)........ccccciiiiiiiiiiiiee e e
6-14 LOCK# Signal During Address Pipeliningcocovivvviiiiiiiiie e

6-15 Intel386 EX Processor to Intel387 SX Math Coprocessor Interface...........................6-39

Xvi

Int9I® CONTENTS

Figure

6-16
6-17
6-18
6-19
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
10-1
10-2
10-3
10-4
10-5
10-6

FIGURES

Intel386 EX Processor to SRAM/FLASH Interface........ccooooiieiiiiin e
Intel386 EX Processor to PSRAM INterface.........coooieeieeiiiiii e
Intel386 EX Processor to Paged DRAM Interface..........ccoooieeiiiiiiie i
Intel386 EX Processor and Non-Paged DRAM Interface
StANAAIrA SMIF ...t e e e e bt e e e s
SMIACT# Latency
SMI# During HALT
SMI# During 1/O Instruction
SMIZ Timingcoeeeeiviieiee e,
INtErrupted SMIH SEIVICE......ouiii e et e ee et ee e ee s
HALT DUring SMM HanIEreueii ettt e
Clock and Power Management Unit Connections.............
Clock Synchronizationc.ceeoiiiieen e
SMM Interaction with Idle and Powerdown Modes............
Clock Prescale Register (CLKPRS) ..ottt et e
Power Control Register (PWRCON)........cuiiiiaiiieiie et e
Timing Diagram, Entering and Leaving Idle Modeccccccceeveinennn.

Timing Diagram, Entering and Leaving Powerdown Mode
Reset Synchronization CirCUItocoueuieiraiiiiees e

Interrupt Control Unit CoNfigUration...........cooooiiiieiin e
Methods for Changing the Default Interrupt StruCture............cccoeeoviieiriniiie e
Interrupt Process — Master Request from Non-slave Source
Interrupt Process — SIaVe REQUEST.vuei ittt
Interrupt Process — Master Request from Slave Source
Port 3 Configuration Register (P3CFG).......c.ccceuvveeerennen
Interrupt Configuration Register (INTCFG)........ccccceeeenunne
Initialization Command Word 1 Register (ICW1)...............
Initialization Command Word 2 Register (ICW2)........cocivvieieiiiiiiie e
Initialization Command Word 3 Register (ICW3 — Master).....c.cccccevevevevevvvvivnvineeenn
Initialization Command Word 3 Register (ICW3 — Slave)....................

Initialization Command Word 4 Register (ICW4)
Operation Command Word 1 (OCWL1)cccvvveeeveieieneinnnnn,
Operation Command Word 2 (OCW2)
Operation Command Word 3 (OCW3)
Poll Status Byte (POLL)oooeevevvivirirriee

Interrupt Acknowledge Cycle.............ccceeeen.

SPUFIOUS INTEITUPLS ..oeeeie e
Cascading External 82C59A Interrupt Controllers
Timer/Counter Unit Signal Connections
Mode 0 — Basic Operation............cccoeeeevivnene

Mode 0 — Disabling the COUNT.........oeeiiiiiiii e e e
Mode 0 — Writing @ NEW COUNL......c.ooiiiiiirii ettt et te e te s e s e e e et sine e e e e eeeas
Mode 1 — Basic Operation.............cccoeeeeviinens

Mode 1 — Retriggering the One-shot

XVii

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

FIGURES
Figure
10-7 Mode 1 — Writing a New Count
10-8 MOde 2 — BASIC OPEIATIONceeiitieiie e eteiie e ettt ettt e e it eee s e e e eeeen saeeeeeennenes
10-9 Mode 2 — Disabling the COUNTcooiiii e et
10-10 Mode 2 — Writing a New Count
10-11 Mode 3 — Basic Operation (EVEN COUNL)cceuiiariieir et ee et ee e e e e e
10-12 Mode 3 — Basic Operation (Odd COUNL)cciieirieriieie et ee e e
10-13 Mode 3 — Disabling the Countcccciiiiiiieiniiiee s
10-14 Mode 3 — Writing a New Count (With a Trigger)................
10-15 Mode 3 — Writing a New Count (Without a Trigger)
10-16 Mode 4 — BASIC OPEIALION ...ceccueiiitee ettt ettt ettt e e et e e e e e e e e e eas
10-17 Mode 4 — Disabling the COUNLoi i e
10-18 Mode 4 — Writing a New Count...
10-19 Mode 5 — Basic Operation..........cccceeeeeveneeenn.
10-20 Mode 5 — Retriggering the Strobeccccccviinnnne
10-21 Mode 5 — Writing @ New Count ValUeoocoeiiioiiiiiiie e
10-22 Timer Configuration Register (TMRCFG)........ccuiuiiiiiiiiiiee e e e
10-23 Port 3 Configuration Register (P3CFG)
10-24 Pin Configuration Register (PINCFG)............
10-25 Timer Control Register (TMRCON — Control Word Format)
10-26 Timer n Register (TMRN — Write FOrmat)ccooiiiiiiiiiie e e

10-27 Timer Control Register (TMRCON - Counter-latch Format)
10-28 Timer n Register (TMRn — Read Format)

10-29 Timer Control Register (TMRCON — Read-back Format)ccccoeiuevieeiiiiiiecenennee
10-30 Timer n Register (TMRN — Status FOrMat)oooiiiiiiiier et
11-1 Serial I/O Unit 1 Configuration............cccoceeeieiiieniiieieeee e

11-2 S1On Baud-rate Generator Clock Sources....

11-3 SION TranSMIttercueeeieiiie e

11-4 SIOn Data Transmission ProCess FIOW.........cooiiiuiiiiiiiiie e
11-5 SION RECEIVET e et ettt e ettt ettt e e ettt ee e bt e ee e et eeeeeeneneaas
11-6 SlOn Data Reception Process Flow..............

11-7 Pin Configuration Register (PINCFG)............

11-8 Port 1 Configuration Register (P1CFG)
11-9 Port 2 Configuration Register (P2CFG)
11-10 Port 3 Configuration Register (P3CFG)
11-11 SIO and SSIO Configuration Register (SIOCFG)..............
11-12 Divisor Latch Registers (DLLn and DLHn)
11-13 Transmit Buffer Register (TBRN)........cccceee..

11-14 Receive Buffer Register (RBRM)......coo it et
11-15 Serial Line Control Register (LCRN)c.iiiiiiii et
11-16 Serial Line Status Register (LSRn)................
11-17 Interrupt Enable Register (IERN)c.oieiiiiie e e
11-18 Interrupt ID RegiSter (I1RN) ..o et et et
11-19 Modem Control Signals — Diagnostic Mode Connections

11-20 Modem Control Signals — Internal CoNNECLioNSccooiiiiiiriieiiee e e

Xviii

Int9I® CONTENTS

Figure
11-21
11-22
11-23
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20

12-21
12-22
12-23
12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32
12-33
12-34
13-1

13-2

13-3

13-4

13-5

13-6

FIGURES

Page
Modem Control Register (MCRI)cooi ittt 11-30
Modem Status RegiSter (MSRN)......coi i et e eee e e 11-31
Scratch Pad RegiSter (SCRIM) ..o ettt ettt et e e eee e e eaeees 11-32
DMA Unit Block Diagram cerreeneneeeenenn 122
DMA Temporary Buffer Operation for a Read Transfer..........c.ccccooviiiieniiiieen e 12-8
DMA Temporary Buffer Operation for A Write Transferccccooiiiiiiiiiin e, 12-8
Start of a Two-cycle DMA Transfer Initiated by DRQn... crereeenee 1229
Changing the Priority of the DMA Channel and External Bus Requests cereeenenn12-10
Buffer Transfer Ended by an Expired Byte COUNtcooiiiiiiiiiiiiie e

Buffer Transfer Ended by the EOP# INPUL.........cc.ooii i
Single Data-transfer Mode with Single Buffer-transfer Modec..occocceiiieen.
Single Data-transfer Mode with Autoinitialize Buffer-transfer Mode
Single Data-transfer Mode with Chaining Buffer-transfer Mode............

Block Data-transfer Mode with Single Buffer-transfer Mode
Block Data-transfer Mode with Autoinitialize Buffer-transfer Modecc..co......
Buffer Transfer Suspended by the Deactivation of DRQN.........cccooiviiiiiiiiiiieeeenes
Demand Data-transfer Mode with Single Buffer-transfer Mode............c.ccccoceeiinines
Demand Data-transfer Mode with Autoinitialize Buffer-transfer Mode ...
Demand Data-transfer Mode with Chaining Buffer-transfer Modeccccce..e.
CASCAUE MOUE ...t e e e e nr e e
Pin Configuration Register (PINCFG)........cooi it
DMA Configuration Register (DMACFG)ccooiuiiiiaieit et
DMA Channel Address and Byte Count Registers

(DMANREQRN, DMANTARN, DMANBYC)...ceoiiiiitieitietie ettt e et
DMA Overflow Enable Register (DMAOVFE)....................
DMA Command 1 Register (DMACMDI1)........ccceveeereennn
DMA Status Register (DMASTS)......ccoviiiiiieriieiiiee e
DMA Command 2 Register (DMACMD2)ccoouuiiii et es et ee e e
DMA Mode 1 Register (DMAMODL)oouiiaiiiiie ettt et e e
DMA Mode 2 Register (DMAMOD2)cooiaiiiiiiieaieiieiee e e e

DMA Software Request Register (DMASRR — write format)
DMA Software Request Register (DMASRR — read format)
DMA Channel Mask Register (DMAMSK)ccuuiiiioiieii e et
DMA Group Channel Mask Register (DMAGRPMSK)
DMA Bus Size Register (DMABSR)cccoeeeviiiiieeereiee.

DMA Chaining Register (DMACHR).........ccccoeveiiiiieireine.

DMA Interrupt Enable Register (DMAIEN)cccceeeennene

DMA Interrupt Status Register (DMAIS)......cooi it et
Transmitter and Receiver in Master MOdecccccvieeeiiiiin i
Transmitter in Master Mode, Receiver in Slave Mode......

Transmitter in Slave Mode, Receiver in Master Mode
Transmitter and Receiver in Slave MOOEeccooviriiie e
Clock Sources for the Baud-rate Generator

SSIO Transmitter with Autotransmit Mode Enabled

Xix

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

Figure
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
16-1
16-2
16-3
16-4
16-5
16-6
17-1
17-2
17-3

XX

FIGURES
Page
SSIO Transmitter with Autotransmit Mode Disabledccccccoiveeiii e 13-8
Transmit Data bY POIINGc.ueee e et 13-9
Interrupt Service Routine for Transmitting Data Using Interrupts... tereeeeeeeneeen 13-10

Transmitter Master Mode, Single Word Transfer (Enabled when Clock is ngh) v 13-11
Transmitter Master Mode, Single Word Transfer (Enabled when Clock is Low)......13-11
Receive Data bY POIlINGoooiiiiie ettt
Interrupt Service Routine for Receiving Data Using Interrupts
Receiver Master Mode, Single Word Transfer

Pin Configuration Register (PINCFG)........cccccoeviiveeereinnn.
SIO and SSIO Configuration Register (SIOCFG)......cccvuuiiiiiiiiiiie e
Clock Prescale Register (CLKPRS)cooiiiiiii ittt et
SSIO Baud-rate Control Register (SSIOBAUD)

SSIO Baud-rate Count Down Register (SSIOCTR)
SSIO Control 1 Register (SSIOCONL)ccevevveviienannes

SSIO Control 2 Register (SSIOCON2)couiiiiiii ettt ee e
SSIO Transmit Holding Buffer (SSIOTBUF)
SSIO Receive Holding Buffer (SSIORBUF)
Channel Address Comparison Logic.............
Determining a Channel’s Address Block Size
Bus Cycle Length Adjustments for Overlapping Regions............cccoevueveeeniiieieennennee
Pin Configuration Register (PINCFG)........cooi ittt
Port 2 Configuration Register (P2CFG)
Chip-select High Address Register (CSnADH, UCSADH)coeiiiiiiiiieeiiieeee e
Chip-select Low Address Register (CSnNADL, UCSADL)cccocoeiiiiiiiiieereeieiee e
Chip-select High Mask Registers (CSnMSKH, UCSMSKH).................

Chip-select Low Mask Registers (CSnMSKL, UCSMSKL)...................

Refresh Control Unit CONNECLIONScccoeovviiriiie e

Refresh Clock Interval Register (RFSCIR)cuiuiiiiiiiii et
Refresh Control Register (RFSCON)ooiiiiii ettt e
Refresh Base Address Register (RFSBAD)
Refresh Address Register (RFSADD)cuiiiiiiiiiieaiiie ettt
Connections to Ensure Refresh of All Rows in an 8-Bit Wide PSRAM Device15-11
RAS# Only Refresh Logic: Paged MOAEcc.ueiiiaiiiiiiiie e e
RAS# Only Refresh Logic: Non-Paged Mode
1/O Port Block Diagram.........ccocoeuieeieniiiiiee e e
Logic Diagram of a Bi-directional Port...........
Port n Configuration Register (PNCFG).........ccocceeeeeiienen.
Port Direction RegiSter (PIDIR)coo ittt e s
Port Data Latch RegiSter (PNLTC) ..o ottt ettt e
Port Pin State Register (PnPIN)

Watchdog Timer Unit Connections
WDT Counter Value Registers (WDTCNTH and WDTCNTL)ccuvviieiiiiiiiee e 17-8
WDT Status Register (WDTSTATUS)uiuiiiiaiiit ettt et 17-9

Int9I® CONTENTS

FIGURES
Figure Page
17-4 WDT Reload Value Registers (WDTRLDH and WDTRLDL).......cccoooiiiieiiiiiieieeienes 17-10
17-5 Power Control Register (PWRCON)....... ..ottt e e ee e eee e
18-1 Test Logic UNit CONNECTIONSoiiiiiiiiie ittt ettt ee et e e e e raeaee e e e
18-2 TAP Controller (Finite-State Machine)
18-3 INStrUCtioN REGISEr (IR).....eteeie ettt e e ettt et e e e e e e sanae e ean

18-4 Identification Code Register (IDCODE)
18-5 Internal and External Timing for Loading the Instruction Register
18-6 Internal and External Timing for Loading a Data Register....................

B-1 Derivation of AEN Signal in a Typical PC/AT SYSteMcccoiiiiiiiiiiie e
B-2 Derivation of AEN Signal for Intel386™ EX processor-based Systems...................... B-3
E-1 General INStrUCHION FOIMAL..........ooiiiiii e s E-22

XXi

Intel386™ EX MICROPROCESSOR USER’'S MANUAL Int9I®

Table
2-1
2-2

4-2
5-1
5-2
5-3

5-5
5-6
5-7
5-8

5-10
5-11
5-12
5-13

6-2
6-3

7-2
7-3
8-1
8-2

9-2

10-1
10-2
10-3
10-4
10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
12-1
12-2
12-3
12-4
13-1

XXii

TABLES

PC-compatible PeripheralS.ottt 2-3
Embedded Application-specific Peripherals ... 2-4
Peripheral Register I/O Address Map in SIOt 15........ccueeiiiiiiiii e 4-5
Peripheral Register Addresses
MaSEEr'S IR3 CONNECLIONSccoiviiiieiee ittt e e e e
MaSEEr'S IRA CONNECLIONSccoiviiiieiee ittt et et n e e nre e e e
Signal Pairs on Pins without a Multiplexer.............cccc........

Example Pin Configuration Registers...........ccccocvveeeeeninene.

Example DMACFG Configuration Register
Example TMRCFG Configuration REgISIENcuoiiiiiiiiiiii et
Example INTCFG Configuration REQISIENc.uiuii it
Example SIOCFG Configuration Register...............c.cc......

Pin Configuration Register Design Woksheet
DMACFG Register Design Worksheetc.cccccoeeriinnne

TMRCFG Register Design WOrkSheet ...
INTCFG Register Design WOrKShEet ..ot e e
SIOCFG Register Design Worksheet............

Bus Interface Unit Signals
Bus Status Definitionsc.cccccvviereeiecnnnen

Sequence of Nonaligned BUS TranSfers....... ...t
CRO Bits Cleared Upon Entering SMMccoiiiiiiiiee e e
SMM Processor State Initialization Values
Relative Priority of Exceptions and INterrupts........c.ooiievioriiiieie e
Clock and Power Management REQISTEISco.uvuiiiiiiiiiie e e
Clock and Power Management Signals............c.c.ceeeeevne
82C59A Master and Slave Interrupt Sources....................
ICU REQISIEIS .o e e

B IO ST [T P RPRRSRSR
TCU ASSOCIAtEd REQISIEIS ...ttt ettt et e s e e ee e e e e e ae s e s e e e e
Operations Caused by GATEn...
GATEnR Connection OptioNnSc.ccceeeeeneneee.
Minimum and Maximum Initial Counts
Results of Multiple Read-back Commands Without Reads
ST (@ ST o o = PP
Maximum and Minimum Output Bit Rates.....
Divisor Values for Common Bit Rates............
Status Signal Priorities and Sources..............
SIO REQISIEIS ...t et ettt et ettt e ettt e e e e et e e e e e e sae e e e e sae e eeeen e reeeeen nene
Access to MultipleXed REQISLErS.co ittt
DMA SIgNAIS....coiittiit et
Operations Performed During Transfer
DIMA REQISTEIS ...ttt ettt ettt ettt e ettt e sttt e e e et sae e een et et e eeeanseneeeeeannnes
DMA Software Commands.........
SSIO SIGNAIS ...ttt et e ettt ettt e e et ee et e e e eeas

Int9I® CONTENTS

Table

13-2
13-3
14-1
14-2
15-1
15-2
16-1
16-2
16-3
17-1
17-2
18-1
18-2
18-3
18-4
18-5
A-1

A-3
A-4

E-1
E-2
E-3
E-4

E-6
E-7
E-8
E-9
E-10
E-11
E-12
E-13
E-14
E-15

TABLES

Maximum and Minimum Baud-rate Output Frequencies..........ccccceoeveeieeiiiee e e, 13-6
SSIO REGISIEIS ...ttt ettt ettt et ee e et e e e e et e e e aean sae e eesen sae e eeeen seneeeeeannenes

CSU SIGNAIS ..ottt ettt et e e e e et e e en eae e eeaenntneeeeaannaes

CSU Registers
RCU SIGNAIS ...ttt et ettt e ettt e ettt te e e et e e e e e beeeee s e aeeeeeaan
RCU REGISIEIS ...ttt ettt ettt e ettt e e e e ettt e e e eas e ae e e e beeeee s e reeeeeaan
Pin Multiplexing

I/O Port Registers
Control Register Values for I/O Port Pin Configurations.... e
WDT SIGNAIS ..ot e et ettt e e e et ettt e e e et e e e sbe e ee e saeeeeeean
WDT REQISTEIS ...t ettt ettt e et et e ekt ee e e et et ae e e et e e e e e sbe e ees e sreeeeeean
Test Access Port Dedicated Pins..................

TAP Controller State Descriptions.................

Example TAP Controller State Selections
Test-10giC UNit INSIFUCLIONSueiiii ettt e e e e
Boundary-scan Register Bit ASSIGNMENTScuiiiiiiiiiiien e
Signal Description Abbreviations.............ccccciiiiii e

Description of Signals Available at the Device Pins...........
Pin State ADDreviations ...

Pin States After Reset and During Idle, Powerdown, and Hold.............cccccoeiiinninennn.

Peripheral RegiSter AQArESSES.ot iiiiie ettt et e e e e
Instruction Set Summary

Fields WiIthin INSEIUCHIONS.oooii e e
Encoding of Operand Length (W) Field..........cooiiiiriie e
Encoding of reg Field When w Field is not Present in Instruction

Encoding of reg Field When w Field is Present in Instruction

Encoding of the Segment Register (sreg) Field..............ccoccvvvvvrennennn.

Encoding of 16-bit Address Mode with “mod r’M” BYecuuveviiiieveiieiieiiic e

Encoding of 32-bit Address Mode with “mod r/m” Byte (No s-i-b Byte Present)
Encoding of 32-bit Address Mode (“mod r/m” Byte and s-i-b Byte Present).............. E-29
Encoding of Operation Direction (d) Field
Encoding of Sign-Extend (s) Field...........cccccooviiiiiiiiiiiiinnns

Encoding of Conditional Test (tttn) Fieldccooo oo e
When Interpreted as Control Register Fieldccccvvevieiiiiiiini e
When Interpreted as Debug Register Field ...
When Interpreted as Test Register Field.......

xXiii

intel.

GUIDE TO THIS
MANUAL

intel.

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the Intel386™ EX Embedded Processor. It is intended for use by hardware
designers familiar with the principles of microprocessors and with the Intel386 processor archi-
tecture.

This chapter is organized as follows:
* Manual Contents (see below)
* Notational Conventions (page 1-3)
* Special Terminology (page 1-4)
* Related Documents (page 1-5)
¢ Electronic Support Systems (page 1-6)
¢ Technical Support (page 1-7)
* Product Literature (page 1-8)

1.1 MANUAL CONTENTS

This manual contains 18 chapters and 5 appendixes, a glossary, and an index. This section sum-
matrizes the contents of the remaining chapters and appendixes. The remainder of this chapter de-
scribes notational conventions and special termigolised thoughout the ranual and provides
references to related documentation.

Chapter 2 — Architectural Overview — describes the device features and some potential ap-
plications.

Chapter 3 — Core Overview —describes the differences between this device and the Intél386
SX processor core.

Chapter 4 — System Register Organization —eescribes the organization of the system regis-
ters, the 1/0 address space, address decoding, and addressing modes.

Chapter 5 — Device Configuration —explains how to configure the device for various appli-
cations.

Chapter 6 — Bus Interface Unit —describes the bus interface logic, bus states, bus cycles, and
instruction pipelining.

Chapter 7 — System Management Mod — describes Intel's System Management Mode
(SMM).

Chapter 8 — Clock and Power Management Unit —elescribes the clock generation circuitry,
power management modes, and system reset logic.

I 1-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Chapter 9 — Interrupt Control Unit — describes the interrupt sources and priority options and
explains how to program the interrupt control unit.

Chapter 10 — Timer/Counter Unit — describes the timer/counters and their available count
formats and operating modes.

Chapter 11 — Asynchronous Serial /0O (SIO) Unit —explains how to use the universal asyn-
chronous receer/transmitters (UARTS) to transmit and receive serial data.

Chapter 12— DMA Controller — describes how the enhanced directoey access controller
allows internal and external devices to transfer data directly to and from the system and explains
how bus control is arbitrated.

Chapter 13 — Synchronous Serial 1/0O (SSIO) Unit —explains how to transmit and receive
data synchronously.

Chapter 14 — Chip-select Unit —explains how to use the chip-select channels to access vari-
ous external memory and I/O devices.

Chapter 15 — Refresh Control Unit —describes how the refresh control unit generates peri-
odic refresh requests and refresh addresses to simplify the interface to dynamic memory devices.

Chapter 16 — Input/Output Ports — describes the general-purpose I/O ports and explains how
to configure each pin to serve either as an I/O pin or as a pin controlled by an internal peripheral.

Chapter 17 — Watchdog Timer Unit —explains how to use the watchdog timer unit as a soft-
ware watchdog, bus monitor, or general-purpose timer.

Chapter 18 — JTAG Test-logic Unit —describes the independent test-logic unit and explains
how to test the device logic and board-level connections.

Appendix A — Signal Descriptions —describes the device pins and signals and lists pin states
after a system reset and during powerdown, idle, and hold.

Appendix B — Compatibility with PC/AT* Architecture — describes the ways in which the
device is compatible with the standard PC/AT architecture and the ways in which it departs from
the standard.

Appendix C — Example Code Header Files— contains the header files called by the code ex-
amples that are included in several chapters of this manual.

Appendix D — System Register Quick Reference- contains an alphabetical list of registers.
Appendix E — Instruction Set Summary —lists all instructions and their clock counts.
Glossary —defines terms with special meaning used sigfmut this maual.

Index — lists key topics with page number references.

1-2

intel.

GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS

The following notations are used throughout this manual.

#

Variables

New Terms

Instructions

Numbers

Units of Measure

The pound symbol (#) appended to a signal nhame indicates that the signal
is active low.

Variables areshown in italics. Vadbles must be replaced with correct
values.

New terms are shown in italics. See the Glossary for a brief definition of
commonly used terms.

Instruction mnemonics are shown in upper case. Wien are
programming, instructionsire not case sensitive. You may use either
upper or lower case.

Hexadecimal numbers are represented by a string of hexadecimal digits
followed by the characted. A zero prefix is added to numbers that begin
with A throughF. (For exampleFF is shown a9)FFH.) Decimal and
binary numbers are represented by their customary notations. (That is,
255 is a decimal number and 1111 1111 is a binary number. In some cases,
the letteB is added for clarity.)

The following abbreviations are used to represent units of measure:

A amps, amperes

Gbyte gigabytes

Kbyte kilobytes

KQ kilo-ohms

mA milliamps, milliamperes
Mbyte megabytes

MHz megahertz

ms milliseconds

mw milliwatts

ns nanoseconds

pF picofarads

w watts

Vv volts

MA microamps, microamperes
uF microfarads

us microseconds

uW microwatts

1-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Register Bits

Register Names

Signal Names

When the text refers to more that one bit, the range may appear as two
numbers separated by a colon (example: 7:0 or 15:0). The fidtdan

(7 or 15 in the example) is the most-significant bit and the second bit
shown (0) is the least-significant bit.

Register names are shown in upper case. If a register name contains a
lowercase, italic character, it represents more than one register. For
example, ARCFG represents three registers: P1CFG, P2CFG, and P3CFG.

Signal names arshown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number, while the group is represented by the signal name
followed by a variabler(). For example, the lower chip-select signals are
named CSO0#, CS1#, CS2#, and so on; they are collectively callgt CS

A pound symbol (#) appended tosignal name identifies an active-low
signal. Port pins are represented by the port abbreviation, a period, and
the pin number (e.g., P1.0, P1.1).

1.3 SPECIAL TERMINOLOGY

The following terms

have special meanings in this manual.

Assert and Deassert The termsassertanddeassertefer to the act of making a signal

DOS I/O Address

active and inactive, respectively. The active polarity (high/low) is
defined by the signal name. Active-low signals are designated by a
pound symbol (#) suffix; active-high signals have no suffix. Beds
RD# is to drive it low; to assert HOLD is to drive it high; to deassert
RD# is to drive it high; to deassert HOLD is to drive it low.

Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into DOS (or PC/AT) addresses OH—
03FFH. In this manual, the ter@OS addresandPC/AT address
are synonymous.

Expanded I/O Address All peripheral registers reside at I/0 addresses OFOOOH-OFFFFH.

PC/AT Address

Processor and CPU

1-4

PC/AT-compatible integrated peripherals can also be mapped into
DOS (or PC/AT) address space (OH—03FFH).

Integrated peripherals that are compatible with PC/AT system
architecture can be mapped into PC/AT (or DOS) addresses OH—
03FFH. In this manual, the ter@OS addresandPC/AT address
are synonymous.

Processorrefers to the Intel386 EX processor including the
integrated peripheral€PU refers to the processor core, which is
based on the static Intel386 SX processor.

Int9|® GUIDE TO THIS MANUAL

Reserved Bits Reserved bits are not used in this device, but they may be used in
future implementations. Follow these guidelines to ensure
compatibility with future devices:

* Avoid any software dependence on the state of undefined
register bits.

* Use a read-mofji-write sequence to loadgisters.

¢ Mask undefined bits when testing the values of defined bits.

¢ Do not depend on the state of undefined bits when storing
undefined bits to memory or to another register.

* Do not depend on the ability to retain information written to
undefined bits.

Set and Clear The termssetandclear refer to the value of a bit or the act of giving
it a value. If a bit iset its value is “1";settinga bit gives it a “1”
value. If a bit isclear, its value is “0”;clearinga bit gives it a “0”
value.

1.4 RELATED DOCUMENTS

The following documents contain additional information that is useful in designing systems that
incorporate the Intel386 EX processor. To order documents, please call Ietati¢ Fulfill-
ment (1-800-548-4725 in the U.&1d Canada; +44(0) 1793-431155 in Europe).

Document Name Order Number
Intel386™ EX Embedded Microprocessor datasheet 272420
Intel386™ SX Microprocessor datasheet 240187
Intel386™ SX Microprocessor Programmer’s Reference Manual 240331
Intel386™ SX Microprocessor Hardware Reference Manual 240332
Development Tools 272326
Buyer’s Guide for the Intel386 ™ Embedded Processor Family 272520
Intel386™ EX Microprocessor Pin Multiplexing Map 272587
Packaging 240800

You may also want to refer to Standard 1149.1—1990, IEEE Standard Test Access Port and
Boundary-Scan Architecture and its supplement, Standard 1149.1a—1993.

1-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

1.5 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service and application BBS provide up-to-date technical information. Intel also
maintains several forums on CompuServe and offers a variety of information on the World Wide
Web. These systems are available 24 hours a day, 7 days a week, providing technical information
whenever you need it.

1.5.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documgats tax machine. You can

get product announcements, change notificatiprsguct literature, device charadsgtics, de-

sigh recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-525-3019US or Canada)
+44-1793-432509 (Europe)
+65-256-5350 (Singapore)
+852-2-844-4448 (Hong Kong)
+886-2-514-0815 (Taiwan)
+822-767-2594 (Korea)
+61-2-975-3922 (Australia)
1-503-264-6835 (Worldwide)

Think of the FaxBack service as a library of technical documents that you can accegsuwith
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time you use Fax-
Back, you should order treppropriate subject catalogs to get a complete list of document order
numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list the title, sta-
tus, and order number of each document that has been added, revised, or deleted during the pas
eight weeks. To receive the upd#&de a subject catalog, entdre subject catalog number fol-

lowed by a zero. For example, for the complete microcontroller and flash catalog, request docu-
ment number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:
1. Solutions OEMsubscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

o 0k~ WD

Multibus and iRM>® software catalog and BBS file listings

1-6 I

Int9|® GUIDE TO THIS MANUAL

7. Microprocessor, PCI, and peripheral catalog
8. Quality and reliability and change notification catalog

9. AL (Intel Architecture Labs) technology catalog

1.5.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latesApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, code examples, application notes and utilities, and quality and reliability data.

The systermsupports 1200- through 19200-baud modenypichl modem settings aret400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, use a terminal program totteatelephone number given beldar your

area; once you are connedt respond to theystem prompts. During your first session, enten

name and location. The system operator will set up your access account within 24 hours. At that
time, you can access the files on the BBS.

503-264-7999 U.S., Canada, Japan, Asia Pacific (up to 19.2 Kbaud)
44(0)1793-432955 Europe
NOTE

If you have problems aessing the BBS, use these settings for your modem:
2400, N, 8, 1. Refer to your terminal software documentation for instructions
on changing these settings.

1.5.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoveries, and
debate issues. Type “go intel” for access. For information about CompuServe access and service
fees, call CompuServe at 1-800-848-81995)or 614529-1340 (outsle the U.S.).

15.4 World Wide Web
We offer a variety of information through the World Wide Web (http://www.intel.com/). Select
“Embedded Design Products” from the Intel home page.

1.6 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-3566100 (fax) U.S. and Canada

I 1-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

1.7

PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.

1-8

1-800-548-4725
708-296-9333
44(0)1793-431155
44(0)1793-421333
44(0)1793-421777
81(0)120-47-88-32

U.S. and Canada

U.S. (from overseas)
Europe (U.K.)
Germany
France

Japan (fax only)

intel.

ARCHITECTURAL
OVERVIEW

intel.

CHAPTER 2
ARCHITECTURAL OVERVIEW

The Intel386" EX embedded processor (Figure 2-1) is based on the static Intel386 SX processor.
This highly integrated device retains those personal computer functions that are useful in embed-
ded applications and integrates peripherals that are typically needed in embedded systems. The
Intel386 EX processor provides a PC-compatible development platform in a device that is opti-
mized for embedded applications. Its integrated peripherals and power management options
make the Intel386 EX processor ideal for portable systems.

The integrated peripherals of the Intel386 EX processor are compatible with the standard desktop
PC. This allows existing PC software, including most of the industry’s leading desktop and em-
bedded operating systems, to be easily implemented on an Intel386 EX processor-based platform.
Using PC-compatible peripherals also allowstfer development and dedpging of application
software on a standard PC platform.

Typical applications using the Intel386 EX processor include automated manufacturipg e

ment, cellular telephones, telecommunications equipment, fax machines, hand-held data loggers,
high-precision industrial flow controlte, interactive television, medical equipment, modems,
and smart copiers.

This chapter is organized as follows:
* Intel386 EX Embedded Processor Core (see below)
* Integrated Peripherals (page 2-3)

2.1 Intel386 EX EMBEDDED PROCESSOR CORE

The Intel386 EX processor contains a modular, fully static Intel386 CX central processing unit
(CPU). The Intel386 CX processor is an enhanced Intel386 SX processor with the addition of
System Management Mode (SMM) and two additional address lines. The Intel3@@&ssor

has a 16-bit data bus and a 26-bit addresssupgorting up to 64 Mbytes of memory address
space and 64 Kbytes of I/O address space. The performance of the Intel386 EX processor closely
reflects the Intel386 SX CPU performance at the same speeds.

Chapter 3, “CORE OVERVIEW" describes differences between the Intel386 EX processor core
and the Intel386 SX processor. Please refer tdnted386™ SX Microprocessor Programmer’s
Reference Manuglorder number 240331) for applications and system programming informa-
tion; descriptions of protected, real, and virtual-8086 modes; and details on the instruction set.

I 2-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Data
Address

Bus Interface
Unit

l_ Chip-select
[Unit
JTAG Unit
[
_____________________ : Address °
| Intel3g6™ CX Core ! Clock and Power
. I [Management Unit
E Core Enhancements |
. -A0Gate ! Data ®——1 DRAM Refresh
: - CPU Reset . ¢ Control Unit
H - SMM 1
] 1
[Watchdog Timer Unit
® Bus Monitor
® Asynchronous Serial /O
2 channels
L ¢ (16450 compatible)
A
@®— Synchronous Serial I/O
[1 channel, full duplex
@—— Timer/counter Unit
Py 3 channels
(82C54 compatible)
I/O Ports
[
@ .
INTR Interrupt Control Unit
Ps DMA Controller
2 channels
*—— (8237A compatible)

and Bus Arbiter Unit

A2849-02

2-2

Figure 2-1. Intel386™ EX Embedded Pr ocessor Block D iagram

intel.

2.2

The Intel386 EX processor integrates both PC-compatible peripherals (Table 2-1) and peripherals

ARCHITECTURAL OVERVIEW

INTEGRATED PERIPHERALS

that are specific to embedded applications (Table 2-2).

Table 2-1. PC-compatible Peripherals

Name Description

Interrupt Consists of two 82C59A programmable interrupt controllers (PICs) configured as master

Control Unit and slave. You may cascade up to six external 82C59A PICs to expand the external

(Icv) interrupt lines to 52. Refer to Chapter 9, “INTERRUPT CONTROL UNIT.”

Timer/counter | Provides three independent 16-bit down counters. The programmable TCU is

Unit (TCU) functionally equivalent to three 82C54 counter/timers with enhancements to allow
remapping of peripheral addresses and interrupt assignments. Refer to Chapter 10,
“TIMER/COUNTER UNIT.”

Asynchronous | Features two independent universal asynchronous receiver and transmitter (UART)

Serial I/0 units which are functionally equivalent to National Semiconductor’'s NS16450. Each

(SIO) Unit channel contains a baud-rate generator, transmitter, receiver, and modem control unit.

Receive and transmit interrupt signals can be connected to the ICU controller and DMA
controller. Refer to Chapter 11, “ASYNCHRONOUS SERIAL I/O UNIT.”

Direct Memory
Access

(DMA)
Controller

Transfers internal or external data between any combination of memory and /O devices
for the entire 26-bit address bus. The two independent channels operate in 16- or 8-bit
bus mode. Buffer chaining allows data to be transferred into noncontiguous memory
buffers. The DMA channels can be tied to any of the serial devices to support high data
rates, minimizing processor interruptions. Provides a special two-cycle mode that uses
only one channel for memory-to-memory transfers. Bus arbitration logic resolves priority
conflicts between the DMA channels, the refresh control unit, and an external bus
master. SIO and SSIO interrupts can be connected to DMA for high-speed transfers.
Backward compatible with 8237A. Refer to Chapter 12, “DMA CONTROLLER.”

2-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table 2-2. Embedded Application-specific Peripherals

Name Description

System The Intel386 EX processor provides a mechanism for system management with a

Management | combination of hardware and CPU microcode enhancements. An externally generated

Mode (SMM) | system management interrupt (SMI#) allows the execution of system-wide routines that are
independent and transparent to the operating system. The system management mode
(SMM) architectural extensions to the Intel386 CPU are described in Chapter 7, “SYSTEM
MANAGEMENT MODE.”

Clock and An external clock source provides the input frequency. The clock and power management

Power unit generates separate internal clock signals for core and peripherals (half the input

Management | frequency), divides the internal clock by two for baud clock inputs to the SIO and SSIO, and

Unit divides the internal clock by a programmable divisor to provide a prescaled clock signal
(various frequencies) for the TCU and SSIO.
Power management provides idle and powerdown modes (idle stops the CPU clock but
leaves the peripheral clocks running; powerdown stops both CPU and peripheral clocks).
An external clockout signal is also provided. Refer to Chapter 8, “CLOCK AND POWER
MANAGEMENT UNIT.”

Synchronous Provides simultaneous, bidirectional high speed serial I/0. Consists of a transmit channel, a

Serial I/O receive channel, and a baud rate generator. Built-in protocols are not included, because

(SSIO) unit these can be emulated using the CPU. SSIO interrupts can be connected to the DMA unit
for high-speed transfers. Refer to Chapter 13, “SYNCHRONOUS SERIAL I/O UNIT.”

Chip-select Programmable, eight-channel CSU allows direct access to up to eight devices. Each

Unit (CSU) channel can operate in 16- or 8-bit bus mode and can generate up to 31 wait states. The
CSU can interface with the fastest memory or the slowest peripheral device. The minimum
address block for memory address-configured channels is 2 Kbytes. The size of these
address blocks can be increased by powers of 2 Kbytes for memory addresses and by
multiples of 2 bytes for 1/0 addresses. Supports SMM memory addressing and provides
ready generation and programmable wait states. Refer to Chapter 14, “CHIP-SELECT
UNIT.”

Refresh Provides a means to generate periodic refresh requests and refresh addresses. Consists of

Control Unit a programmable interval timer unit, a control unit, and an address generation unit. Bus

(RCU) arbitration logic ensures that refresh requests have the highest priority. The refresh control
unit (RCU) is provided for applications that use DRAMs with a simple EPLD-based DRAM
controller or PSRAMs that do not need a separate controller. Refer to Chapter 15,
“REFRESH CONTROL UNIT.”

Parallel I/0 Three 1/O ports facilitate data transfer between the processor and surrounding system

Ports circuitry. The Intel386 EX processor is unique in that several functions are multiplexed with
each other or with 1/O ports. This ensures maximum use of available pins and maintains a
small package. Each multiplexed pin is individually programmable for peripheral or I/O
function. Refer to Chapter 16, “INPUT/OUTPUT PORTS.”

Watchdog When enabled, the WDT functions as a general purpose 32-bit timer, a software timer, or a

Timer (WDT) bus monitor. Refer to Chapter 17, “WATCHDOG TIMER UNIT.”

Unit

JTAG Test- The test-logic unit simplifies board-level testing. Consists of a test access port and a

logic Unit boundary-scan register. Fully compliant with Standard 1149.1-1990, /EEE Standard Test

Access Port and Boundary-Scan Architecture and its supplement, Standard 1149.1a-1993.
Refer to Chapter 18, “JTAG TEST-LOGIC UNIT.”

2-4

intel.
3

CORE OVERVIEW

intel.

CHAPTER 3
CORE OVERVIEW

The Intel386™ EX processor core is bagpdn the Intel386 CX processarhich is an enhanced
version of the Intel386 SX processor. This chapter describes the Intel386 CX processor enhance-
ments over the Intel386 SX processor, internal architecture of the Intel386 CX processor, and the
core interface on the Intel386 EX processor.

This chapter is organized as follows:
* Intel386 CX Processor Enhancements (see below)
* Intel386 CX Processor Internal Architecture (page 3-2)
¢ Core Intel386 EX Processor Interface (page 3-6)

3.1 Intel386 CX PROCESSOR ENHANCEMENTS

The Intel386 CX processor, based on the Intel386 SX processor, adds system management mode
and two additional address lines for a total of 26 address lines.

3.1.1 System Management Mode

The Intel386 CX processor core provides a mechanism for system management with a combina-
tion of hardware and CPU microcode enhancements. An externally generated System Manage-
ment Interrupt (SMI#) allows the esation of system wide routines which are independent and
transparent to the operating system. The System Management Mode (SMM) architecture exten-
sions to the Intel386 SX processor consist of the following elements:

¢ Interrupt input pin (SMI#) to invoke SMM
* One output pin to identify execution state (SMIACT#)
* One new instruction (RSM, executable only from SMM) to exit SMM

* SMM also added one to four execution clocks to the following instructions: IN, INS, REP
INS, OUT, REP OUT, POPA, HALT, MOV CRO, and SRC. INTR and NMI also need an
additional two clocks for interrupt latency. These cycles were added due to the microcode
modification for the SMM implementation. Refer to Appendix E for the exact execution
times. Otherwise, 100% of the Intel386 SX processor instructions execute on the Intel386
CX processor core.

Please refer to Chapter 7 for more details on System Management Mode.

3.1.2 Additional Address Lines

Two additional address lines were added to the Intel386 CX processor core for a total of 26. This
expands the physical address space from 16 Mbytes to 64 Mbytes.

I 3-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

3.2 Intel386 CX PROCESSOR INTERNAL ARCHITECTURE

The internal architecture of the Intel386 CX processor consists of functional units that operate in
parallel. Fetching, decoding, execution, memory management and bus accesses for several in-
structions are performed simultaneously. This parallel operation is gaflelined instruction
processing. With pipelining, each instruction is performed in stages, and the processing of several
instructions at different stages may overlap, as shown in Figure 3-1. The pipelined processing of
the Intel386 CX processor results in higher performance and enhanoeglktput rate over non-

pipelined processors.

intel.

Typical
Processor

Bus Unit

Decode
Unit

Execution
Unit

Fetch 1 Decode 1 Execute 1 Fetch 2 Decode 2 Execute 2
Intel386™ SX CPU/Intel376™ CPU
Fetchl | Fetch2 | Fetch3 | Fetcha | oo | Fetchs | Fetche
Result 1

Decode 1 Decode 2 Decode 3 Decode 4 Decode 5

Execute 1 Execute 2 Execute 3 Execute 4
"""""""""""" Addr & Addr &
________________________ MMU MMU e

Elapsed Time

Vo

A2850-01

3-2

Figure 3-1. Instruction Pipelining

intel.

CORE OVERVIEW

Figure 3-2 shows the internal architecture of the Intel386 CX processor.

Core Plus
Segmentation Unit Paging Unit Unit
HOLD, INTR, NMI,
2 Request ERROR#,BUSY#,
- -Input RESET, HLDA,
Effective Address Bus 32 > Adder N 32 ::> Adder 2| |Prioritizer | sMi#, SmiACTS,
" PEREQ
g
. =]
Effective Address Bus 32 5 Desc'nptor Page 2
4 Register Cache E
g
Limit and Control and o
Attribute Attribute
PLA PLA
BEO#, BE1#,
‘\ ‘\ A25:1
X 5 Address
Prciltecttlon g ks Driver
es g @ @
- A e o,
& 4 > \]
A/\ | g Internal Control Bus § E%’ > Pipelir_1e/ Qging\;A#,
s 8 = Bus Size
A 2 A £ A 2 Control
@
Y 8
Y Y © > MUX/ D15:0
Transceivers
Barrel > Instruction 32 Prefetcher 32
shifter, [Sams Decode Decoder Limit
Adder = and Checker
ags Sequencing
Multiply/
Divide 3 Decoded Code
Instruction | Stream 16 Byte
) A— Control Queue Code
Register ROM 32 Queue
File ALU
Control
ALU Control Instruction Instruction
Predecode Prefetch

Dedicated ALU Bus

32

A2851-02

Figure 3-2. The Intel386™ CX Processor Internal Block Diagram

3-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The six functional units of the Intel386 CX processor are:
¢ Core Bus Unit
¢ Instruction Prefetch Unit
¢ Instruction Decode Unit
¢ Execution Unit
* Segmentation Unit

¢ Paging Unit

3.2.1 Core Bus Unit

The Core Bus Unit provides the interface between the processor and its environment. It accepts
internal requests for instruction fetches (from the Instruction Prefetch Unit) and data transfers
(from the Execution Unit), and prioritizes the requests. At the same time, it generates or processes
the signals to perforrthe current bus cycle. These signals include the address, data, and control
outputs for accessing external memory and 1/0. The Core Bus Unit also controls the interface to
external bus masters and coprocessors.

3.2.2 Instruction Prefetch Unit

The Instruction Prefetch Unit performs the program look ahead function of the CPU. When the
Core Bus Unitis not performing bus cycles to execute an instruction, the Instruction Prefetch Unit
uses the Core Bus Unit to fetch sequentially along the instruction byte stream. These prefetched
instructions are stored in the Instruction Queue to await processing by the Instruction Decode
Unit.

Instruction prefetches are given a lower priority than data transfers; assuming zero wait state
memory access, prefetch activity never delays execution. On the other hand, when there is no data
transfer requested, prefetching uses bus cycles that would otherwise be idle.

3.2.3 Instruction Decode Unit

The Instruction Decode Unit takes instruction stream bytes from the Prefetch Queue and trans-

lates them into microcode. The decoded instructions are then stored in a three-deep Instruction

Queue (FIFO) to await processing by the Execution Unit. Inmediate data and opcode offsets are

also taken from the Prefetch Queue. The decodewnarits in parallel with thether units and

begins decoding when there is a free slot in the FIFO and there are bytes in the prefetch queue.
Opcodes can be decoded at a rate of one byte per clock. Immediate data and offsets can be decod
ed in one clock regardless of their length.

34

Int9|® CORE OVERVIEW

3.2.4 Execution Unit

The Execution Unit executes the instructions from the Instruction Queue and therefore commu-
nicates with all other units required to complete the instruction. The functions of itsubregts
are given below.

* The Control Unit contains microcode and special parallel hardware that speeds multiply,
divide, and effective address calculation.

* The Data Unit contains the (Arithmetic Logic Unit) ALU, a file of eight 32-bit general-
purpose registers, and a 64-bit barrel shifter (whicfopms multiple bit sHts in one
clock). The Data Unit performs data operations requested by the Control Unit.

* The Protection Test Unit checks for segmentation violations under the control of the
microcode.

To speed the execution of memory reference instructions, the Execution Unit partially overlaps
the execution of any memory reference instruction with the previous instruction.

3.2.5 Segmentation Unit

The Segmentation Unit translates logical addresses into linear addresses at the request of the Ex-
ecution Unit. The on-chip Segment Descriptor Cache stores the currently used segment descrip-
tors to speed this translation. At the same time it performs the translation, the Segmentation Unit
checks for bus-cycle segmentation violations. (These checks are separate from the static segmen-
tation violation checks performed by the Protection Test Unit.) The translated linear address is
truncated to a 24-bit physical address.

3.2.6 Paging Unit

When the Intel386 CX processor paging mechanism is enabled, the Paging Unit translates linear
addresses generated by the Segmentation Unit or the Instruction Prefetch Unit into physical ad-
dresses. (When paging is not enabled, the physical address is the same as the linear address, an
no translation is necessary.) The Page Descriptor Cache stores recently used Page Directory and
Page Table entries in its Translation Lookaside Buffer (TLB) to speed this translation. The Paging
Unit forwards physical addresses to the Core Bus Unit to perform memory and I/O accesses.

3-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

3.3 CORE Intel386 EX PROCESSOR INTERFACE

The Intel386 EX processor peripherals are connected to the Intel386 CX processoncafe thr

an internal Bus Interface Unit (BIU). The BIU controls internal peripheral accesses and external
memory and 1/O accesses. Because it has the BIU between the Intel386 CX processor core and
the external bus, the Intel386 EX processor bus timings are not identical to those ofi386 Inte

CX processor or Intel386 SX processor.

The Intel386 CX processor numeric coprocessor interface is maintaindataarght out to the

Intel386 EX processor pins. The same 1/O addresses used on the Intel386 SX processor are used
on the Intel386 EX processor, even though there are more address lines. The A23 line is high for
coprocessor cycles. Refer to “Interface To Intel387™ SX Math Coprocessor” on page 6-38 for
more details.

3-6 I

intel.

SYSTEM
REGISTER
ORGANIZATION

intel.

CHAPTER 4
SYSTEM REGISTER ORGANIZATION

This chapter provides an overview of the system registers incorporated in the Intel386rdt EX
cessor, focusing on register organization from an address architecture viewpoint. The chapters
that cover the individual peripherals describe the registers in detail.

This chapter is organized as follows:
* Overview (see below)
* 1/O Address Space for PC/AT Systems (page 4-2)
¢ Expanded I/O Address Space (page 4-3)
* Organization of Peripheral Registers (page 4-5)
* 1/O Address Decoding Techniques (page 4-6)
¢ Addressing Modes (page 4-9)
* Peripheral Register Addresses (page 4-15)

4.1 OVERVIEW
The Intel386 EX processor has register resources in the following categories:
* Intel386 processor core architectuegisters:
— General purpose registers
— Segment registers
— Instruction pointer and flags
— Control registers
— System address registers (protected mode)
— Debug registers
— Test registers
* Intel386 EX processor peripheral registers:
— Configuration space control registers
— Interrupt control unit registers
— Timer/counter unit registers
— DMA unit registerq8237A-compatible and enhanced function registers)
— Asynchronousserial /0 (SIO) registers

— Clock generation selector registers

I 4-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

— Power management control registers
— Chip-select unit control registers

— Refresh control unit registers

— Watchdog timer control registers

— Synchronouserial 1/0O control registers

— Parallel I/O port control registers

4.1.1 Intel386 Processor Core Architecture Registers

These registers are a superset of8086 and30286 procssor registers. All 16-bi8086 and
80286 registers are contained within the 32-bit Intel386 processor corernedistietailed de-
scription of the Intel386 processor architecture base registers daartkin thelntel386™ SX
Microprocessor Programmers Reference Man(@ber number 240331).

4.1.2 Intel386 EX Processor Periphe ral Registers

The Intel386 EX processor contains some peripherals that are common and compatible with the
PC/AT" system architecture and others that are useful for embedded applications. The peripheral
registers control access to these peripherals and enable you to configure on-chip system resources
such as timer/counters, power management, chip selects, and watchdog timer.

All peripheral registers reside physically in #xpanded 1/0O address spa@aldresses 0FO00H—-
OFFFFH). Peripherals that are compatible with PC/AT system architecture can also be mapped
into DOS /0 address spa¢addresses O0H-03FFH, 10-bit decode). The following rules apply for
accessing peripheral registers after a system reset:

* Registers within the DOS I/O address space are accessible.

* Registers within the expanded I/O address space are accessible only after the expanded 1/0
address space is enabled.

4.2 1/O0 ADDRESS SPACE FOR PC/AT SYSTEMS

The Intel386 EX processor’s I/O address space is 64 Kbytes. On PC/AT platforms, the DOS op-
erating system and applications assume that only 1 Kbyte of the total 64-Kbyte 1/0O address space
is used. The first 256 bytes (addresses 00000H—00FFH) are reserved for platform (motherboard)
I/O resources such as the interrupt and DMA controllers, and the remaining 768 bytes (addresses
0100H—-03FFH) are available for “general” I/O peripheral card resources. Since only 1 Kbyte of
the address space is supported, add-on 1/O peripheral cards typically decode only the lower 10
address lines. Because the upper address lines are not deco@8@,pleform address locations

and the 768 bus address locations are repeated 64(tmdsKbyte boundar®, covering the

entire 64-Kbyte address space. (See Figure 4-1.)

Generally, add-on I/O peripheral cards do use the I/O addresses reserved for the platform re-
sources. Software running on the platform can use any of the 64 repetitithhes256 address
locations reserved for accessing platform resources.

4-2 I

Int9|® SYSTEM REGISTER ORGANIZATION

FFFFH (64K)

General Slot I1/10

FDOOH
Platform 1/0 (Reserved)

FCOOH (63K)

) °
° °
° °
0COOH (3K)
General Slot I1/10
0900H
Platform 1/0 (Reserved)
0800H (2K)
General Slot I1/0
0500H
Platform 1/O (Reserved)
0400H (1K)
General Slot 1/10
0100H (256)
Platform 1/O (Reserved)

0000H (0)

A2498-01

Figure 4-1. PC/AT 1/0O Address Space (10-bit Decode)

4.3 EXPANDED I/O ADDRESS SPACE

The Intel386 EX processor’s I/O address scheme is similar to that of the Extended Industry Stan-
dard Architecture (EISA) bus and the Enhanced - Industry Standard Architecture (E-ISA) bus.
Both standards maintain backward software compatibility with the ISA architecture. The ISA
Platform 1/0O (0-100H) is a@ssed with a 16-bit address decode and is located in th25f$tO
locations. The General Slot I/O that is typically used by add-in boards is repeated throughout the
64 Kbyte I/O address range due to their 10-bit only decode. This allows 63 of the 64 repetitions
of the first 256 address locations of every 1 Kbyte block to be allocated to specific slots. Each slot
is 4 Kbyte in size, allowing for a total of 16 slots. The partitioning is sucdbagroups of 256
address locations are assigned to each slot, for a total of 1024 specific address locations per slot.

I 4-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

(See Figure 4-2.) Thus, each slot has 1 Kbyte addresses (in four 256-byte segments) that can po-
tentially contain extended peripheral registers.

FFFFH (64K)
General Slot I/10

Slot 15
General Slot /0
Slot 15
General Slot I/O

FCOOH (63K)

F800H (62K)

Slot 15
General Slot I1/10

F400H (61K)

Slot 15
FOOOH (60K)
))
) °
) °
1FFFH (8K)
General Slot I1/10
Slot 1
1COO0H (7K)
General Slot I/0
Slot 1
1800H (6K)
General Slot I1/10
Slot 1
1400H (5K)
General Slot 1/10
Slot 1
1000H (4K)
General Slot I1/10
Slot 0
0COO0H (3K)
General Slot 1/10
Slot 0
0800H (2K)
General Slot I/0
Slot 0
0400H (1K)
General Slot 110
Slot 0
ISA Platform I/O 0000H (OK)

A2499-02

Figure 4-2. Expanded 1/0 Address Space (16-bit Decode)

4-4

Int9|® SYSTEM REGISTER ORGANIZATION

The Intel386 EX processor uses slot 15 for the registers needed for integrated peripherals. Using
this slot avoids conflicts with other devices in an EISA system, since EISA systems typically do
not use slot 15.

4.4 ORGANIZATION OF PERIPHERAL REGISTERS

The registers associated with the integrated peripherals are physically located in slot 15 of the I/O
space. There are sixteen 4 Kbyte address slots in 1/0O space. Slot O refers to OH-OFFFH; slot 15
refers to OFOOOH-OFHH. Table 4-1 shows the address map for the peripheral registers in slot
15. Note that the 1/0O addresses fall in address ranges OFO00H—-0FOFFH, OF400H-OF4FFH, and
OF800H-0F8FFH; utiling the unique sets of 256 1/0 addresses in Slot 15.

Table 4-1. Peripheral Register /0O Address Map in Slot 15

Register Description I/O Address Range
DMA Controller 1 OFOOOH - OFO1FH
Master Interrupt Controller OF020H - OFO3FH
Programmable Interval Timer OF040H - OFO5FH
DMA Page Registers OFO80H - OFO09FH
Slave Interrupt Controller OFOAOH - OFOBFH
Math Coprocessor OFOFOH - OFOFFH
Chip Select Unit OF400H - OF47FH
Synchronous Serial 1/0O Unit OF480H - OF49FH
DRAM Refresh Control Unit OF4A0OH - OF4BFH
Watchdog Timer Unit OFACOH - OF4CFH
Asynchronous Serial I/0O Channel 0 (COM1) OF4F8H - OF4FFH
Clock Generation and Power Management Unit OF800H - OF80FH
External/lnternal Bus Interface Unit OF810H - OF81FH
Chip Configuration Registers OF820H - OF83FH
Parallel 1/0O Ports OF860H — OF87FH
Asynchronous Serial I/O Channel 1 (COM2) OF8F8H - OF8FFH

4-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

4.5 /O ADDRESS DECODING TECHNIQUES

One of the key features of the Intel386 EX processor is that it is configdioatdempatibility

with the standard PC/AT architecture. In a PC/AT system, the platform I/O resources are located
in the slot 0 I/O address space. For the Intel386 EX processor, this means that PC/AT-compatible
internal peripherals should be reflected in slot 0 of the 1/0 space for DOS operating system and
application software to access and manipulate them properly.

This discussion leads to the concept®arS I/O spac@ndexpanded I/O space.

DOS I/O Space DOS I/0 space refers to the lower 1 Kbyte of I/O addresses, where
only PC/AT-compatible peripherals can be mapped.

Expanded I/O Space Expanded I/O space refers to the top 4 Kbytes of I/O addresses,
where all peripheral registers are physically located. The remainder
of this section explains how special /0O address decoding schemes
manipulate register addresses within these two I/O spaces.

4.5.1 Address Configuration Register

I/O address locations 22H and 23H in DOS /O space offer a special case. These address locations
are not used to access any peripheral registers in a PC/AT system. The Intel386 SL microproces-
sor and other integrated PC solutions use them to enable extra address space required for config-
uration registers specific to these products. On the Intel386 EX processor, these address locations
are used thidethe peripheral registers in the expanded I/O space. The expanded I/O space can
be enabled (registers visible) or disabled (registers hidden).

The 16-bit register at I/O location 22H can also be used to control mapping of various internal
peripherals in /O address space. This register, REMAPCFG, is defined in Figure 4-3.

The remap bits of this register control whether the internal PC compatible peripherals are mapped
into the DOS I/0 space. Setting the peripheral bit makes the peripheral accessible only in expand-
ed I/O space. Clearing the peripheral bit makes the peripheral accessible in both DOS 1/O space
and expanded /O space. To access the REMAPCFG register, yofirst@stable the expanded

I/O address space as described in the next section. At reset, this register is cleared, mapping in-
ternal PC/AT-compatible peripherals into DOS 1/O space.

4-6 I

intel.

SYSTEM REGISTER ORGANIZATION

Address Configuration Register Expanded Addr: 0022H
REMAPCFG PC/AT Address: 0022H
Reset State: 0000H
15
L ese | - [- - Jl = [=TT -1 -]
7
| — | sir | sor | 1SR || MR | DR | — [TR |
Bit Bit)
Number Mnemonic Function
15 ESE 0 = Disables expanded I/O space
1 = Enables expanded I/O space
14-7 — Reserved.
6 S1R 0 = Makes serial channel 1 (COM2) accessible in both DOS I/O space
and expanded 1/O space
= Remaps serial channel 1 (COM2) address into expanded 1/O space
5 SOR 0 = Makes serial channel 0 (COM1) accessible in both DOS I/O space
and expanded 1/O space
= Remaps serial channel 0 (COM1) address into expanded 1/O space
4 ISR 0 = Makes the slave 82C59A interrupt controller accessible in both DOS
1/O space and expanded I/O space
1 = Remaps slave 82C59A interrupt controller address into expanded
1/O space
3 IMR 0 = Makes the master 82C59A interrupt controller accessible in both
DOS I/0 space and expanded I/O space
1 = Remaps master 82C59A interrupt controller address into expanded
1/0O space
2 DR 0 = Makes the DMA address accessible in both DOS 1/O space and
expanded /O space
1 = Remaps DMA address into expanded 1/O space
— Reserved.
0 TR 0 = Makes the timer control unit accessible in both DOS I/O space and
expanded /O space
1 = Remaps timer control unit address into expanded I/O space

Figure 4-3. Address Configuration Register (REMAPCFG)

4-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

4.5.2 Enabling and Disabling the Expanded I/O Space

The Intel386 EX processor’s expanded I/O space is enabled by a specific write sequence to 1/O
addresses 22H and 23H (Figure 4-4). Once the expanded I/O space is enabled, intpheat peri

als (timers, DMA, interrupt controllers and serial communication channels) can be mapped out
of DOS I/O space (using the REMAPCFG register) and registers associated with other internal
peripherals (such as the chip-select unit, power management unit, watchdog timer) can be access-
ed.

4521 Programming REMAPCFG Example

The expanded I/O space enable (ESE) bit in the REMAPCFG register can be set only by three
sequential write operations to I/O addresses 22H and 23H as described in Figure 4-4. Once ESE
is set, REMAPCFG and all the on-chip registers in the expanded I/O addres$) F0g¢—
OFFFFH can be accessed. The remap bits in REMAPCFG are still in effect even after the ESE bit
is cleared.

;;disable interrupts

CLI
; Enable expanded I/O space of Intel386(tm) EX processor
; for peripheral initialization.

MOV AX, 08000H ; Enable expanded I/O space
OUT 23H, AL ; and unlock the re-map bits
XCHG AL, AH

OUT 22H, AL

OUT 22H, AX

;; at this point PC/AT peripherals can be mapped out
;; For example,
;; Map out the on-chip DMA channels from the DOS I/O space (slot 0)
MOV AL, 04H
OUT 22H, AL
; Disables expanded 1/O space
MOV AL, 00H
OUT 23H, AL
;; Re-enable Interrupts
STI

Figure 4-4. Setting the ESE Bit Code Example

The REMAPCEFG register is write-protected until the expanded 1/O space is enabled. When the
enabling write sequence is executed, it sets the ESE ligtogram can check this bit to see
whether it has access to the expanded I/O space registers. Clearing the ESE bit disables the ex-
panded I/O space. This can be done by a byte write with a value of 0 to /0O address 23H. This
again locks the REMAPCFG register and makes it read-only.

4-8

Int9|® SYSTEM REGISTER ORGANIZATION

4.6 ADDRESSING MODES

Combinations of the value of ESE bit and the individual remap bits in the REMAPCFG register
yield four different peripheral addressing modes for I/0 address decoding.

4.6.1 DOS-compatible Mode

DOS-compatible mode is achieved byaiing ESE and all the peripheral remap bits. In this
mode, all PC/AT-compatible peripherals are mapped into the DOS I/O space. Only address lines
A9:0 are decoded for internal peripherals. Asessto PC/AT-compatible peripherals are valid,
while all other internal peripherals are inaccessible (see Figure 4-5).

This mode is useful for accessing the internal timer, interrupt controller, serial I/O ports, or DMA
controller in a DOS-compatible environment.

I 4-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

3FFH

On-chip UART-0

On-chip UART-1

REMAPCFG | 23H
Register
22H

FFFFH
On-chip 8259A-2
On-chip Timer
0
ojojojojo
FOOOH

On-chip 8259A-1

OH

On-chip DMA

DOS I/0 Space

Expanded 1/O Space

Note:

Shaded area indicates that
expanded I/O space peripherals
are not accessible

A2495-02

4-10

Figure 4-5. DOS-Compatible Mode

Int9|® SYSTEM REGISTER ORGANIZATION

4.6.2 Nonintrusive DOS Mode

This mode is achieved by first setting the ESE bit (using the three sequential writes), setting the
individual peripherals’ remap bits, and then clearing the ESE bit. Peripherals whose remap bits
are set are mapped out of DOS I/O space. Like DOS-compatible mode, only address lines A9:0
are decoded internally. This mode is useful for connecting an external peripheral instead of using
the integrated peripheral. For example, a system might use an external 8237A DMA rather than
using the internal DMA unit. For this configuration, set the ESE bit, set the remap bit associated

with the DMA unit and then clear the ESE bit. In this case, the external 8237A isibkras

the DOS I/O space, while the internal DMA can be accessed only after the expanded I/O space is
enabled. (See Figure 4-6.)

4.6.3 Enhanced DOS Mode

This mode is achieved by setting the ESE bit and clearing all PC/AT-compatible peripherals’
remap bits. Address lines A15:0 are decoded internally. The expanded I/O space is enabled and
the PC/AT-compatible internal peripherals are accessible in either DOS 1/O space or expanded
I/O space. (See Figure 4-7.) If an application frequently requires the additional peripherals, but
at the same time wants to maintain DOS compatibility for ease of development, this is the most
useful mode.

4.6.4 Non-DOS Mode

This mode is achieved by setting the ESE bit and setting all peripherals’ remap bits. Address lines
A15:0 are decoded internally. The expanded I/O space is enabled and all peripherals can be ac-
cessed only in expanded I/O space. This mode is useful for systems that don’t require DOS com-
patibility and have other custom peripherals in slot 0 of the I/O space. (See Figure 4-8.)

For all DOS peripherals, the lower 10 bits in the DOS I/O space and in the expanded I/O space
are identical (except the UARTS, whose lower 8 bits are identical). This makes correlation of their
respective offsets in DOS and expanded I/O spaces easier. Also, the UARTs have fixed I/O ad-
dresses. This differs from standard PC/AT configurations, in which these address rapges are
grammable.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

3FFH
On-chip UART-0
On-chip UART-1
FFFFH
On-chip 8259A-2
On-chip Timer
REMAPCFG | 23H| 0 0
Register
22Hl o (o Jofo]Jofz1]o]foO
FOOOH
On-chip 8259A-1 Expanded 1/O Space
Note:
oH Internal DMA Shaded area indicates that the on-chip
DMA and expanded I/O space
DOS I/0 Space peripherals are not accessible

A2496-02

Figure 4-6. Example of Nonintrusive DOS-Compatible Mode

4-12

SYSTEM REGISTER ORGANIZATION

3FFH

REMAPCFG | 23H
Register
22H

OH

On-chip UART-2

On-chip UART-1

Other Peripherals

On-chip 8259A-2 UART-0

UART-1

On-chip Timer Timer

8259A-2

0 8259A-1
0jJ]oJO0]O On-chip DMA

On-chip 8259A-1

On-chip DMA

DOS 1/0 Space

Expanded I/O Space

FFFFH

FOOOH

A2501-02

Figure 4-7. Enhanced DOS Mode

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

3FFH
FFFFH
Other Peripherals
UART-0
UART-1
Timer
8259A-2
REMAPCFG | 23H| 1 0 8259A-1
Register
2Z2Hl o1 fa1l1]2a]2]of1 On-chip DMA
FOOOH
Expanded 1/O Space
OH
DOS /O Space
A2502-02

Figure 4-8. NonDOS Mode

4-14

Int9|® SYSTEM REGISTER ORGANIZATION

4.7 PERIPHERAL REGISTER ADDRESSES

Table 4-2 lists the addresses and names of all user-accessible peripheral registers. 1/0 Registers
can be accessed as bytes or words. Word accesses to byte registers result in two sequential 8-bit
I/O transfers. The default (reset) value of each register is shownRetet Valueolumn. AnX

in this column signifies that the register bits are undefined. Some address values do not access
registers, but are decodedpmvide a logiccontrol signal. These addresses are listeNasa

registerin theResetcolumn.

Table 4-2. Peripheral Register Addresses (Sheet 1 of 6)

EAxg(?Pedsid Azgr/grs ?;;f eS/:\SN-Ic-Jyrgi Register Name Reset Value
DMA Controller and Bus Arbiter
FOOOH 0000H Byte DMAOTARO/1 (Note 1) XX
FOO1H 0001H Byte DMAOBYCO0/1 (Note 1) XX
FOO2H 0002H Byte DMAI1TARO/1 (Note 1) XX
FOO3H 0003H Byte DMA1BYCO0/1 (Note 1) XX
FO04H 0004H Reserved
FOO5H 0005H Reserved
FOO6H 0006H Reserved
FOO7H 0007H Reserved
FOO8H 0008H Byte DMACMD1/DMASTS 00H
FOO9H 0009H Byte DMASRR 00H
FOOAH 000AH Byte DMAMSK 04H
FOOBH 000BH Byte DMAMOD1 00H
FOOCH 000CH Byte DMACLRBP Not a register
FOODH 000DH Byte DMACLR Not a register
FOOEH 000EH Byte DMACLRMSK Not a register
FOOFH 000FH Byte DMAGRPMSK 03H
FO10H Byte DMAOREQO/1 XX
FO11H Byte DMAOREQ?2/3 XX
FO12H Byte DMA1REQO/1 XX
FO13H Byte DMA1REQ2/3 XX
FO14H Reserved
FO15H Reserved
FO16H Reserved
FO17H Reserved
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table 4-2. Peripheral Register Addresses (Sheet 2 of 6)

intel.

EAxgsgdsid Az(?:grs ?;)Cf;:\slvzzi Register Name Reset Value
FO18H Byte DMABSR X1X10000B
FO19H Byte DMACHR/DMAIS 00H
FO1AH Byte DMACMD2 08H
FO1BH Byte DMAMOD2 00H
FO1CH Byte DMAIEN 00H
FO1DH Byte DMAOVFE OAH
FO1EH Byte DMACLRTC Not a register

Master Interrupt Controller
FO20H 0020H Byte ICW1m/IRRm/ISRm/ XX
OCW2m/OCW3m
FO21H 0021H Byte ICW2m/ICW3m/ICW4m/ XX
OCW1m/POLLm
Address Configuration Register
0022H 0022H Word REMAPCFG 0000H
Timer/counter Unit
FO40H 0040H Byte TMRO XX
FO41H 0041H Byte TMR1 XX
FO042H 0042H Byte TMR2 XX
FO43H 0043H Byte TMRCON XX
DMA Page Registers
FO80H Reserved
FO81H 0081H Reserved
FO82H 0082H Reserved
FO83H 0083H Byte DMAI1TAR2 XX
FO084H Reserved
FO85H Byte DMA1TAR3 XX
FO86H Byte DMAOTAR3 XX
FO87H 0087H Byte DMAOTAR2 XX
FO88H Reserved
FO89H 0089H Reserved
FO8AH 008AH Reserved
FO8BH 008BH Reserved
FO8CH Reserved
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

4-16

intel.

SYSTEM REGISTER ORGANIZATION

Table 4-2. Peripheral Register Addresses (Sheet 3 of 6)
E:gggdsid AZ(?I{GA;-S ?;;f;:\slvzzi Register Name Reset Value

FO8DH Reserved
FO8EH Reserved
FO8FH Reserved
FO098H Byte DMAOBYC2 XX
FO99H Byte DMA1BYC2 XX
FO9AH Reserved
FO9BH Reserved

A20GATE and Fast CPU Reset
FO092H 0092H Byte PORT92 XXXXXX10B

Slave Interrupt Controller
FOAOH 00AOH Byte ICW1s/IRRs/ISRs/ XX
OCW2s/OCW3s
FOA1H 00A1H Byte ICW2s/ICW3s/ICW4s/ XX
OCW1s/POLLs
Chip-select Unit

F400H Word CSOADL 0000H
F402H Word CSOADH 0000H
F404H Word CSOMSKL 0000H
F406H Word CSOMSKH 0000H
F408H Word CS1ADL 0000H
FA0AH Word CS1ADH 0000H
FAOCH Word CS1MSKL 0000H
FAOEH Word CS1IMSKH 0000H
FA10H Word CS2ADL 0000H
FA12H Word CS2ADH 0000H
FA14H Word CS2MSKL 0000H
F416H Word CS2MSKH 0000H
F418H Word CS3ADL 0000H
F41AH Word CS3ADH 0000H
F41CH Word CS3MSKL 0000H
F41EH Word CS3MSKH 0000H
F420H Word CS4ADL 0000H
F422H Word CS4ADH 0000H
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table 4-2. Peripheral Register Addresses

(Sheet 4 of 6)

intel.

E:gggdsid AZ(?I{GA;-S ?;;f;:\slvzzi Register Name Reset Value
F424H Word CS4MSKL 0000H
F426H Word CS4MSKH 0000H
F428H Word CS5ADL 0000H
F42AH Word CS5ADH 0000H
F42CH Word CS5MSKL 0000H
FA2EH Word CS5MSKH 0000H
FA30H Word CS6ADL 0000H
F432H Word CS6ADH 0000H
F434H Word CS6MSKL 0000H
F436H Word CS6MSKH 0000H
F4A38H Word UCSADL FF6FH
FA3AH Word UCSADH FFFFH
FA3CH Word UCSMSKL FFFFH
FA3EH Word UCSMSKH FFFFH

Synchronous Serial /O Unit

FA80H Word SSIOTBUF 0000H
F482H Word SSIORBUF 0000H
F484H Byte SSIOBAUD 00H
F486H Byte SSIOCON1 COH
F488H Byte SSIOCON2 00H
F48AH Byte SSIOCTR 00H

Refresh Control Unit
FAAOH Word RFSBAD 0000H
FAA2H Word RFSCIR 0000H
F4A4H Word RFSCON 0000H
FAAGH Word RFSADD OOFFH

Watchdog Timer Unit
FACOH Word WDTRLDH 003FH
FAC2H Word WDTRLDL FFFFH
FAC4H Word WDTCNTH 003FH
FAC6H Word WDTCNTL FFFFH
FAC8H Word WDTCLR Not a register
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

4-18

intel.

SYSTEM REGISTER ORGANIZATION

Table 4-2. Peripheral Register Addresses (Sheet 5 of 6)
E:gggdsid AZ(?I{GA;-S ?;;f;:\slvzzi Register Name Reset Value
FACAH Byte WDTSTATUS 00H
Asynchronous Serial I/O Channel 0 (COM1)
FAF8H 03F8H Byte RBRO/TBRO/DLLO XXIXXI02H
F4F9H 03F9H Byte IERO/DLHO 00H/00H
FAFAH 03FAH Byte IIRO 01H
FAFBH 03FBH Byte LCRO 00H
FAFCH 03FCH Byte MCRO 00H
FAFDH 03FDH Byte LSRO 60H
FAFEH 03FEH Byte MSRO XOH
FAFFH 03FFH Byte SCRO XX
Clock Generation and Power Management
F800H Byte PWRCON 00H
F804H Word CLKPRS 0000H
Device Configuration Registers
F820H Byte P1CFG 00H
F822H Byte P2CFG 00H
F824H Byte P3CFG 00H
F826H Byte PINCFG 00H
F830H Byte DMACFG 00H
F832H Byte INTCFG 00H
F834H Byte TMRCFG 00H
F836H Byte SIOCFG 00H
Parallel /O Ports
F860H Byte P1PIN XX
F862H Byte P1LTC FFH
F864H Byte P1DIR FFH
F868H Byte P2PIN XX
F86AH Byte P2LTC FFH
F86CH Byte P2DIR FFH
F870H Byte P3PIN XX
F872H Byte P3LTC FFH
F874H Byte P3DIR FFH
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table 4-2. Peripheral Register Addresses (Sheet 6 of 6)

E:gggdsid AZ(?:eA;-s ?;;te;:\slvzz(; Register Name Reset Value
Asynchronous Serial I/O Channel 1 (COM2)

F8F8H 02F8H Byte RBR1/TBR1/DLL1 XXIXXI02H
F8F9H 02F9H Byte IER1/DLH1 00H/00H
F8FAH 02FAH Byte IIR1 01H
F8FBH 02FBH Byte LCR1 00H
F8FCH 02FCH Byte MCR1 00H
F8FDH 02FDH Byte LSR1 60H
F8FEH 02FEH Byte MSR1 XOH
F8FFH 02FFH Byte SCR1 XX
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

4-20

intel.

DEVICE
CONFIGURATION

intel.

CHAPTER 5
DEVICE CONFIGURATION

The Intel386™ EX processor provides many possible signal to pin connections as well as periph-
eral to peripheral connections. This chapter describes the available configurations and how to
configure them.

This chapter is organized as follows:
¢ Introduction (see below)
* Peripheral Configuration (page 5-3)
* Pin Configuration (page 5-23)
¢ Device Configuration Procedure (page 5-28)

¢ Configuration Example (page 5-28)

5.1 INTRODUCTION

Device configuration is the process of setting up the microprocessor’s on-chip peripfoerals
particular system design. Specifically, device configuration consists of programmingnetpst
connect peripheral signals to the package pins and interconnect the peripherals. The peripherals
include the following:

¢ DMA Controller (DMA)

¢ Interrupt Control Unit (ICU)

¢ Timer/counter Unit (TCU)

* Asynchronous Serial /0 Units (SI00, SI01)
* Synchronous Serial I/O Unit 80)

¢ Refresh Control Unit (RCU)

* Chip-select Unit (CSU)

¢ Watchdog Timer Unit (WDT)

In addition, the pin configuration registers control connections from the coprocessor to the core
and pin connections to the bus arbiter.

T Inthis chapter, the terms “peripheral” ana“chip peripheral” are used interciggably. An “off-chip peripheral” is
external to the Intel386 EX processor.

I 5-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Figure 5-1 shows Peripheral A and its connections to other peripherals and the package pins. The
“Internal Connection Logic” provides three kinds of connections:

¢ Connections between peripherals
* Connections to package pins via multiplexers
¢ Direct connections to package pins without multiplexers
The internakonnectioriogic is controlled by the Peripheral A configuration register.

Each pin multiplexer (“Pin Mux”) connects one of two internal signals to a pin. One is a periph-
eral signal. The second signhal can be an I/O port signal or a signal from/to another peripheral. The
pin multiplexers are controlled by the pin configuration registers. Some input-only pins without
multiplexers (“Shared Pins w/o Muxes”) are routed to two different peripherais. désign
shoulduse only one of the inputs and disable or ignore the input going to the second peripheral.

Together, the peripheral configuration registers and the pin configuration registers allow you to
select the peripherals to be used, to interconnect them as your design requires, and to bring se-
lected signals to the package pins.

Peripherals B, C, D, ...

VAN

Pins
with
Microprocessor Muxes

Peripheral A .
K B e K
Muxes
Internal
<:> Connection Shared Pins
Logic A Control w/o Muxes

Peripheral A <
Configuration

Register
Pin Configuration Registers

+ Control

A2535-01

Figure 5-1. Peripheral and Pin Connections

5-2

Int9|® DEVICE CONFIGURATION

5.2 PERIPHERAL CONFIGURATION

This section describes the configuration of each on-chip peripheral. For more detailed informa-
tion on the peripheral itself, see the chapter describing that peripheral.

The symbology used for signals that share a depiités shown in Figure 5-2. Of the two signal
names by a pin, the upper signal is associated with the peripheral in the figure. The lower signal
in parentheses is the alternate signal, which connects to a different peripheral or the core. When
a pin has a multiplexer, it is shown as a switch, thedegister bit that controls it is noted above

the switch.

5.2.1 DMA Controller, Bus Arbiter, and Refresh Unit Configuration

Figure 5-2 shows the DMA controller, bus arbiter, and refresh unit configuration. Requests for a
DMA data transfer are shown as inputs to the multiplexer:

¢ A serial /O transmitter (TXEDMAO, TXEDMAZ1) or receiver (RBFDMAO, RBFDMA1)
* A synchronous serial /O transmitter (SSTBE) or receiver (SSRBF)

e Atimer (OUT1, OUT2)

* An external source (DRQO, DRQ1)

The inputs are selected by the DMA configuration register (see Figure 5-3).

5211 Using The DMA Unit with External Devices

For each DMA channel, three bits in the DMA configuration register (Figure 5-3) select the ex-
ternal request input or one of seven request inputs from the peripherals. Another bit enables or
disables that channel's DMA acknowledge signal (DAZKat the device pin. Enable the
DACKnN# signal only when yoare using the external request signal (DiR&@nd need DACK#.

The aknowledge gnals are not routed to the on-chip peripherals, and therefore, these peripher-
als cannot initiate single-cycle (fly-by) DMA transfers.

An external bus master cannot talk directly to internal peripheral modules because the external

address lines are outputs only. However, an external device could use a DMA channel to transfer
data to or from an internal peripheral because the DMA generates the addresses. This transaction
would be a two-cycle DMA bus transaction.

5.2.1.2 DMA Service to an SIO or SSIO Peripheral

A DMA unit is useful for servicing an SIO or SSIO peripheral operating at a high baud rate. At
high baud rates, the interrupt response time of the core may be too long to alleerishe
channels to use an interrupt to service the receive-buffer-full condition. By the time the interrupt
service routine (ISR) is ready to transfer the receive-buffer data to memory, new data would have
been loaded into the buffer. The issue is the interrupt latency which is the amount of time the
processor takes from recognizing the interrupt to executing the first line of code in the ISR. This
interrupt latency needs to be calculated to determine if an ISR can handle the high baud rate. If
the Interrupt Latency is too high, data transfers to and from the serial channels can occur within
a few bus cycles of the time thaterial unit is ready to move data by usingeappropriately

I 5-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

configured DMA channel. SIO and SSIO inputs to the DMA are selected by the DMA configu-
ration register (Figure 5-3).

5.2.1.3 Using The Timer To Initiate DMA Transfers

A timer output (OUT1, OUT2) can initiate periodic data transfers by the DMA. A DMA channel

is programmed for the transfer, then a timer output pulse triggers the transfer. The most useful
DMA and timer combinations for this type of transfer are the periodic timer modes (mode 2 and
mode 3) with the DMA block-transfer mogeogrammed. See Chapter 10, “TIMER/COUNTER
UNIT,” and Chapter 12, “DMA CONTROLLER,” for more informan on how to program the
peripherals.

5.2.1.4 Limitations Due To Pin Signal M ulti plexing

Pin signal multiplexing can preclude the simultaneous use of a DMA channel and andfier pe

eral or specific peripheral signal (see Figure 5-2). For example, using DMA channel 1 with an
external requester device precludes using SIO channel 1 due to the multiplexed signal pairs
DRQ1/RXD1 and DACK1#/TXD1. Please refer to tiel386™ EX Microprocessor Pin Mul-
tiplexing Map(Order Number 272587) for a complete diagram of multiplexed signals.

5-4 I

DEVICE CONFIGURATION

T Alternate pin signals are in parentheses.

DMACFG.2:0
DMA 3 D DRQO
1 RBFDMAO (SI00) To S|01J (DCD1MT
2 TXEDMAL (SIO1)
DREQO 3 SSTBE (SSIO)
4 OUT1 (TCU)
5 RBFDMAL (SIO1)
6 TXEDMAO (SI00)
J SSRBF (SSIO)
DMACFG.3
PINCFG.4
>0 & {7 DACKO#
DMAACKO# i> From CSU—>® (CS5#)
DMACFG.6:4
3 DRQ1
1}——— RBFDMAL (SIO1) To SIO1 (RXD1)
2——— TXEDMAO (SIO0)
DREQ1 33— SSRBF (SSIO)
44— ouT2(Tcu)
5— RBFDMAO (SIO0)
6 TXEDMAL (SIO1)
J SSTBE (SSI0)
DMACFG.7
o PINCFG.2
>0 o {7 DACK1#
DMAACK1# From SIO1—>@ (TXD1)
DMAINT [——> TolICU 0 PINCFG.3
End of Process |- >0 & {JEOP#
¥ 7 From SIO1—>@ 1 (CTS1#)
1 PICFG.6
HOLD |- ® HOLD
- To/From 1/O Port 14—)‘0 (P1.6)
To Bus Arbiter
onre 1 PICFG.7
HLDA >0 {JHLDA
> P1.7
X 7 To/From 1/O Port 1 0 (P1.7)
Refresh Unit
Fro’m 1 PINCFG.6
Core REFRESH# >0 {) REFRESH#
HLDA From CSU—)“O (CS6#)

A2516-02

Figure 5-2. Configuration of DMA, Bus Arbiter, and Refresh Unit

5-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

DMA Configuration Expanded Addr: F830H

DMACFG ISA Addr: —

(read/write) Reset State: O00H

7 0

DIMSK | DIREQ2 | DIREQLl | D1REQO H DOMSK | DOREQ2 | DOREQ1 | DOREQO

Bit Bit

Number Mnemonic Function
7 D1IMSK DMA Acknowledge 1 Mask:
0 = DMA channel 1's acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1's acknowledge (DMAACKZ1#) signal. Useful
when channel 1's request (DREQ1) input is connected to an internal
peripheral.
6-4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1's
request input (DREQ1).

000 = DRQL1 pin (external peripheral)

001 = SIO channel 1's receive buffer full signal (RBFDMA1)

010 = SIO channel 0's transmit buffer empty signal (TXEDMAQ)
011 = SSIO receive holding buffer full signal (SSRBF)

100 = TCU counter 2's output signal (OUT2)

101 = SIO channel 0's receive buffer full signal (RBFDMAQ)

110 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 DOMSK DMA Acknowledge 0 Mask:

0 = DMA channel 0's acknowledge (DMAACKO#) signal is not masked.

1 = Masks DMA channel 0's acknowledge (DMAACKO#) signal. Useful
when channel 0's request (DREQO) input is connected to an internal
peripheral.

2-0 DOREQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0's
request input (DREQO).

000 = DRQO pin (external peripheral)

001 = SIO channel 0's receive buffer full signal (RBFDMAO)

010 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
011 = SSIO transmit holding buffer empty signal (SSTBE)

100 = TCU counter 1's output signal (OUT1)

101 = SIO channel 1's receive buffer full signal (RBFDMAL)

110 = SIO channel 0’s transmit buffer empty signal (TXEDMAO)
111 = SSIO receive holding buffer full signal (SSRBF)

Figure 5-3. DMA Configuration Register (DMACFG)

5-6

Int9|® DEVICE CONFIGURATION

5.2.2 Interrupt Control Unit Configuration

The interrupt control unit (ICU) comprises two 82C59A interrupt controllers connected in cas-
cade, ashown in Figure 5-4See Chapter 9 for more information.) Figure 5-5 describes the in-
terrupt configuration register (INTCFG).

The ICU receives requests from eight internal sources:
* Three outputs from the timer/counter unit (OUT2:0)
¢ An output from each of the serial /O units (SIOINT1:0)
¢ An output from the synchronous serial I/O unit (SSIOINT)
¢ An output from the DMA unit (DMAINT)
¢ An output from the WDT unit (WDTOUT#)
In addition, the ICU controls the inteipt sources on ten external pins:

¢ INT3:0 (multiplexed with I/O port signals P3.5:2) are enabled or disabled by the P3CFG
register (see Figure 5-18).

* INT7:4 share their package pins with four TCU inputs: TMRGATE1, TMRCLK1,
TMRGATEOQ, and TMRCLKO. These signal pairs are not multiplexed; however, the pin
inputs are enabled or disabled by the INTCFG register.

* INT9:8 share their pins with TMROUT1, TMROUTO, P3.1, P3.0

The three cascade outputs (CAS2:0) should be enabled when an external 82C59A module is con-
nected to one of the INT9:8 or INT3:0 signals. The cascade outputs are ORed with address lines
A18:16. See “Interrupt Acknowledge Cycle” on page 6-23 for details.

Use Tables 5-1 and 5-2 to configure the functionality of the master 82C59A's IR3, IR4 inputs, and
the associated external pins.

I 5-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

5-8

Table 5-1. Master’s IR3 Connections

intel.

Function INTCFG.6 MCR1.3 P3CFG.1
IR3 connected to SIOINT1 0 X 0
P3.1 selected at pin (P3.1)
IR3 connected to SIOINT1 0 X 1
OUT1 connected to pin (TMROUT1)
IR3 internally driven low 1 0 0
P3.1 selected at pin (P3.1)
IR3 connected to pin (INT8) 1 0 1
IR3 connected to SIOINT1 1 1 0
P3.1 selected at pin (P3.1)
IR3 connected to SIOINT1 1 1 1
pin (INT8) must not be left floating
NOTE: X s adon'tcare

Table 5-2. Master's IR4 Connections

Function INTCFG.5 MCRO0.3 P3CFG.0
IR4 connected to SIOINTO 0 X 0
P3.0 selected at pin (P3.0)
IR4 connected to SIOINTO 0 X 1
OUTO connected to pin (TMROUTO)
IR4 internally driven low 1 0 0
P3.0 selected at pin (P3.0)
IR4 connected to pin (INT9) 1 0 1
IR4 connected to SIOINTO 1 1 0
P3.0 selected at pin (P3.0)
IR4 connected to SIOINTO 1 1 1
pin (INT9) must not be left floating

NOTE: Xisadon'tcare

Int€|® DEVICE CONFIGURATION

IR0 |-
8259A P3CFG.2
Master IR1 Yo INTO
IR2 To/From 1/O Port 3 -—>9, (P32t
~€— INT MCR1.3
"\étLR R3 SIOINTL
core) INTCFG.5 p3cre.1__ INT8
TMROUT1
OUT1(TCU) 0 P3.1—®g (P3.1)
INTCFG.5 MCRO0.3
R4 | SIOINTO
1 INTCFG.lS P3GFG.0 |19
_o—{JTMROUTO
P3CFG.3 %_ v oUTO(TCU) 0 p3.0—® 0 (P3.0)
IR5 | N ss , P3CFG3 INT1
P3CFG.4 / To/From 1/O Port 3 Q(O._D (P3.3)
o— V. P3CFG.4
IR6 | SS 1
% ° INT2
=] CAS2:0 To/From 1/O Port 3 (P3.4)
P3CFG.5)/ 0
IR7 |- O Vss 1 P3CFG.5
To/From 1/O Port 3 0 (P3.5)
INTCFG.0
oF— V.
IRO ss
1 9 {INT4
INT ToTCU <—T (TMRCLKO)
8259A INTCFG.1
Slave Rl 0F— SSIOINT
1 o [JINT5
ToTCU <—T (TMRGATEO)
IR2 |<€—————— OUT1(TCU)
IR3 | -—————— OUT2(TCU)
INTCFG.4
}’G DMAINT
IR4 |«
% s —{] INT6
0 ToTCU <—1 (TMRCLK1)
Vss 1
IR5
=] CAS2:0
INTCFG.2 INTCFG.3
IR6 S Vss [INT?
To TCU 4—1 (TMRGATEL1)
IR7 | <€————— WDTOUT# | _ |NTCFG.7
Vss
3, []cAS2:0
v (A18:16)
T Alternate pin signals are in parentheses
Heavier lines indicate multiple signals.
A2522-03

Figure 5-4. Interrupt Control Unit Configuration

5-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Interrupt Configuration Expanded Addr: F832H

INTCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
CE IR3 IR4 SWAP ‘ ‘ IR6 IR5/IR4 IR1 IRO
Bit Bit Function

Number Mnemonic
7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:
See Table 5-1 on page 5-8 for all the IR3 configuration options.

5 IR4 Internal Master IR4 Connection:
See Table 5-2 on page 5-8 for all the IR4 configuration options.
4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.
1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave
IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects Vg4 to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:
These depend on whether INTCFG.4 is set or clear.

0 = Connects Vg4 to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IRO Internal Slave IR0 Connection:

0 = Connects Vg to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.

Figure 5-5. Interrupt Configuration Register (I NTCFG)

5-10

Int9|® DEVICE CONFIGURATION

5.2.3 Timer/counter Unit Configuration

The three-channel Timedunter Unit (TCU) and its configurationgister (TMRCFG) are
shown in Figure 5-6 and Figure 5-7. The clock inputs can be external signals (TMRCLK2:0) or
the on-chip programmable clock (PSCLK). All clock inputs can be held low by programming bits
in the TMRCFG register. The gate inputs can be controlled through software using TMRCFG.6
and the appropriate GiCON bits in the TMRCFG register. Several of the timer signals go to the
interrupt control unit (see Figure 5-4).

The Timer/counter0 and Timer/counterl signals are selected individually. In contrast, the Tim-
er/counter2 signals (TMRCLK2, TMRGATE2, TMROUT?) are selected as a group. Note that us-
ing the Timer/counter2 signals precludes use of the coprocessor signals (PEREQ, BUSY#, and
ERROR#).

The CLKINn and GATH inputs of Timer/counterO and Timer/counterl are routed directly to
shared input pins, TMRCLKO/INT4, TMRCLKY/INT6, TMRGATEO/INTS and
TMRGATEL/INT7. The OUT inputs of these two counters can be connected to pins
TMROUTO/INT9/P3.0 and TMROUT1/INT8/P3.1 respectively, using bits in registers P3CFG
and INTCFG.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Timer/Counter
Unit

CLKINO

GATEO

ouTo

CLKIN1

GATE1

OuT1

CLKIN2

GATE2

ouT2

TMRCFG.7
TMRCFG.0
- M s
1 {7 TMRCLKO
\ TolCU <—T (INT4)t
TMRCFG.6 TMRCFG.1
0 Vee
| TMRCFG.1 N [) TMRGATEO
TolCcU (_T (INT5)
r» TolCU P3CFG.0
>0 {JTMROUTO
To/From 1/O Port 3 (INT9)
TMRCFG.2 (P3.0)
=
0 f——— PSCLK
k r {] TMRCLK1
TolCU (INT6)
TMRCFG.6 TMRCEG.3
0 Vee
| TMRCFG.3 {1 TMRGATEL
TolCU (INT7)
‘—> To ICU, DMA P3CFG.1
\ 0/0 {]TMROUT1
To/From I/O Port 3 (—)0 (::Nng)
TMRCFG.4 (P3.1)
<—C 0 PSCLK PINCFG.5
1 1
1 ° e {7 TMRCLK2
To Core , (PEREQ)
TMRCFG.6 TMRCFG.5 o
1
0 Vee '
1
TMRCFG5 N >0 .0 {) TMRGATE2
To Core ! (BUSY#)
%
L—» To ICU, DMA 1!
>0 .8 {]T™MROUT2
To Core 1 (ERROR#)

0

T Alternate pin signals are in parentheses.

A2517-03

5-12

Figure 5-6. Timer/Counter Unit Configuration

intel.

DEVICE CONFIGURATION

Timer Configuration

TMRCFG
(read/write)

7

Expanded Addr: F834H
ISA Addr: —
Reset State: O0H

0

| TMRDIS |SWGTEN

GT2CON | CK2CON ||GT1CON CK1CON | GTOCON | CKOCON

Bit Bit Function
Number Mnemonic
7 TMRDIS Timer Disable:
0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.
6 SWGTEN Software GATEn Enable
0 = Connects GATEn to either the V¢ pin or the TMRGATEnR pin.
1= Enables GT2CON, GT1CON, and GTOCON to control the
connections to GATE2, GATE1 and GATEO respectively.
5 GT2CON Gate 2 Connection:
SWGTEN GT2CON
0 0 Connects GATE2 to V¢,
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.
4 CK2CON Clock 2 Connection:
0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.
3 GT1CON Gate 1 Connection:
SWGTEN GT1CON
0 0 Connects GATEL to V¢,
0 1 Connects GATE1 to the TMRGATEL1 pin.
1 0 Turns GATEL1 off.
1 1 Turns GATE1 on.
2 CK1CON Clock 1 Connection:
0 = Connects CLKINL to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.
1 GTOCON Gate 0 Connection:
SWGTEN GTOCON
0 0 Connects GATEO to V¢,
0 1 Connects GATEO to the TMRGATEL1 pin.
1 0 Turns GATEO off.
1 1 Turns GATEO on.
0 CKOCON Clock 0 Connection:
0 = Connects CLKINO to the internal PSCLK signal.
1 = Connects CLKINO to the TMRCLKO pin.

Figure 5-7. Timer Configuration Register (TMRCFG)

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

5.2.4 Asynchronous Serial I/O Configuration

Figures 5-8 and 5-9 show the asynchronous serial /0O unit configuration, consisting of channels
SI00 and SI01. Each channel has one output (SIOINTO, SIOINT1) to the interrupt control unit

(see Figure 5-4) and two outputs to the DMA unit. (These signals do not go to package pins.)
SIOINTh is active when any one of the SIO status signals (receiver line status, receiver buffer
full, transmit buffer empty, modem status) is set and enabled. All SIO0 pins are multiplexed with

I/O port signals.

Using SI01 precludes using DMA channel 1 for external DMA requests due to the mintiple
of the transmit and receive signals with DMA signals (RXD1/DRQ1, TXD1/DACK1#).

NOTE

Using SIO1 modem signals RTS1#, DSR1#, DTR1#, and RI1# precludes use
of the SSIO unit.

5-14 I

intel.

DEVICE CONFIGURATION

SI00

BCLKIN

Receive Data

SIOINTO
RBFDMAO
TXEDMAO

Transmit Data

Clear to Send

Request to Send

Data Set Ready

Data Carrier
Detect

Data Terminal
Ready

Ring Indicator

T Alternate pin signals are in parentheses.

SIOCFG.0
1 P3CFG.7
0 e _e—{]comcLk
TolFrom I/0 Port 3 <>8 (P3.7)t
1— SERCLK
1 P2CFGS5
- ° {IRrxDO
To/From 1/O Port 2 (P2.5)
———> ToICU 0
—> ToDMA
— > ToDMA 1 P2CFG.6
>0 [} 7xpo
SIOCFG.6 To/From 1/O Port 2 (—)0/. (P2.6)
1 P2CFG.7
0 ® o[cTso#
< To/From 1/O Port 2 (P2.7)
g 0
1 PICFG.1
>o o— |RTSO#
To/From 1/O Port 1 0 (PL.1)
P1CFG.3
B 0 o/o {7 Dsro#
- % To/From /O Port 1 <—>o (P1.3)
P1CFG.0
0 o/o {7 bcoo#
- To/From /O Port 1 <—>o (P1.0)
N1
1 PICFG.2
° >0 _o {JDTRO#
To/From 1/O Port 1 <«>»® 0 (P1.2)
1 PICFG.4
0 o _eo—{Rio#
To/From /O Port 1 (P1.4)
1 Vee 0

A2521-02

Figure 5-8. Serial /0O Unit 0 Configuration

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

SIO1 SIOCFG.1
1 P3CFG.7
0 ® eo—[]comMCLK
BCLKIN To/From 1/O Port 3 (P37t
1}— SERCLK 0
Receive Data [« RXD1
To DMA 4 D (DRQ1)
SIOINT1 |—> To ICU
RBFDMAL1 |—> To DMA
TXEDMA1 |/ To DMA
1 PINCFG.2
Transmit Data >0 {]txD1
SIOCFG.7 Erom DMA _>./0. (DACK1#)
1 PINCFGé
?0 ° CTS1#
Clear to Send |- % To/From DMA 0{ (EOP#)
1 PINCFG.0
Request to Send >0 o—)RTS1#
From SSIO 0 (SSIOTX)
; DSR1#
Data Set Ready |- \0 To/From SSIO (—)’ D (STXCLK)
1
; DCD1#
Data Carrier |« 0 To DMA (—, D
- (DRQO)
Detect k—‘
1 PINCFG.1
Data Terminal L >0 DTR1#
Ready To/From SSIO <<>»® 0 (SRXCLK)
_ _ 0 RIL#
Ring Indicator To SSIO ‘_, S (SSIORX)
1 Vee

T Alternate pin signals are in parentheses.

A2519-02

5-16

Figure 5-9. Serial /O Unit 1 Configuration

intel.

DEVICE CONFIGURATION

SIO and SSIO Configuration

Expanded Addr: F836H

SIOCFG ISA Addr: —
(read/write) Reset State: O00H
7 0
SIM SOM — - || = SSBSRC | S1BSRC | SOBSRC
Bit Bit Function
Number Mnemonic
7 S1iM S101 Modem Signal Connections:
0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.
6 SOM S100 Modem Signal Connections:
0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.
5-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 SSBSRC SSIO Baud-rate Generator Clock Source:
0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.
1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.
1 S1BSRC S101 Baud-rate Generator Clock Source:
0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate
generator.
0 SOBSRC S100 Baud-rate Generator Clock Source:
0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate
generator.

Figure 5-10.

SIO and SSIO Configuration Register (SIOCFG)

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

5.2.5 Synchronous Serial I/O Configuration

The synchronous serial I/O unit (SSIO) is shown in Figure 3tdkingle configuration register

bit is in the SIOCFG register (Figusel0). The trasmit buffer empty and receive buffer full sig-

nals (SSTBE and SSRBF) go to the DMA unit (Figure 5-2), and an interrupt signal (SSIOINT)
goes to the ICU (Figure 5-4). Depending on the settings in the SSIOCONL1 register (see Chapter
13), SSIOINT is asserted for one of two conditions: the receive buffer is full or the transmit buffer
is empty. Note that using the SSIO signals precludes the use of four of the SIO1 modem signals.

SSIO SIOCFG.2
of—— PscLK
BCLKIN
1——— SERCLK
SSTBE > To DMA
SSRBF > To DMA
SSIOINT > To ICU
Receive Data |- {] SSIORX
To S|01<J (RI1#)*
o PINCFG.0
Transmit Data >0 @ [ssioTx
From SIO1—>@, (RTS1#)
Transmit Clock |- (_T_)D STXCLK
To SIO1 (DSR1#)
0 PINCFG.1
Receive Clock |« >0 o [sSRxcCLK
From SSI01—>-@ (DTR1#)
*Alternate pin signals are in parentheses.
A2518-02

Figure 5-11. SSIO Unit Configuration

5-18

Int9|® DEVICE CONFIGURATION

5.2.6 Chip-select Unit and Clock and Power Management Unit Configuration

Figure 5-12 shows the multiplexing of signals of the Chip-select Unit and the Clock and Power
Management Unit.

The Chip-select signals, CS6# and CS5# are multiplexed with the REFRESH# signal from the
Refresh Control Unit and the DACKO# signal from the DMA Unit, respectively. Bits 6 and 4 in
the PINCFG register (see Figure 5-15) control these multiplexers. CS3#, CS2#, CS1# and CSO0#
are multiplexed with I/O Port 2 signals, P2.3, P2.2, P2.1 and P2.0, respectively. Bits 4:0 in the
P2CFG register (see Figure 5-17) control these multiplexers.

The PWRDOWN output signal of the Clock and Power Management Unit is multiplexed with
I/O Port 3 signal, P3.6. Bit 6 in the P3CFG register (see Figure 5-18) cohtsohsultiplexer.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Ccsu
1 P2CFG.0 CSO#
Cso# > _o—{] 10
To/From I/O Port 2 0
1 P2CFG.1
e CS1#
CS1# >0 _o—{])
To/From I/O Port 2 0
1 P2CFG.2
N CcS2#
cs2# >0 _o—] P2.2)
To/From 1/O Port 2 0
1 P2CFG.3
e CS3#
cs3# =" 0 P23
To/From I/O Port 2 0
1 P2CFG.4
e CS4#
CS4# >0 _©® D (P2.2)
To/From 1/O Port 2 0
1 PINCFG.4
e CS5#
CS5# >0 @ (DACKO#)
DACKO# (DMA) —‘0
1 PINCFG.6
e CS6#
CcSe# "./‘ (] (ReFreSH#)
REFRESH# (RCU) 0
Clock and
Power
Management
Unit
1 P3CFG.6
PWRDOWN PWRDOWN

;’./‘ U (p36)
To/From 1/O Port 3 0

A3380-01

Figure 5-12. Configuration of Chip-select Unit and Clock and Power Management Unit

5-20

Int9|® DEVICE CONFIGURATION

5.2.7 Core Configuration

Three coprocessor signals (ERROR#, PEREQ, and BUSY# in Figure 5-13) can be routed to the
core, as determined by bit 5 of the PINCFG register (see Figure 5-15). Due to signal multiplexing
at the pins, the coprocessor and Timer/counter2 cannot be used simultaneously.

PINCFG.5
Core
PINCFG.5
0 ERROR#
ERROR# |- From TCU 9.: (TMROUT2)t
%_ cc 1
I
1
1
1
|
0,
0 PEREQ
PEREQ |- To TCU <—@! (TMRCLK2)
%_ Vss 1
I
I
I
I
|
0 .
0 —e . o—]BUSY#
BUSY# To TCU H: (TMRGATE2)
1 cc 1
RESET Timing < PORT92.0
Generation '
From Chip RESET Pin
PORT92.1
>—To Chip-select Unit
A20 and A20 Pin
: P1CFG.5
LOCK# :(0—[] LOCK#
To/From I/O Port 1 3 (P1.5)
T Alternate pin signals are in parentheses.
A2520-02

Figure 5-13. Core Configuration

5-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Setting bit 0 in the PORT92 register (see Figure 5-14) resets the core without resettinigpkhe pe
erals. Unlike the RESET pin, which is asynchronous and can be used to synchronize internal
clocks to CLK2, this core-only reset is synchronized with the on-chip clocks and does not affect
the on-chip clock synchronization. After the CPU-RESET this bit is still set to 1. It must be

intel.

cleared and then set to cause another core-only reset.

Clearing bit 1 in the PORT92 register forces address line A20 to 0. This bit affects only addresses
generated by the core; addresses generated by the DMA and the refresh control unit are not af-

fected.
Port 92 Configuration Expanded Addr: FO92H
PORT92 ISA Addr: 0092H
(read/write) Reset State: XXXXXX10B
7 0
— — — - || = — A20G | CPURST
Bit Bit)
Number Mnemonic Function
7-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
1 A20G A20 Grounded:
0 = Clearing this bit forces address line A20 to 0. This bit affects
addresses generated only by the core. Addresses generated by the
DMA and the Refresh Unit are not affected by this bit.
1 = Setting this bit leaves core-generated addresses unmodified.
0 CPURST CPU Reset:
0 = Clearing this bit performs no operation.
1 = Setting this bit resets the core without resetting the peripherals.
This bit must be cleared before issuing another reset.

5-22

Figure 5-14. Port 92 Configuration Register (PORT92)

DEVICE CONFIGURATION

intel.

5.3 PIN CONFIGURATION

Most of the microprocessor’s package pins support two peripheral functions. Some of these pins
are routed to two peripheral inputs without the use of a multiplexer. These input-signal pairs are
listed in Table 5-3. The pin onnected to both peripheral inputs.

The remaining pinsupportingtwo signals have multiplexers. For each such pin, a bit in a pin
configuration register enables one of the signals. Table 5-9 lists the bits in each of the four pin
configuration registers. These abbreviated register tables are discussed in “Configuration Exam-
ple” on page 5-28.

When configuring ports to use INT8 or INT9, first set the appropriate INTCFG bit, then the

P3CFG bit. Setting the bits in this order avoids any potential contention on INT8 or INT9.

Table 5-3. Signal Pairs on Pins without a Multiplexer

Names Signal Descriptions
DRQO/ DMA External Request 0 indicates that an off-chip peripheral requires DMA service.
DCD1# Data Carrier Detect SIO1 indicates that the modem or data set has detected the
asynchronous serial channel’s data carrier.
DRQ1/ DMA External Requestl indicates that an off-chip peripheral requires DMA service.
RXD1 Receive Data SIO1 accepts serial data from the modem or data set to the
asynchronous serial channel SIO1.
DSR1#/ Data Set Ready SIO1 indicates that the modem or data set is ready to establish a
STXCLK communication link with asynchronous serial channel SIO1.
SSIO Transmit Clock synchronizes data being sent by the synchronous serial port.
RI1#/ Ring Indicator SIO1 indicates that the modem or data set has received a telephone
SSIORX ringing signal.
SSIO Receive Serial Data accepts serial data (most-significant bit first) being sent to
the synchronous serial port.
TMRCLKO/ Timer/Counter0 Clock Input can serve as an external clock input for timer/counterO.
INT4 (The timer/counters can also be clocked internally.)
Interrupt 4 is an undedicated external interrupt.
TMRGATEO/ Timer/Counter0O Gate Input can control timer/counterQ’s counting (enable, disable, or
INTS trigger, depending on the programmed mode).
Interrupt 5 is an undedicated external interrupt.
TMRCLK1/ Timer/Counterl Clock Input can serve as an external clock input for timer/counterl.
INT6 (The timer/counters can also be clocked internally.)
Interrupt 6 is an undedicated external interrupt.
TMRGATE1/ Timer/Counterl Gate Input can control timer/counterl’s counting (enable, disable, or
INT7 trigger, depending on the programmed mode).
Interrupt 7 is an undedicated external interrupt.

5-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Pin Configuration Expanded Addr: F826H
PINCFG ISA Addr: —
(read/write) Reset State: O00H
7 0
— PM6 PM5 P4 || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:
0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.
5 PM5 Pin Mode:
0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.
1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.
4 PM4 Pin Mode:
0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.
3 PM3 Pin Mode:
0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.
2 PM2 Pin Mode:
0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.
1 PM1 Pin Mode:
0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.
0 PMO Pin Mode:
0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

5-24

Figure 5-15. Pin Configuration Register (PINCFG)

intel.

DEVICE CONFIGURATION

Port 1 Configuration Expanded Addr:
P1CFG ISA Addr:
(read/write) Reset State:
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.
6 PM6 Pin Mode:
0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.
5 PM5 Pin Mode:
0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.
4 PM4 Pin Mode:
0 = Selects P1.4 at the package pin.
1 = Selects RI0O# at the package pin.
3 PM3 Pin Mode:
0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.
2 PM2 Pin Mode:
0 = Selects P1.2 at the package pin.
1 = Selects DTRO# at the package pin.
1 PM1 Pin Mode:
0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.
0 PMO Pin Mode:
0 = Selects P1.0 at the package pin.
1 = Selects DCDO# at the package pin.

Figure 5-16. Port 1 Configuration Register (P1LCFG)

5-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Port 2 Configuration

Expanded Addr: F822H

P2CFG ISA Addr: —
(read/write) Reset State: O00H
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.
6 PM6 Pin Mode:
0 = Selects P2.6 at the package pin.
1 = Selects TXDO at the package pin.
5 PM5 Pin Mode:
0 = Selects P2.5 at the package pin.
1 = Selects RXDO at the package pin.
4 PM4 Pin Mode:
0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.
3 PM3 Pin Mode:
0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.
2 PM2 Pin Mode:
0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.
1 PM1 Pin Mode:
0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.
0 PMO Pin Mode:
0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.

5-26

Figure 5-17. Port 2 Configuration Register (P2CFG)

intel.

DEVICE CONFIGURATION

Port 3 Configuration Expanded Addr: F824H
P3CFG ISA Addr: —
(read/write) Reset State: 00H
7 0
PM7 PM6 PM5 Pma || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.
6 PM6 Pin Mode:
0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.
5 PM5 Pin Mode:
0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).
4 PM4 Pin Mode:
0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).
3 PM3 Pin Mode:
0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).
2 PM2 Pin Mode:
0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INTO).
1 PM1 Pin Mode:
See Table 5-1 on page 5-8 for all the PM1 configuration options.
0 PMO Pin Mode:
See Table 5-1 on page 5-8 for all the PMO configuration options.

Figure 5-18. Port 3 Configuration Register (P3CFG)

5-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

5.4 DEVICE CONFIGURATION PROCEDURE

Before configuring the microprocessor, make the following selections:
* The set of peripherals to be used
* The signals to be available at the package pins
* The desired peripheral-peripheral and peripheral-core connections

Although final decisions regarding these selections may be influenced by the possible configura-
tions, we recommend that you initially make the selections without regard to limitations on the
configurations.

We suggest the fldwing procedure for configuring the device for your design. An aide for re-
cording the steps in the procedure and an example configuration are given in “Configuration Ex-
ample” on page 5-28.

1. Pin Configuration. For each desired pin signal, consult the peripheral configuration
diagram to find the bit value in the pin configuration register that connects the signal to a
device pin. When the signal shares a pin that has no multiplexer, make a note of its
companion signal.

2. Peripheral Configuration. For each peripheral in your design, consult the peripheral
configuration diagram and the peripheral configuration register to find the bit values for
your desired internal connections.

3. Configuration Review. Review the results of steps 1 and 2 to see if the configuration
registers have conflicting bit values. If conflicts exist, follow steps 3a and 3b.

a. Attempt to resolve the pin configuration conflicts first. In some cases you may find that
using a different peripheral channel resolves the conflict.

b. Attempt to resolve peripheral configuration conflicts.

If conflicts remain, consider peripheral substitutions.

5.5 CONFIGURATION EXAMPLE

This section presents an example of a PC/AT*-compatitidiguration. The last set of tables are
blank; you can use them as worksheets as you follow the steps in the configuration process.

5.5.1 Example Design Requirements
The example is a PC/AT-compatible design with the following requirements:
¢ Interrupt Control Unit:
— External interrupt inputs available at package pins: INT1:0, INT7:4
¢ Timer Control Unit:

— Counters 0, 1: Clock input is on-chip programmable clock (PSCLK); no signals
connected externally.

5-28 I

Int9|® DEVICE CONFIGURATION

— Counter 2: Clock input is on-chip prograrabie clock (PSCLK); no sighals connected
to package pins

¢ DMA Unit:
— Not Used
* Asynchronous Serial I/O channel 0 (SIOO0):
— Clock input is the internal clock SERCLK
— RXDO, TXDO connected to package pins
— Modem Signals connected internally.
* Asynchronous Serial I/O channel 1 (SIO1):
— Clock input is the internal clock SERCLK
— Modem signals externally connected
* Synchronous Serial I/O (SSIO):
— Not Used
¢ Chip Select:
— Chip select signals CS6#, CS5:1#, UCS# connected to package pins
* Core and Bus Arbiter:
— Coprocessor signals connected to package pins
— HOLD and HLDA not connected to package pins
— LOCK# and PWRDOWN not connected to package pins

5.5.2 Example Design Solution

The configuration register bit values for the example design are recorded in the following abbre-
viated register tables. Blank worksheets are provided for you to use when degamiagstem.

Table 5-4 summarizes the bit selections you would need to make in the pin configuration registers
to implement the example design. Tablest&rbugh 5-8 summarize the bit selections you would
make in the peripheral configuration registers.

I 5-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Bit # P1CFG Value Bit # P2CFG Value Bit # P3CFG Value

7 0= P17 0 7 0= P27 0 7 0= P3.7 0
1= HLDA 1= CTSO# 1= COMCLK

6 0= P16 0 6 0= P26 1 6 0= P3.6 0
1= HOLD 1= TXDO 1= PWRDOWN

5 0= P15 0 5 0= P25 1 5 0= P35 0
1= LOCK# 1= RXDO 1= INT3

4 0=P14 0 4 0=P24 1 4 0= P34 0
1= RIO# 1= CS4# 1=INT2

3 0= P13 0 3 0=P23 1 3 0= P33 1
1= DSRO# 1= CS3# 1=INT1

2 0=P1.2 0 2 0= P22 1 2 0= P3.2 1
1= DTRO# 1= CS2# 1= INTO

1 0=P1.1 0 1 0=P21 1 1 0= P3.1 0
1= RTSO# 1= CSi# 1= mux

0 0=P1.0 0 0 0= P2.0 0 0 0= P3.0 0
1= DCDO# 1= CSO# 1= mux

Bit # PINCFG Value Pins w/o Muxes X Pins w/o Muxes X

7 Reserved R DRQO X TMRCLKO

6 0 = CS6# 0 DCD1# INT4 X
1 = REFRESH# DRQ1 TMRGATEO

5 0 = Coprocessor Sigs.! 0 RXD1 X INT5 X
1 = TMR2 Signals? DSR1# TMRCLK1

4 0 = DACKO# 1 STXCLK X INT6 X
1= CS5# RI1# TMRGATEL1

3 0 = EOP# 1 SSIORX X INT7 X
1= CTS1#

2 0 = DACK1# 1
1= TXD1 NOTES:

1 0 = SRXCLK 1 1 PEREQ, BUSY#, ERROR#
1= DTR1# 2 TMROUT2, TMRCLK2, TMRGATE2

0 0 = SSIOTX 1
1= RTS1#

Table 5-4. Example Pin Configuration Registers

5-30

intel.

DEVICE CONFIGURATION

Bit #

DMACFG

Value

0 = Enables DACK1# at chip pin

1 = Disables DACK1# at chip pin

6-4

000 = DRQL1 pin (external peripheral) connected to DREQ1

001 = SIO channel 1's receive buffer full signal (RBFDMAL) connected to DREQ1

010 = SIO channel 0's transmit buffer empty signal (TXEDMAO) to DREQ1

011 =SSIO receive holding buffer full signal (SSRBF) to DREQ1

100 = TCU counter 2's output signal (OUT2) to DREQ1

101 = SIO channel 0's receive buffer full signal (RBFDMAOQ) to DREQ1

110 = SIO channel 1's transmit buffer empty signal (TXEDMAL1) to DREQ1

111 = SSIO transmit holding buffer empty signal (SSTBE) to DREQ1

000

0 = Enables DACKO# at chip pin

1 = Disables DACKO# at chip pin

2-0

000 = DRQO pin (external peripheral) connected to DREQO

001 = SIO channel 0's receive buffer full signal (RBFDMAO) connected to DREQO

010 = SIO channel 1's transmit buffer empty signal (TXEDMA1) connected to DREQO

011 = SSIO transmit holding buffer empty signal (THBE) connected to DREQO

100 = TCU counter 1's output signal (OUT1) connected to DREQO

101 = SIO channel 1's receive buffer full signal (RBFDMA1) connected to DREQO

110 = SIO channel 0’s transmit buffer empty signal (TXEDMAO) connected to DREQO

111 = SSIO receive holding buffer full signal (RHBF) connected to DREQO

000

Table 5-5. Example DMACFG Configuration Register

5-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Bit # TMRCFG Value

7 All clock inputs enabled 0
CLK2, CLK1, CLKO forced to O

6 Connects GATEn to either the V¢ pin or the TMRGATE N pin 0
Turns GATEn on or off, depending on whether bits 1, 3, and 5 are set or clear

5 With bit 6 clear: V¢ to GATEZ2; with bit 6 set: GATE2 off. 0
With bit 6 clear: TMRGATEZ2 pin conn. to GATE2; with bit 6 set: GATE2 on.

4 PSCLK connected to CLK2 0
TMRCLK?2 connected to CLK2

3 With bit 6 clear: V¢ to GATEL; with bit 6 set: GATE1 turned off. 0
With bit 6 clear: TMRGATEL1 pin conn. to GATEL; with bit 6 set: GATE1 on.

2 PSCLK connected to CLK1 0
TMRCLK1 connected to CLK1

1 With bit 6 clear: V¢ to GATEO; with bit 6 set: GATEO turned off. 0
With bit 6 clear: TMRGATEDO pin conn. to GATEO; with bit 6 set: GATEO on.

0 PSCLK connected to CLKO 0
TMRCLKO connected to CLKO

5-32

Table 5-6. Example TMRCFG Configuration Register

DEVICE CONFIGURATION

Bit # INTCFG Value

7 0 = CAS2:0 disabled to pins 0
1= CAS2:0 enabled from pins

6 0 = SIOINT1 connected to master IR3 0
1 = P3.1 connected to IR3

5 0 = SIOINTO connected to master IR4 0
1 = P3.0 connected to IR4

4 0 = DMAINT connected to slave IR4. INT6 connected to slave IR5. 1
1 = INT6 connected to slave IR4. DMAINT connected to slave IR5.

3 0 = VSS connected to slave IR6 1
1 = INT7 connected to slave IR6

2 0 = Vgg connected to slave IR5 1
1 = INT6 connected to slave IR5

1 0 = SSIO Interrupt to slave IR1 1
1 = INT5 connected to slave IR1

0 0 = VSS connected to slave IR0 1
1 = INT4 connected to slave IRO

Table 5-7. Example | NTCFG Configuration Register

SIOCFG
7 0 = SIO1 modem sigs. conn. to pin muxes
1 = SIO1 modem signals internal
6 0 = SIO0 modem sigs. conn. to pin muxes
1 = SIO0 modem signals internal
5-3 Reserved
2 0 = PSCLK connected to SSIO BLKIN
1 = SERCLK connected to SSIO BCLKIN
1 0 = COMCLK connected to SIO1 BCLKIN
1 = SERCLK connected to SIO1 BCLKIN
0 0 = COMCLK connected to SIO0 BCLKIN

1 = SERCLK connected to SIO0 BCLKIN

Table 5-8. Example SIOCFG Configuration Register

5-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Bit # P1CFG Value Bit # P2CFG Value Bit # P3CFG Value
7 0= P17 7 0= P27 7 0= P3.7
= HLDA 1= CTSO# 1= COMCLK
6 0= P16 6 0= P26 6 0= P3.6
= HOLD 1= TXDO 1= PWRDOWN
5 = P15 5 0= P25 5 0= P35
= LOCK# 1= RXDO 1= INT3
4 = P14 4 0=P24 4 0= P34
= RIO# 1= CS4# 1=INT2
3 0= P13 3 0=P23 3 0= P33
= DSRO# 1= CS3# 1=INT1
2 0=P1.2 2 0= P22 2 0= P3.2
= DTRO# 1= CS2# 1= INTO
1 = P11 1 0=P21 1 0= P3.1
= RTSO# 1= CS1# 1= mux
0 = P1.0 0 0= P2.0 0 0= P3.0
= DCDO# 1= CSO# 1= mux
Bit # PINCFG Value Pins w/o Muxes X Pins w/o Muxes X
7 Reserved DRQO TMRCLKO
6 0 = CS6# DCD1# INT4
1 = REFRESH# DRQ1 TMRGATEO
5 0 = Coprocessor Sigs.! RXD1 INT5
1 = TMR2 Signals? DSR1# TMRCLK1
4 0 = DACKO# STXCLK INT6
1= CS5# RI1# TMRGATEL1
3 0 = EOP# SSIORX INT7
1= CTS1#
2 0 = DACK1#
1= TXD1 NOTES:
1 0 = SRXCLK 1 PEREQ, BUSY#, ERROR#
1= DTR1# 2 TMROUT2, TMRCLK2, TMRGATE2
0 0 = SSIOTX
1= RTS1#

5-34

Table 5-9. Pin Configuration Register Design W

oksheet

intel.

DEVICE CONFIGURATION

Bit #

DMACFG

Value

0 = Enables DACK1# at chip pin

1 = Disables DACK1# at chip pin

6-4

000 = DRQL1 pin (external peripheral) connected to DREQ1

001 = SIO channel 1's receive buffer full signal (RBFDMAL) connected to DREQ1

010 = SIO channel 0's transmit buffer empty signal (TXEDMAO) to DREQ1

011 =SSIO receive holding buffer full signal (SSRBF) to DREQ1

100 = TCU counter 2's output signal (OUT2) to DREQ1

101 = SIO channel 0's receive buffer full signal (RBFDMAOQ) to DREQ1

110 = SIO channel 1's transmit buffer empty signal (TXEDMAL1) to DREQ1

111 = SSIO transmit holding buffer empty signal (SSTBE) to DREQ1

0 = Enables DACKO# at chip pin

1 = Disables DACKO# at chip pin

2-0

000 = DRQO pin (external peripheral) connected to DREQO

001 = SIO channel 0's receive buffer full signal (RBFDMAO) connected to DREQO

010 = SIO channel 1's transmit buffer empty signal (TXEDMA1) connected to DREQO

011 = SSIO transmit holding buffer empty signal (THBE) connected to DREQO

100 = TCU counter 1's output signal (OUT1) connected to DREQO

101 = SIO channel 1's receive buffer full signal (RBFDMA1) connected to DREQO

110 = SIO channel 0’s transmit buffer empty signal (TXEDMAO) connected to DREQO

111 = SSIO receive holding buffer full signal (RHBF) connected to DREQO

Table 5-10. DMACFG Register Design Worksheet

5-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Bit #

TMRCFG

Value

All clock inputs enabled

CLK2, CLK1, CLKO forced to 0

Connects GATEn to either the V¢ pin or the TMRGATEn pin.

Turns GATEn on or off, depending on whether bits 1, 3, and 5 are set or clear.

With bit 6 clear: V¢ to GATEZ2; with bit 6 set: GATE2 off.

With bit 6 clear: TMRGATE?2 pin conn. to GATEZ2; with bit 6 set: GATE2 on.

PSCLK connected to CLK2

TMRCLK2 connected to CLK2

With bit 6 clear: V¢ to GATEL; with bit 6 set: GATE1 turned off.

With bit 6 clear: TMRGATEL pin conn. to GATEL; with bit 6 set: GATE1 on.

PSCLK connected to CLK1

TMRCLK1 connected to CLK1

With bit 6 clear: V¢ to GATEO; with bit 6 set: GATEO turned off.

With bit 6 clear: TMRGATEDO pin conn. to GATEO; with bit 6 set: GATEO on.

PSCLK connected to CLKO

TMRCLKO connected to CLKO

5-36

Table 5-11. TMRCFG Register Design Worksheet

DEVICE CONFIGURATION

INTCFG

Value

CAS2:0 disabled to pins

CAS2:0 enabled from pins

SIOINT1 connected to master IR3

P3.1 connected to IR3

SIOINTO connected to master IR4

P3.0 connected to IR4

DMAINT connected to slave IR4. INT6 connected to slave IR5.

INT6 connected to slave IR4. DMAINT connected to slave IR5.

VSS connected to slave IR6

INT7 connected to slave IR6

Vgg connected to slave IR5

INT6 connected to slave IR5

SSIO Interrupt to slave IR1

INT5 connected to slave IR1

VSS connected to slave IR0

INT4 connected to slave IRO

Table 5-12. INTCFG Register Design Worksheet

SIOCFG

7 0 = SIO1 modem sigs. conn. to pin muxes

1 = SIO1 modem signals internal

6 0 = SIO0 modem sigs. conn. to pin muxes

1 = SIO0 modem signals internal

5-3 Reserved
2 0 = PSCLK connected to SSIO BLKIN
1 = SERCLK connected to SSIO BCLKIN
1 0 = COMCLK connected to SIO1 BCLKIN
1 = SERCLK connected to SIO1 BCLKIN
0 0 = COMCLK connected to SIO0 BCLKIN

1 = SERCLK connected to SIO0 BCLKIN

Table 5-13. SIOCFG Register Design Worksheet

5-37

intel.

BUS INTERFACE
UNIT

intel.

CHAPTER 6
BUS INTERFACE UNIT

The processor communicates with memory, 1/0O, and other deviaegythbus operations. Ad-
dress, data, status, and control information define a bus cycle. The Bus Interface Unit supports
read and write cycles to external memory and I/O devices. It also contains the signals that allow
external bus masters to request and acquire control of the bus. The Bus Interface Unit (BIU) can
execute memory read/write cycles, I/0 read/write cycles, interrupt acknowledge cycles, refresh
cycles and processor halt/shutdown cycles.

This chapter is organized as follows:
* Overview (see below)
* Bus Operation (page 6-5)
* Bus Cycles (page 6-13)
* Bus Lock (page 6-34)
¢ External Bus Master Support (Using HOLD, HLDA) (page 6-35)
¢ Design Considerations (page 6-38)

6.1 OVERVIEW

The Intel386™ EX processor’s external bus is controlled by the bus interface unit (BIU). To com-
municate with memory and /O, the external bus iagf a data bus, a separate address bus,
seven bus status pins, two data status pins, and three control pins.

* Bidirectional data bus (D15:0) can transfer 8 or 16 bits of data per cycle.

* Address bus includes the address pins (A25:1), a high-byte-enable pin (BHE#), and a low-
byte-enable pin (BLE#). Address pins select a word imorg, and byte+eable pins select
the byte within the word to access.

* Bus status pins include:
— ADS# indicates the start of a bus cycle and valid address bus outputs.
— W/R# identifies the bus cycle as a write or a read.
— M/IO# identifies the bus cycle as a memory or I/O access.
— DI/C# identifies the bus cycle as a data or control cycle.
— LOCK# identifies a locked bus cycle.

— LBA# indicates that the processor generates an internal READY# for the current bus
cycle.

— REFRESH# identifies a refresh bus cycle.

I 6-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

¢ Data status pins indicate that data is available on the data bus for a write (WR#) or that the
processor is ready to accept data for a read (RD#). These pins are available so that certain
system configurations can easily connect the processor directly to memory or I/O without
external logic.

* Bus control pins allow external logic to control the bus cycle on a cycle-by-cycle basis:

— READY# indicates that internal logic has completed the current bus cycle or that
external hardware has terminated it.

— NA# requests the next address to be put on the bus during a pipelined bus cycle.
— BS8# indicates that the current bus transaction is for an 8-bit data bus.

The remaining external bus pins interface to external bus masters and external logic for transfer-
ring control of the bus.

* An external bus master activates the HOLD pin to request the external bus.

— The internal bus arbiter arbitrates between the HOLD input and other potential requests
(DMA Units 0 and 1, Refresh Control Unit) based on their priorities.

— When another unit has control of the bus, the bus is released to the external bus master
based on the arbiter’s arbitration scheme (refer to “Bus Control Arbitration” on page
12-9 for nformaion on internal bus masters also controlled by the internal bus arbiter
and the arbitration protocol used by the arbiter).

— When the core has control of the bus, the arbiter passes the request on to the core by
asserting the core HOLD signal.

— The core finishes the current nonlocked bus transfer and releases the bus signals.
— The core asserts the core HLDA signal to indicate that the bus has been released.

— The arbiter then asserts the HLDA pin to indicate to the external bus master that the bus
has been released.

6-2

intel.

BUS INTERFACE UNIT

6.1.1 Bus Signal Descriptions

Table 6-1 describes the signals associated with the BIU.

Table 6-1. Bus Interface Unit Signals (Sheet 1 of 2)

Signal

Device Pin or
Internal Signal
only

Description

A25:1

Device pins

Address Bus:

Outputs physical memory or I/O addresses. These signals are valid
when ADS# is active and remain valid until the next T1, T2P, or Ti.

ADS#

Device pin

Address Strobe:

Indicates that the processor is driving a valid bus-cycle definition and
address. (The processor is driving W/R#, D/C#, M/IO#, WR#, RD#,
UCS#, CS6:0#, LOCK#, REFRESH#, A25:1, BHE#, and BLE# on its
pins.)

BHE#
BLE#

Device pins

Byte Enable Outputs:

Indicates which byte of the 16-bit data bus of the processor is being
transferred.

BHE# BLE# Output
0 0 word transfer
0 1 upper byte (D15:8) transfer
1 0 lower byte (D7:0) transfer
1 1 refresh cycle

BS8#

Device pin

Bus Size:
Indicates that the currently addressed device is an 8-bit device.

D15:0

Device pins

Data Bus:

Inputs data during memory read, 1/O read, and interrupt acknowledge
cycles; outputs data during memory write and I/O write cycles. During
reads, data is latched at the falling edge of phase 2 (coincides with
rising edge of PH1) of T2, T2P, or T2i when READY# is sampled
active. During writes, this bus is driven during phase 2 of T1 and T1P
and remains active until phase 2 of the next T1, T1P, or Ti.

LBA#

Device pin

Local Bus Access:

Indicates that the processor provides the READY# signal internally to
terminate a bus transaction. This signal is active when the processor
accesses an internal peripheral or when the chip-select unit generates
the READY# signal for accesses to an external peripheral. LBA# is
also active when internal READY# generation is enabled for
Halt/Shutdown cycles and the Watchdog Timer Unit's Bus Monitor
Mode timeouts.

The LBA# signal goes active in the first T2 state and stays active until
the first T2, T2i or T2P state of the next cycle that does not have
internal READY# generation.

LOCK#

Device pin

Bus Lock:
Prevents other bus masters from gaining control of the system bus.

6-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table 6-1. Bus Interface Unit Signals (Sheet 2 of 2)

Device Pin or

Signal Internal Signal Description
only

M/IO# Device pins Bus Cycle Definition Signals (Memory/lIO, Data/Control, Write/Read,

D/C# and Refresh):

WIR# These four status outputs define the current bus cycle type, as shown

REFRESH# in Table 6-2.

NA# Device pin Next Address:
Requests address pipelining.

RD# Device pin Read Enable:
Indicates that the current bus cycle is a read cycle and the data bus is
able to accept data.

READY# Device pin Ready:
This bidirectional pin is used to terminate the current bus cycle. The
processor drives READY# when LBA# is active. The processor
samples the READY# pin at the falling edge of Phase 2 of T2, T2P or
T2i.
The READY# signal is also used to deassert the WR# signal (Refer to
“Write Cycle” on page 6-16).

WR# Device pin Write Enable:

Indicates that the current bus cycle is a write cycle and valid data is
present on the data bus.

6-4

Int9|® BUS INTERFACE UNIT

6.2 BUS OPERATION
The processor generates eight different types of bus operations:
* Memory data read (data fetch)
* Memory data write
* Memory code read (instruction fetch)
* 1/O data read (data fetch)
* |/O data write
* Halt or shutdown
* Refresh
¢ Interrupt acknowledge

These operations are defined by the states of four bus status pins: M/IO#, D/C#, W/R# and RE-
FRESH#. Table 6-2 lists the various combinations and their definitions.

Table 6-2. Bus Status Definitions

M/I1O# D/C# WI/R# REFRESH# Bus Operation
0 0 0 1 interrupt acknowledge cycle
0 0 1 1 never occurs
0 1 0 1 I/O data read
0 1 1 1 I/O data write
1 0 0 1 memory code read
1 0 1 1 halt or shutdown cycle*
1 1 0 0 refresh cycle
1 1 0 1 memory data read
1 1 1 1 memory data write

*The byte address is 2 for a halt and 0 for a shutdown. For both conditions, BHE# is high and BLE# is low.

6-5

Idle Cycle 3

Cycle 2

Cycle 1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

.............. — _VA_.. <
kel £
feo F :
SET 2
280 - ; Bt EEEEE CEEEEE EEEEEE B RREkl &
mam\ = >
pd
.............. S><
5 —_
@ PN @
£Td~3 F » 5
20 z o)
.mm,wan T TTITTTTT T T T s
o %) >
WE(U‘M _”. ~~—
....... - >< |
o
m [N
.............. >< N
c
M| N <
£T = = N
TET S
s8I s
x
=g —
mE ol A
z <
3 > « -
£s-8 F | |z
D Elo il (]
SaEX----- S|
SxZe o >
sWTs [
i i _ _ /‘,\
N [
o * 3 3 I * * 3+ H* #* * * * * o
§ 5 3 Woéo r F o » < > << ® X 5
n ©O v IS O S = o a] 4 [a) o0 a Q o
3 BoF K < 3 - g B
O 4% o @
S
<

A2305-02

Figure 6-1. Basic External Bus Cycles

6-6

Int9|® BUS INTERFACE UNIT

6.2.1 Bus States

The processor usesdaubke-frequency clock input (CLK2). This clock is internally divided by
two and synchronized to the falling edge of RESET (see Figure 8-2 in Chapter 8) to generate the
internal processor clock signal. Each processor clock cycle is two CLK2 cycles wide.

Each bus cycle is composed of at least two bus states: T1 and T2. Each bus state in turn consists
of two CLK2 cycles, which can be thought of as Phase 1 (PH1) and Phase 2 (BldD)us state.

External circuitry can use the CLKOUT signal (generated by the processor) to synchronize itself
with the processor. This signal is a replica of the PH1P clock, which is the PH1 clock that is used
by the internal peripherals. (For more information, refer to Chapter 8, “CLOCK AND POWER
MANAGEMENT UNIT.”) The CLKOUT signal is used as a phase status indicator for external
circuitry. All device inputs are sampled and outputs are activated at CLK2 rising edges. This
makes synchronous circuit design easy through the use of rising-edge-triggered, registered logic
(such as PALs, PLDs and EPLDs).

Many signals are sampled by the processor on every other CLK2 rising edge: some are sampled
on the CLK2 edge when CLKOUT is going high, while others are sampled on the CLK2 edge
when PH1 is going low.

The maximum data transfer rate for a bus operation is 16 bits for every two processor clock cycles
(two CLKOUT cycles).

During the first bus state (T1), address and bus status pins go active. During the second bus state
(T2), external logic and devices respond.

¢ When the READY# input is sampled low at the falling edge of PH2 in T2, the bus cycle
terminates.

* When READY# is high when sampled, the bus cycle continues for an additional T2 state,
called a wait-state, and READY# is sampled again. This process continues WBIVRE
is sampled active, at which point the bus cycle terminates.

Wait-states are added until READY# is sampled low. READY# is sampled externally when the
LBA# signal is inactive. When the LBA# signal is active, the processor is generating the
READY# signal internally. READY# can be generated internally by either an infggripheral

or the chip-select unit's wait-state generator. When no bus cycles are needed (no bus requests are
pending), the processor remains in the idle bus state, Ti. The relationship between T1, T2, and Ti
is shown in Figure 6-2.

From an idle bus, the processor begins a bus cycle by first driving a valid address and bus cycle
status onto the address and status buses. Hardware can distinguish the difference between an idle
cycle and an active bus cycle by the address strobe (ADS#) signal being driven actM@SEhe

signal remains active for only the first T-state of the bus cycle, while the address signals and status
signals remain active until the bus cycle is terminated by an active READY# signal or the bus
cycle is pipelined. Pipelined bus cycles are discussed in “Ripglion page 6-8. Basic bus cy-

cles are illustrated in Figure 6-1. The bus status signals indicatgtheftbus cycle the proces-

sor is executing. Notice that the signal combinations marked as invalid states may occur when the
bus is idle and ADS# is inactive.

I 6-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Memory read and memory write cycles can be locked to prevent another bus master from using
the local bus. This allows for indivisible read-modify-write operations.

Reset Asserted READY# Asserted » No Request

Always R
L) (T2

READY# Asserted ¢
Request Pending

No Request

Request Pending

Bus States:
T1 - First clock of a non-pipelined bus cycle (CPU drives READY# Negated
new address and asserts ADS#).
T2 - Subsequent clocks of a bus cycle when NA# has not
been sampled asserted in the current bus cycle.
Ti - Idle State

The fastest bus cycle consists of two states: T1 and T2.

A2484-02

Figure 6-2. Simplified Bus State Diagram
(Does Not Include Address Pipelining or Hold states)

6.2.2 Pipelining

The processor can control the address and status outputs so that the outputs for the next bus cycle
become valid before the end of the present bus cycle. This technique, allowing bus cycles to over-
lap, is callecpbipelining

Pipelining increases busrdughput wihout decreasing allowable memory or 1/0O access time,
thus allowing high bandwidth with relatively slow, inexpensive components. In addition, using
pipelining to address slower devices can yield the sanoeighput asddressing faster devices

with no pipelining. With pipelining, a device operating at 33 MHz (CLK2 = 66 MHZz) can transfer
data at 33 Mbytes per second while requiring a device with access time of approximately 3 T-
states (90 ns at 33 MHz, neglecting signal delays). Without address pipelining, the access time
has to be approximately 2 T-states (60 ns at 25 MHz). Therefore, when pipelining is used, slower
devices can be used in the system to achieve performance similar to a faster device in a non-pipe-
lined system.

Pipelining is not supported during I/O bus cycles and BS8 cycles (16-bit accesses to 8-bit devic-
es).

NOTE

During I/O cycles, NA# is ignored. NA# must be kept deasserted (blocked
externally) during the T2 states of BS8 memory cycles.

6-8

Int9|® BUS INTERFACE UNIT

NOTE

Pipelining is alssupported during memory cycles initiated by tive
integrated DMA units.

Refer to “Pipelined Cycle” on page 6-19 for a description of pipelined cycles.

6.2.3 Data Bus Transfers and Operand Alignment

The processor can address up to 64 Mbyté$ lfgtes, addresses 0000000H-3FFFFFFH) of
physical memory and up to 64 Kbytes{ytes, addresses 0000H-FFFFH) of I/0. The device
maintains separate physical memory and I/O spaces.

A programmer views the address space (memory or I/O) as a sequence of bytes:
* \Words consist of 2 consecutive bytes
¢ Doublewords consist of 4 consecutive bytes

However, in the system hardware, address space is implemented in 2-byte portions. When the
processor reads a word, it accesses a byte from each portion of the 16-bit data bus. The processol
automatically translates tiprogrammer’s view of @ansecutive bytes into this hardware imple-
mentation.

Memory and I/O spaces are organized physically as sequences of 16-bit WodBsi§ mem-
ory locations and-2 16-bit /0O ports maximum). Each word starts at a physical address that is a
multiple of 2 and has 2 individually addressable bytes at consecutive addresses.

Pins A25:1 correspond to the most-sigrafit bits of the physical address; these pins address
words of memory. The least-significant bit of the physical address is used internally to activate
the appropriate byte enable outputs (BHE# or BLE# or both).

Data can be transferred in quantities of either 8 or 16 bits for each bus cycle of a data transfer.
When a data transfer can be completed in a single cycle, the transfer is saaligmdx For
example, a word transfer involving D15:0 and activating BHE# and BLE# is aligned.

Word transfers that cross a word boundaryastdeword transferthat cross twavord bound-

aries are calledonalignedtransfers. Nonalignedord transfers require two bus cycles, while
nonaligned doubleworttansfers require three. The processor automatically generates these cy-
cles. For example:

¢ A word (16-bit) transfer at (byte) address 03H requires two byte transfers:

— The first activates word address 04H and uses D7:0 (to write or read the upper byte of
the 16-bit word)

— The second activates word address 02H and uses D15:8 (to write or read the lower byte
of the 16-bit word)

I 6-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

¢ A doubleword (32-bit) transfer at (byte) address 03H requires three transfers, one word
transfer and two byte transfers:

— The first word transfer activates word address 04H and uses D15:0 (to write or read the
middle 2 bytes of the 32-bit doubleword)

— The next transfer activates word address 06H and uses D7:0 (to write or read the upper
byte of the 32-bit word)

— The last transfer activatesrd address 02H and uses D15:8 (to write or read the lower
byte of the 32-bit word)

Table 6-3 shows the sequence of bus cycles for all possible alignments and operand length trans-
fers. Even though nonaligned transfers are transparent to a program, they are slower than aligned
transfers (due to the extra cycles needed) and should be avoided.

Table 6-3. Sequence of Nonaligned Bus Transfers

First Cycle Second Cycle Third Cycle
Transfer Physical
Type Address Address Byte Address Byte Address Byte
Bus Enable Bus Enable Bus Enable

word 4N+1 4N BHE# AN+2 BLE#

word 4N+3 4N+4 BLE# 4N+2 BHE#
doubleword 4N+1 4N+4 BLE# 4N BHE# 4N+2 both
doubleword 4N+2 4N+4 both AN+2 both
doubleword 4N+3 4N+4 both 4N+6 BLE# 4N+3 BHE#

6.2.4 Ready Logic

A bus cycle is terminated externally by asserting the READY# pin or internally by either an in-
ternal peripheral or the Chip-select Unit's wait-state logic. When an access is to an internal pe-
ripheral, the address also goes out to the external bus. When an external device incorrectly
decodes a match to the address and drives the READY# pin, contention occurs on the signal. The
LBA# pin should be used to alleviate the gibglity of contention on the REDY# pin. The
READY# pin is an output of the processor whenever LBA# $ered and an input to tipeo-

cessor whenever LBA# is deasserted.

The LBA# pin becomes active when the processor is generating the READY# internally. Figure
6-3 shows the implementation of the READY# signal using the LBA# signal. If you wish to sim-
plify decoding of address space and overlap internal I/O regigtarsieed to provide external

logic to monitor LBA# and end the bus cycle externally when the processor generates the
READY# internally.

NOTE

Since LBA# may be used as an output-enable by both the internal and external
READY# buffers, are must be taken in selecting the exterrBARY# buffer

to minimize contention on the READY# signal caused by differences in buffer
characteristics.

6-10

Int9|® BUS INTERFACE UNIT

{1 iBa#

Bus
Unit

READY#
\~—— Chip Boundary

To Internal Units

A2485-01

Figure 6-3. Ready Logic

When an internal cycle occurs, the LBA# signal becomes active in Phase 1 of the first T2 state.
It then stays active until the rising edge of PH1 of the first T2, T2i or T2P state of the next bus
cycle that requires external READY# to terminate the bus cycle. For example, the processor may
start an internal bus cycle, go through a few idle states, perform another internal cycle, then a cy-
cle in which the Chip-select Unit generates READY#, run through a few more idle states and then
finally do a cycle in which READY# needs to be generated by external logic. LBA# goes active
in the first T2 state of the first internal cycle, and stay activeutyh the next two cycles (even
during all the idle states in between) and go inactive at the rising edge of PH1 in the first T2, T2i
or T2P state of the final cycle (the one that requires an external READY# to terminate).

NOTE
LBA# is deasserted during HOLD cycles.

Idle

Cycle 2 Cycle 3

Cycle 1

Idle

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Figure 6-4 shows internal and external bus cycles.

<@ <
& P
[&)
.............. S>< &1 me
°
[0} he]
£ T < = <
© EZ kel w il
233 = Rt T e et -1 Gaiaah
m._.v_._Am“\ > >
P4
.............. S< e > |
(]
m, nh ™
O . L - JN — =1
B N E o I B
£T 5 ™ 3
s o . =3 S I R N R U U A e _|©
=0 1
SES g o~
o (]
S @
.............. >< mb VAE
e}
.mm) N m N
RN 2 2
258 sttt -r--------- SRRt EEEEEE S|---t-
S e > - >
5=~ @
=z ©°
.............. S< - N I
® =)
£S5 5 - o[|3
m.ﬂn 1= ~ >~ o] = ..
= = ©
SxZ > >
OE
z S S
[}
©°
>
(6]
o N S 3 3 3 T, * 5 H 1 o
F% 3888z £z 8 2 % 3 3 4 5 @
= = =
n o Q mos w = = < < 0 @ 5 A
= g 2] |
O <1 [o
‘ENN:
<

A2486-03

Figure 6-4. Basic Internal and External Bus Cycles

6-12

Int9|® BUS INTERFACE UNIT

6.3 BUS CYCLES

The processor executes five types of bus cycles:
* Read

* Write

* Interrupt

* Halt/shutdown

¢ Refresh

6.3.1 Read Cycle
Read cycles are of two types:

* In apipelined cycle, the address and status signals are output in the previous bus cycle, to
allow longer memory access times. Pipelined cycles are described in “Pipelined Cycle” on
page 6-19.

* In anonpipelinedcycle, the address and status signals become valid during the first T-state
of the cycle (T1). Figure 6-5 shows the timing for two nonpipelined read cycles (one with
and one without a wait-state).

The sequence of signals for the nonpipelined read cycle is as follows:

1. The processor initiates the cycle by driving the address bus and the status signals active
and asserting ADS#. The type of bus cycle occurring is determined by the states of the
address bus (A25:1), byte enable pins (BLE# and BHE#), and bus status outputs (W/R#,
M/IO#, D/C#, REFRESH#, and LOCK#). Because of output delays, these signals should
be sampled at the rising edge of the CLK2 signal that coincides with the falling edge of
PH2, when ADS# is definitely active. For a read cycle, the bus status outputs have the
following states:

* W/R#is low

e M/IO# is high for a memory read and low for an 1/O read

e D/C# s high for a memory or I/O data read and low for a memory code read
* REFRESH# is deasserted

e LOCK# is asserted for a locked cycle and deasserted for a nonlocked cycle. In a read-
modify-write sequence, both the memory data read and memory data write cycles are
locked. No other bus master should be permitted to control the bus between two
locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the exception of ADS#)
remain active through the end of the read cycle.

2. At the start of phase 2 of T1, RD# becomes active as the processor prepares the data bus
for input. This indicates that the processor is ready to accept data.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

3.

6-14

When a chip-select region is enabled for the current read cycle but internal READY#
generation is disabled for that region, and the Chip-select Unit is programmed to insert
wait-states, the READY# signal is ignored (not sampled) by the processor until the
programmed number of westates are inserted into the cycle.

At the falling edge of PH2 in every T2 state (after the wait-states, if any are programmed
in the Chip-select Unit, have expired), READY# is sampled. If READY# is active, the
processor reads the input data on the data bus and deactivates RD#.

If READY# is high, wait states are added (additional T2 states for nonpipelined cycles)
until READY# is sampled low. READY# is sampled at the end of each T2 state (at the
falling edge of PH2).

Once READY# is sampled low, the processor reads the input data, deactivates RD#, and
terminates the read cycle. If a new bus cycle is pending, it begins on the next T-state.

BUS INTERFACE UNIT

k) _
° ~
~
- =
2
N=TTB= 77
T cT
28 ER o
0O =90 0 |
>R
Ocuw~=__.
)
z —
=
.-..%“
o~
1mn|am .I
2L E
o588
CWB@\ —
o =
z
@ _
=] =

CLK2

.....................................-........... ...
o |
g
..... > [0 I P N
©
f=
w 1
||||| [V PSS | R R N R | i R ——
S
<
>
[}
g
..... S O o
2
.m i
..... © RO U EREREPR P
>
..... >< o] .
o 3 * #* ** H* ** 1 * *® H*
s 88 F £ & § & = 3 3 3
o0 123
m AD L W W < < a o
] S o w
o Em E o
m = @
I
W
T
o)

Valid2

A

Valid1l

A

LOCK#

A2487-03

Figure 6-5. Nonpipelined Address Read Cycles

6-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.3.2

Write Cycle

Write cycles are of two types:

¢ Pipelined. Pipelined write cycles are described in “Pipelined Cycle” on page 6-19.

* Nonpipelined. Figure 6-6 shows two nonpipelined write cycles (one with and one without a

wait state).

The sequence of signals for a nonpipelined write cycle is as follows:

1.

6-16

The processor initiates the cycle by driving the address bus and the status signals active
and asserting ADS#. The type of bus cycle occurring is determined by the states of the
address bus (A25:1), byte enable pins (BLE# and BHE#), and bus status outputs (W/R#,
M/IO#, D/C#, REFRESH#, and LOCK#). Because of output delays, these signals should
be sampled at the rising edge of the CLK2 signal that coincides with the falling edge of
PH2, when ADS# is definitely active. For a write cycle, the bus status outputs have the
following states:

* W/R#is high
e M/IO# is high for a memory write and low for an I/O write

e D/C#is high for a memory write or I/O write cycle. During halt and shutdown cycles,
D/C# is low. Unless D/C# is decoded by external chip-select logic, thdmstntor
halt cycle looks like a memory write cycle to byte address zero or two, respectively.
Therefore, the signal D/C# needs to be decoded for memory device chip-selects in
this address range (normally SRAM or DRANMVvices) in order to recognize halt and
shutdown cycles, thus preventing incorrect write cycles tmaong

¢ REFRESH# is deasserted

e LOCK# is asserted for a locked cycle and deasserted for an unlocked cycle. In a read-
modify-write sequence, both the memory data read and memorwdggaycles are
locked. No other bus master should be permitted to control the bus between two
locked bus cycles.

The address bus, byte enable pins, and bus status pins (with the except8tand
WR#) remain active through the end of the write cycle.

At the start of Phase 2 in T1, the WR# signal is asserted and the CPU begins to drive
output data on its data pins. The data remains valid until the start of phase 2 in the T-State
after the present bus cycle has terminated.

If a chip-select region is enabled for the current read cycle but internal READY#
generation is disabled for that region, and the Chip-select Unit is programmed to insert
wait-states, then the READY# signal is ignored (not sampled) by the processor until the
programmed number of wadtates are inserted into the cycle.

Int9|® BUS INTERFACE UNIT

4. The WR# signal can be deasserted in two ways.

* Early Ready: WR# is deasserted at the rising edge of CLK2 in the middle of the T2
state, after any wait states programmed in the Chip-select Unit have expired.

At the rising edge of PH2, READY# is sampled. If it is found active, WR# is
synchronously deasserted in the middle of T2, driven inactive hysihg edge of
the PH2 clock. The write cycle is then terminated at the end of the T2 state.

NOTE

When READY# is generated by the processay.(@vhen the Chip-select Unit
generates it), then the write cycle is always an Early Ready cycle.

¢ Late Ready: When READY# goes low after the rising edge of PH2 of the T2 state
(after the wait-states, if any apeogrammed in the Chip-select Unit, have expired),
WR# is asynchronously deasserted as soon as READY# is asserted (after a small
delay caused by the logic). The write cycle is then terminated at the end of the T2
state.

The WR# signal operates in this manner to ensure sufficient address and chip-select hold
time during write cycles (required by many memory and I/O @syidn the first case, the
address and chip-select hold time ppeoximately one CLKZycle.

5. When READY# is high, wait-states are added (additional T2 states for nonpipelined
cycles) until READY# is sampled low. READY# is sampled in each T2 state (starting at
the rising edge of PH2) to deassert the WR# sigpptopriately, and at the end of each T2
state (at the falling edge of PH2) to terminate the cycle.

6. Once READY# is sampled low, the write cycle terminates. If a new bus cycle is pending,
it begins on the next T-state.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

o
° =
Q_ T..

NET~C

eo 22

cest [

>EXZ >

Ocpgss
S C -
z w,

—

[
e —_—
o_ BN

—AE T ~ghH

voEL0

c2gEX--

SEXZ @

OcCc<T =«
o ﬁ_l
P4 =

o —

k=] [

CLK2

Valid2

A

Validl

A

CLKOUT
M/IO#, DIC#
REFRESH#

WIR#
WR#
RD#
ADS#
NA#
READY#
BS8#

BHE#, BLE#, A25:1

Valid 2 X

A

LOCK#

Out 2

X

Out 1

-

D15:0 =

A2488-02

Figure 6-6. Nonpipelined Address Write Cycles

6-18

Int9|® BUS INTERFACE UNIT

6.3.3 Pipelined Cycle

The pipelining feature of the processor is normally used to achieve zero-wait-state memory sub-
systems using devices that are slower than those in a zero-wait-state non-pipelined system. Pipe-
lining allows bus cycles to be overlapped, increasing the amount of time available fontbeyme

or I/O device to respond. The next address (NA#) input controls pipelining. NA# is generated by
logic in the system to indicate that the address and status buses are no longer needaéby the
tem. When pipelining is not desired in a system, the NA# input should be tied inactive.

During any particular bus cycle, NA# is sampled only after the address and status have been valid
for one T-state (the T1P state of pipelined cycles or the first T2 state of nonpipelined cycles) and
is continuously sampled in each subsequent T-state until it is found active or the bus cycle is ter-
minated. In particulalNA# is sampled at the rising CLK2 edge in the middle of the T-state (rising
edge of Phase 2).

When the system is designed to assert NA#, pipelining medyrimmically requested on a cycle-
by-cycle basis by asserting NA#. Typically, only some devices in a system are pipelined.

NOTE

Asserting the NA# pin is a request for pipelining. Asserting NA# during a bus
cycle does not guarantee that the next cycle is pipelined. NA# is ignored
during I/O cycles andhust be kept deasserted during the T2 states of BS8
memory cycles.

During the T2 state of a nonpipelined cycle, if NA# is sampled active, one of four states occur:

¢ Ifa bus cycle is internally pending in the processor and READY# is returned inactive to the
processor and the HOLD input is inactive, then the address, byte enables, and bus status
signals for the next bus cycle are driven and the processor bus unit enters a T2P state. T2P
states are repeated until the bus cycle is terminated.

¢ Ifa bus cycle is internally pending in the processor and READY# is returned active to the
processor and the HOLD input is inactive, then the address, byte enables, and bus status
signals for the next bus cycle are driven and the processor bus unit enters a T1
(nonpipelined) state. In effect, the NA# input is ignored in this case.

¢ |f READY# is returned inactive and either a bus cycle is not internally pending or the
HOLD input is active, then the address and byte enables entekaown state, the bus
status signals go inactive, and the processor bus unit enters a T2i state. If the bus cycle is not
terminated, then the next state is either a T2P state or a T2i state depending on whether a
bus cycle is pending.

¢ If HOLD is asserted to the processor and READY# is returned active, then the Th state is
entered from a T2 state regardless of whether an internal bus cycle is pending.

Figure 6-8 illustrates the effect of NA# (Figure 6-7 shows the full bus state diagriaicing the

states related to pipelining). During the second T-state (T2) of a nonpipelined read cycle (cycle
2), NA# is sampled low. A busycle was pending internally (cycle 3) and the address, byte en-
ables, and bus status signals for this pending bus cycle (cycle 3) are driven during the next T2P
state (the first wait state of the current bus cycle). The RD# and WR# signals do not change until
READY# is sampled low.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

HOLD Asserted

READY# Asserted
HOLD Asserted
1S
ig2)
’90< %

O A,
R
3, %,
HOLD Negated *\%&,, .,
Request Pending
Reset
Asserted &
rted « HOLD Negateq »
HOLD Negated » DY PSS N9 Requeg,
No Request,
Always NA# Negated
TP
Request Pending «
HOLD Negated READY# Asserted *
HOLD Negated ¢ . —
Request Pending =
Q
g
READY# Asserted + READY# Nogated | £ + &
HOLD Negated * NA#Negated | g 8 & s
Request Pending % ; i 2 %E
‘30 A 255
§E< <5t
sgzuw #* 33
T O <0 g
2 ZIg
o
£
. -
kst -3 g 2
T olT @
SEss| |2
T2i Zpgaf |<
! . . #2Z9 ¥
READY# Asserted « 3 og 528 a
HOLD Negated » 5 e <$07F <
SR wZxg w
No Request % T @ o
o
Bus States: ¥ 3 g
T1—first clock of a non-pipelined bus cycle.] 5
sl T
T2—subsequent clock of a bus cycle when NA# has Riﬁ%ﬁ;g‘feg;tid & & L
not been sampled active in the current bus cycle. HOLD Asserted)
T2i—subsequent clocks of a bus cycle when NA# has
been sampled active in the current bus cycle and there
is not yet an internal bus request pending.
T2P—subsequent clocks of a bus cycle when NA# has
been sampled active in the current bus cycle and there
is an internal bus request pending.
T1P—first clock of a pipelined bus cycle.
Ti—idle state.
Th—hold acknowledge state. READY# Negated
A2376-02

Figure 6-7. Complete Bus States (Including Pipelined Address)

6-20

BUS INTERFACE UNIT

CLKOUT

TIP | T2P | T2P

Cycle 1
Pipelined
(Write)
[Late Ready]

Cycle 2
Non-pipelined
(Read)

TIP | T2 | T2P

Cycle 3

Cycle 4

Pipelined E Pipelined
(Write) I (Read)
[Late Ready] |
TIP @ T2i P T2P I TIP T2

BHE#, BLE#, A25:1,
M/IO#, DIC#

Valid2

A

Valid

s X

Valid4

A

><

/1—V—:

— ADS#: is asseirted as
soon as the GPU has
anothger bus gycle to
perfotm, which is not
always immediately
after NA# is a:sserted.

WIR# \ : , :
WR# A , YA :
RD# 1 i , Voo
ADS# | ___/—_

© |/ Note ADS# s !

! ' asserted in !

i every T?P state.

|/

| W —

s A

—

J

s long as thé CPU enters the T2P

state d
pelirfning

uring Cycle'3, addrgss
is r:naintain'ed in Cycle 4.

Na# \

~

L

—\ /

Asser:ting
than o

any cycle has no
adgitional effects

|

NA# more
nce:during

| time possible to allow;the CPU to enter

1 T2P state to maintain;pipelinitig in cycle 3.

READY# _/

D150 out X

Outl

TN T
: :Valid 1: :X IValid 2I :X :Valid 3: :X :Valid 4

-

A2477-03

Figure 6-8. Pipelined Address Cycles

6-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

In cycle 3, NA# is sampled in the firststate (T1P); the address and status have been valid for
one previous T-state and this is a new bus cycle. NA# is sampled active and — because a bus cy-
cle (cycle 4) is pending internally — the address, byte enables, and bus status signals for this
pending bus cycle (cycle 4) are driven during the next T2P state.

In cycle 4, NA# is sampled in the firststate (T1P); the address and status have been valid for
one previous T-state, and this is a new bus cycle. NA# is sampled active and — because a bus
cycle isnot internally pending — the address and byte enables go to an unknown state and the
bus status signals go inactive in the next T2i state. When this cycle is terminated by an active
READY# signal, there is no bus cycle pending internally and the bus enters the idle state (Ti).

From an idle bus, an additional overhead of one clock cycle is required to start a pipelined bus
cycle (this is true with all pipelined bus architectures). This additional clock is used to pipeline
the address and status signals for the first bus cycle in a train of pipelined bus cycles. As long as
back-to-back bus cycles are executed, the pipelined bus can maintain the same throughput as the
nonpipelined bus. Only when the bus pipeline gets broken (by entering an idle or hold state) is
the additional one-clock overhead required to start the pipe &ayaime next train of pipelined

bus cycles.

The first bus cycle after an idle bus state is always nonpipelined. Systems that use pipelining typ-
ically assertNA# during this cycle to enter pipelining. To initiate pipelining, this nonpipelined
cycle must be extended by at least one T-state so that the address and status can be pipelined be
fore the end of the cycle. Subsequent cycles can be pipelined as long as no idle bus cycles occur.

Specifically, NA# is sampled at the start of phase 2 of any T-state in which the address and status
signals have been active for one T-state and a new cycle has begun:

* The first T2 state of a nonpipelined cycle (the second T-state)
* The T1P state of a pipelined cycle (the first T-state)

* Any wait state of a nonpipelined or pipelined cycle unless NA# has already been sampled
active

Once NA# is sampled active, it remains active internally throughout the current bus cycle. When
NA# and READY# are aitte in the same T2 state, the stateNA# is irrelevant because
READY# causes the start of a new bus cycle. Therefore, the new address and status signals are
always driven, regardless of the state of NA#. NA# has no effect on a refresh cycle because the
refresh cycle is entered from an idle bus state and exits to an idle bus state.

With this processor, address pipelining is optional so that bus cycle timing can be closely tailored
to the access time of the memory device.

* Pipelining can be activated once the address is latched externally.
* Pipelining can be not activated if the address is not latched.

For systems that use address pipelining, the great majority of accesses are pipelined. Very few
idle states occur in an Intel386 EX processor system. This means that once the processor has en-
tered pipelining, another bus cycle request is almost always internally pending, resulttog4in a
tinuous train of pipelined cycles. In measured systems, about 85% of bus cycles are pipelined.

6-22 I

Int9|® BUS INTERFACE UNIT

A complete discussion of the considerations for using pipelining can be foundlimet386 "
SX Processodatasheet (order number 240187})herIntel386™ SX Microprocessor Hardware
Reference Manugbrder number 240332).

6.3.4

Interrupt Acknowledge Cycle

An interrupt causes the processor to suspend execution of the cuogretnp and execute in-
structions from another program callediaterrupt service routinelnterrupts are described in
Chapter 9.

The interrupt control unit coordinates the interrupts of several devices, internal and external. It
contains two 82C59A programmable interrupt controllers (PICs) connected in cascade. The slave
82C59A module controls up to five internal interngpurces and up to four external interrupt
sources depending upon the configuration programmrteglmaster 82C59A module controls the
slave 82C59A, three internal interrupt sources and up to six external interrupt sources depending
upon the configuration programmed. When a device signals an interrupt request, the interrupt
control unit activates the processor’s INTR input.

Interrupt acknowledge cycles are special bus cycles that enable the interrupt control unit to output
a service-routine vector onto the data bus. The processor performs two back-to-back interrupt ac-
knowledge cycles in response to an active INTR input (as long as the interrupt flag is enabled).
Interrupt acknowledge cycles are similar to regular bus cycles in that the processor initiates each
bus cycle and an active READY# terminates each bus cycle. The cycles are shown in Figure 6-9.
The sequence of signals for an interrupt acknowledge cycle is as follows:

1. The address and status signals are driven active and ADS# is driven low to start each bus
cycle.

Status signals M/10#, D/C#, and W/R# are lovintdicate an interrupt acknowledge

bus cycle. These signals must be decoded to generate the INTA input signal for an
external 82C59A, if an external cascaded 82C59A is used. The REFRESH# signal is
high.

LOCK# is active from the beginning of the first cycle to the end of the second. HOLD
requests from other bus masters are not recognized until after the second interrupt
acknowledge cycle is completed.

NA# is ignored.

The byte address driven during the first cycle is 4; during tbengkcycle the byte
address is 0. BHE# is high, BLE# is low, and A25:3 and Al are low for both cycles;
A2 is high for the first cycle and low for the second. If the CAS enable bit in the
interrupt control unit’s configuration register is set (INTCFG.7=1), address bits
A18:16 reflect the status of the CAS lines. The CAS lines go valid at the rising edge
of PH2 of the T1 state of the first interrupt acknowledge cycle. They then go invalid
at the rising edge of PH2 of the next Ti state. At the rising edge of PH2 of the T1 state
of the second interrupt acknowledge cycle, the CAS lines go valid again. They then
go invalid at the rising edge of PH2 of the next Ti state.

6-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

2.

6-24

NOTE

Since the CAS lines are invalid in the Ti states between the two interrupt
acknowledge cycles, cascading of external 82C59A devices requires latching
the CAS lines. Thisresureghat the CAS lines remain valid during these Ti
states to fulfill the requirements of the external 82C59A devices.

The processor floats D15:0 for both cycles; however, at the end of the second cycle, if the
interrupt is from an external cascaded 82C59A, the service-routine vector number driven
on the lower data bus by the 82C59A is read by the processor on data pins D7:0.
Otherwise, the active internal 82C59A sends the vector to the processor.

The first cycle is always an internal cycle and the second may be internal or external.
Therefore, READY# is generated internally for the first cycle and for the second cycle, if
the interrupt request is from one of the internal 82C59A modules. If the interrupt is from a
cascaded external 82C59A, external logic must assert READY# to terminate the second
cycle. The internal Chip-select Unit caat generate READY# for the second interrupt
acknowledge cycle.

BUS INTERFACE UNIT

Idle

Interrupt
Acknowledge

Idle
(Four bus states)

Interrupt
Acknowledge

Previous

T2

Cycle 2
(Internal)

T1

T2

Cycle 1
(Internal)

T1

Cycle
T2

CLK2

CLKOUT

/|||\ \
D ZE g
om NHWm
g0
<A
3 4
4o
o=

READY#

LOCK#

A2490-03

Figure 6-9. Interrupt Acknowledge Cycles

6-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.3.5 Halt/Shutdown Cycle

The halt condition occurs in sponse to a HALT irteuction. The shutown condition occurs

when the processor is processing a double fault and encounters a protection fault; the processor
cannot recover and therefore, shddsvn. Externally, a shutdown cycle diffdrem a halt cycle

only in the resulting address bus outputs. The sequence of signals for a halt cycle is as follows:

1. As with other bus cycles, a halt or shutdown cycle is initiated by driving the address and
status signals active and asserting ADS#. Figure 6-10 shows a halt bus cycle. The address
and status signals are driven to the following active states:

e M/IO# and W/R# are driven high and D/C# is driven low to indicate a halt cycle or a
shutdown cycle.

* The address bus outputs a byte address of 2 for a halt condition and a byte address of
0 for a shutdown condition. These signals are used by external devices to respond to
the halt or shutdown cycle.

NOTE

The halt or shutdown bus cycle appears as a memory write operation to byte
address 0 or 2 (depending on whether a shutdown or halt cycle is being
performed) if the D/C# signal is not decoded. External address decoders need
to decode the D/C# signal to avoid erroneous writes to devices in this address
region; otherwise, a halt or shutdown cycle corrupts the data at those
addresses. RD#, WR# and the chip-select signals, UCS# and CS6:0#, are
inactive during halt cycles.

2. READY# can be generated externally or internally to terminate a Halt/Shutdown cycle.
The HSREADY bit in the Power Control Register (PWRCON, see Figure 8-5 in Chapter
8), can be set to generate an internal READY# for halt/shutdguales. If internal
READY# generation is enabled, then the LBA# signal goes active and behaves as
described in “Ready Logic” on page 6-10. Also, the cycle iagdma zero-wait-state
cycle. When external READY# is required to terminate the halt/shutdown cycle, then
READY# may be delayed to add watates. The processor remains in the halt or
shutdown condition until one of the following occurs:

* NMI goes active; the processor then services the interrupt.
* RESET goes active; the processor is reinitialized.

¢ Inthe halt condition (but not in the shutdown condition), if maskable interrupts are
enabled, an active INTR input causes the processor to end the halt cycle and service
the interrupt. The processor can service processor extension (PEREQ) requests and
hold (HOLD) requests while in the halt or shutdown condition.

* The processor is in the halt condition and SMI# goes active; the processor then
services the SMI#. When the processor is in the shutdown condition, SMI# has no
effect.

6-26 I

BUS INTERFACE UNIT

o —
E=] =

k5
N

INR=
0= -
285 -

>
Oc™~ —
s 2

Cycle 1
Nonpipelined
(Write)
[Late Ready]

CLK2

=
2
o
X
)
O

halted until INTR, SMI#,

remains

NMI, or RESET is asserted.

CPU

CPU tesponds to HOLD input
in the HALT state

Valid 1

A25:2, BLE#, DIC#

READY#

4..
1
1
-
1
1
-
i
o
S
PR
_\....w .
£
N ©
z 2
5---15
>
>
| |3
=
21
“ ><
m o
O 3
o Ja)
-

Tt HALT cycle must be acknowledged by READY# asserted. This READY# could be

generated internally or externally.

A2492-02

Figure 6-10. Halt Cycle

6-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.3.6 Refresh Cycle

The refresh control unit simplifies dynamic memory controller design by issuing dummy read cy-
cles at specified intervalgi-or more information, refer to Chapter 15, “REFRESH CONTROL
UNIT.”) Figure 6-11 shows a basic refresftle. The sequence of signéds a refresh cycle is as
follows:

1. Like a read cycle, the refresh cycle is initiated by asserting ADS# and completed by
asserting READY#. The address and status pins are driven to the following values:

e M/IO# and D/C# are driven high and W/R# and REFRESH# are driven low to
indicate a memory refresh.

* Address lines are driven to the current refresh address (the value in the Refresh
Address Counter in the Refresh Control Unit), while the BHE# and BLE# are driven
high.

2. To complete the refresh cycle, either READY# must be asserted externally or the chip
select unit must be programmed to generate READY# for the address region specified in
the Refresh Address Base Register in the refresh control unit. The refresh control unit then
relinquishes control to the current internal bus master until the next refresh cycle is
needed.

During hold acknowledge cycles with the HLDA piniget a refresh request causes the internal
bus arbiter to deassert the HLDA pin. The processor thenfeaitee HOLD pin to be deasged

for at least one processor clock cycle. Once HOLD is deasserted, the processor begins the refresh
cycle. Figure 6-12 shows a refresh cycle during a HOLD/HLDA condition.

NOTE
BS8# is ignored during refresh cycles. It has no effect on a refresh cycle.

CAUTION

External bus arbitration logic should monitor the HLDA signal when the
refresh control unit is being used. If a refresh request is not serviced (by
performing a refresh cycle) because an external master does not give up the
bus, the DRAM devices may lose data.

6-28 I

BUS INTERFACE UNIT

kS T« N M
NET~g ™ ™] =
2gtcge z z) l¢)
c29X - srlsrrrr-—-—rfr--"r1rt """t """t """1T """ sS0°71 - -
Wm._uMm - > |> >
P4 =
............. - >IN]
=
<@
2 . B I N AU I A A AN SR AN AU RUPIIN B U I DR .
=
............. Se O [(N I GRS [N N R =N DU N
[aV)
[
N < e B R IS E I R e A e A Y A A R -
o 3 o~ o w
S = S T
O I IS ol I N [N ISR . SN NP DU U S A SR .
—
il
............. . S /-..VA..- /..-. DRI N
o —
S5 [=
............. VA.-.VA..- X...ﬂmu-............
?
— £ ®~ U — - -
T z z z
c2g8ae - lstlsH Sf-1-""""F"- -
>
18} m.&mu\ - > > >
Z
............. <SG -- > <G [I I
[} p—
5 [=
~ = o o * 3 #* 3 3 3 #* 3 # =)
4) WO s T i3 @ fa) %) < > < N 5 8 g
= O W_W N n W = 14 o =z a o Q ~ (@) —
o < T < w < < - o) la} I T
— R o L —
O wo _._._J 24
I =
o= @

6-29

Figure 6-11. Basic Refresh Cycle

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

HOLD
Acknowledge

HOLD
Acknowledge
Th

CLK2

CLKOUT

BHE#, BLE#

M/IO#, DIC#

REFRESH#

A25:1

WIR#

NA#

=)
c
.............. = PR PN N R
kel
[
=)
=
...w T
c
@
=%
ey
N DR PRI I R R @ _|
9]
=
13}
<
o
.......................... =
v
S
(a]
.............. ot---ort---F-----F<--
£ £
T ©
i<} o
||||||||||||| [R WG AU D
R H* * o
> < N4 v 8 ADn
[a)] 2] Q — [e) |
< —! (@) [a) T T
w —
24

Figure 6-12. Refresh Cycle During HOLD/HLDA

6-30

Int9|® BUS INTERFACE UNIT

6.3.7 BS8 Cycle

The BS8 cycle allows external logic to dynamically switch between an 8-bit data bus size and a
16-bit data bus size, by using the BS8# signal. Figut8 shows a word access to&khbit pe-
ripheral.

To use the dynamic 8-bit bus sizing, an external memory ahéld connect to the lower eight

bits of the data bus (D7:0), use the BLE# as address bit 0, and assert BS8# (at the BS8# pin) in
T2 of a memory or I/O access. A BS8 cycle can also be generated by the internal chip-select unit
(Refer to Chapter 14, “CHIP-SELECT UNIT"). In this case, the Chip Select Unit generates the
BS8# signal internally.

Depending upon the current bus access width and addresiseastate of the 88# signal, the
processor performs the actions described in the next two sections.

6.3.7.1 Write Cycles

¢ If the current bus cycle is a byte write with BHE# active and BLE# inactive, the processor
copies the upper eight bits of the data (D$5:8) to the dwer eight bits of the data bus
(DT:0), i.e. the byte appears on both the upper and lower data buses.

¢ If the current bus cycle is a byte write with BHE# inactive and BLE# active, the processor
ignores the state of the BS8# signal.

¢ If the current bus cycle is a word write with both BHE# and BLE# active and the processor
samples the BS8# signal active at the end of the last T2 (when READY# is sampled active),
the processor waits for the current bus to complete and then executes another write cycle
with the upper eight bits of the data bus (D15:8) copied to the lower eight bits of the data
bus (D7:0). The processor deactivates BLE# on the second cycle (BLE# is used as address
A0 to an 8-bit device; this translates to A0O=0 for the first cycle and A0=1 for the second).

6.3.7.2 Read Cycles

¢ If the current bus cycle is a byte read with BHE# active and BLE# inactive, and the
processor samples the BS8# signal active at the end of the last T2 (when READY# is
sampled active), the processor latches the data on the lower eight bits of the data bus (D7:0)
and internally routes this data to the upper data bus of the core.

¢ If the current bus cycle is a byte read with BHE# inactive and BLE# active, the processor
ignores the state of the BS8# signal.

¢ If the current bus cycle is a word read with both BHE# and BLE# active and the processor
samples the BS8# signal active at the end of the last T2 (when READY# is sampled active),
the processor waits for the current bus cycle to complete and latches the data on the lower
eight bits of the data bus (D7:0). It then executes another read cycle, with BLE# inactive
(BLE# is used as address A0 to an 8-bit device; this translates to A0=0 for the first cycle
and AO=1 for the second), latching the data on the lower eight bits of the data bus (D7:0)
again and using it.

I 6-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The BS8 cycle generates additional bus cycles for read and write cycles only. For interrupt and
halt/shutdown cycles, the accesses are byte wide and the BS8# signakésl. For a refresh
cycle, the byte enables are both disabled and the BS8# signal is ignored.

NOTE
If a BS8 cycle requires an additional bus cycle, the processor retains the
current address for the second cycle. Address pipelining cannot be used with
BS8 cycles because address pipelining requires that the next address be
generated on the bus before the end of the current bus cycle. NA# must be kept
deasserted during the T2 states of BS8 memory cycles. NA# is ignored in all
I/O cycles.

NOTE

BS8# must be inactive at the falling edge of PH2 of the T1 state of a non-BS8
cycle; for example, if the current cycle is a BS8 cycle (BS8# asserted) and the
next cycle is not a BS8 cycle, BS8# must be deasserted before the end of the
T1 state of the next cycle, i.e. the non-BS8 cycle.

6-32 I

Int€|® BUS INTERFACE UNIT

Low Byte High Byte) |
¢ Write . Write . LowByte ! HighByte : Idle .
! [Late Ready] | [Late Ready] ;. Read | Read ! Cycles

State
CLK2

CLKOUT

A25:1
M/10#
D/C#

BLE#

BHE#

W/R#

WR#

RD#

ADS#

. . /x MZstbe\ﬁlghjl \ / \: , :

Reaovs N\ /] \./s\:/é\;/; :

s T\ /T \ |/

Lock# _ X Valid 1 X Valid 2 X

D15:8 —v—(DataOutngh)

D7:0 —.—(Data Out X Data Out —— In)—— In }—
- Low - - ngh : v Lew High

! : : : : : i i ' ' ' A3375-01

Figure 6-13. 16-bit Cycles to 8-bit Devices (Using BS8%#)

I 6-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.4 BUS LOCK

In a system in which more than one device (a bus master) may control the local bus, locked cycles
are used to make sequential bus cycles indivisible. Otherwise, the cycles may be separated by a
cycle from another bus master.

Any bus cycles that must be performed back-to-back, without any intervening bus cycles by other
bus masters, must be locked. The use of a semaphore is one example of this concept. The value
of a semaphore indicates a condition such as the availability of a device. If the CPU reads a sema-
phore to determine that a device is available, then writes a new value to the semaphore to indicate
that it intends to take control of the device, the read cycle and write cycle should be locked to
prevent another bus master from reading from or writing to the semaphore in between the two
cycles.

The LOCK# output indicates, to the other bus masters, that they may not gain control of the bus.
In addition, when LOCK# is asserted, the processor does not recognize a HOLD request from an-
other bus master.

6.4.1 Locked Cycle Activators

The LOCK# signal is activated explicitly by the LOCK prefix on certain instructions. (The in-
structions are listed in tHatel386™ SX Microprocessor Programmer’s Refereneaival,order
number 240331). LOCK# is also asserted automatically for XCHG instructions, descriptor up-
dates, and interrupt acknowledge cycles.

6.4.2 Locked Cycle Timing

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle and deactivated when
READY# is sampled active at the end of the last bus cycle to be locked. LOCK# is activated and
deactivated on these CLK2 edges regardless of address pipelining. If address pipelining is used,
LOCK# remains active until the current bus cycle is completed (READY# sampled active for the
current bus cycle). Consequently, the LOCK# signal can extend into the next memory access cy-
cle that does not need to be locked. (See Figure 6-14). The result is that the use of the bus by an-
other bus master is delayed by one bus cycle.

6-34 I

Int9|® BUS INTERFACE UNIT

Unlocked Locked Locked Unlocked

\ BusCycle ' BusCycle ! BusCycle | BusCycle

CLKOUT | | y y y y
' E Addr;pss Ass:erted

BLE#, BHE#, A25:1 X X X

' ! E LocK Deasserted _ !

LOCK# : : l : - \/'

READY#; __/_,_/\J

A2489-02

Figure 6-14. LOCK# Signal During Address Pipelining

6.4.3 LOCK# Signal Duration

The maximum duration of the LOCK# signal affects the maximum HOLD request latency be-
cause HOLD is recognized only after LOCK# goes inactive. The duration of LOCK# depends on
the instruction being executed and the number of wait states per cycle. The longest duration of
LOCK# is 9 bus cycles plus approximately 15 clocks. This occurs when an interrupt (hardware
or software) occurs and the processor performs a Locked read of the gate in the interrupt descrip-
tor table (8 bytes), a read of the target descriptor (8 bytes), and a write of the accessed bit in the
target descriptor.

6.5 EXTERNAL BUS MASTER SUPPORT (USING HOLD, HLDA)

The processor provides internal arbitration logic thaports a protocol for transferring control

of the processor bus to an external bus master. This protocol is implementeghtheoHOLD

input and the HLDA output. The internal arbitration logic of the processor consists of a bus arbi-
ter. This arbiter supports the core and four other bus masters, i.e. external bus master using
HOLD, two internal DMA Units and the Refresh Control Unit. For a description of the protocol

of the internal bus arbiter, refer to “Bus Control Arbitration” on page 12-9.

When the internal bus arbiter receives a request through one of its four possible request signals,
it asserts the HOLD signal to the core. The core then completes its current nonlocked bus cycle
and asserts its HLDA signal, thus informing the arbiter that control of the bus can now be turned
over to the requester.The arbiter then asserépijpsopriate acknowledge signal to the requester.

For example, if an external bus master requests the bus using the HOLD input pin, then the arbiter
asserts the HLDA output.

I 6-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.5.1 HOLD/HLDA Timing

To gain control of the local bus, the requesting bus master drives the HOLD input active. This
signal can be asynchronous to the processor’'s CLK2 input. The processumds by:

e completing its current bus cycle

¢ deasserting WR#, RD#, LBA#, SMIACT#, UCS#, CS6:0# and REFRESH# and three-
stating all other bus outputs except HLDA (effectively removing itself from the bus)

¢ driving HLDA active to signal the requesting bus master that it may take control of the bus

The requesting bus master must maintain HOLD active until it no longer needs the bus. When
HOLD goes low, the processor drives HLDA low and starts a bus cycle (if one is pending).

For valid system operatiothe requesting bus master must not take control of the bus until it re-
ceives the HLDA signal and must remove itself from the bus before deasserting the HOLD signal.
Setup and hold times relative to CLK2 for both rising and falling transitions of the HOLD signal
must be met.

If the internal refresh control unit is used, the HLDA signal may drop while an external master
has control of the bus, in which case the external bus master may or may not drop HOLD to allow
the processor to perform the refresh cycle. If the latter occurs, the memory device(s) may lose
data because the refresh cycle could not execute.

When the processor receives an active HOLD input, it completes the current bus cycle before re-
linquishing control of the bus. Figure 6-7 shows the state diagram for the bus including the HOLD
state.

During HOLD, the processor can continue executing instructions that are already in its prefetch
queue. Program execution is delayed if a read cycle is needed while the processor is in the HOLD
state. The processor can queue one write cycle internally, pending the return of bus access; if more
than one write cycle is needgapgram execution is d®yed until HOLD is released and -

cessor regains control of the bus.

HOLD has priority over most core bus cycles, but is not recognized under certain conditions:
¢ During locked cycles
* Between two interrupt acknowledge cycles (LOCK#eatssl)
¢ During misaligned word transfers (LOCK# not asserted)
¢ During doubleword (32-bit) transfers (LOCK# noseged)
¢ During misaligned doubleword transfers (LOCK# not asserted)

¢ During an active RESET signal (HOLBrecognized during the time between the falling
edge of RESET and the first instruction fetch)

All inputs are ignored while the processor is in the HOLD state, except for the following:
¢ HOLD pin - It is monitored to determine when the processor may regain control of the bus.

* RESET pin - It is of a higher priority than HOLD. An active RESET input reinitializes the
device.

6-36 I

Int9|® BUS INTERFACE UNIT

* NMI pin - The request is recognized and latched. It is serviced after HOLD is released.

* SMI# pin - The request is recognized and latched. It is serviced after HOLD is released.

6.5.2 HOLD Signal Latency

Because other bus masters may be used in time-critical applicationsjdbataf time the bus
master must wait for bus access (HOLD latency) can be a critical design consideration. Because
a bus cycle must be terminated before HLDA can go active, the maximum possible latency occurs
when a bus-cycle instruction is being executed or a DMA block mode transfer is in progress. Wait
states increase latency, and HOLD is not recognized between locked bus cycles and interrupt ac-
knowledge cycles. The internal DMA may also contribute to the latency.

The HOLD latency is dependent on a number of parameters:
* The instruction being executed at the time the HOLD request occurs.
* The number of wait states during various access cycles, including the following:
— Memory wait states
— Code fetch wait states
— Interrupt acknowledge wait states
— Refresh wait states
* The priority of the requester.
* The mode of the DMA:
— Block mode
— Single cycle mode

— Demand transfer mode

6-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.6 DESIGN CONSIDERATIONS

* Upon reset, UCS# is configured as a 16-bit chip-select signal. If the Boot device is only an
8-bit device, then BS8# must be asserted whenever UCS# is active (until the UCS region
can be reprogrammed to reflect an 8-bit region). One way of doing this is by connecting the
UCS# pin directly to the BS8# pin, if there are no other devices that need to u&sthe B
pin. If UCS# is tied directly to BS8#, then the UCS region need not be programmed to
reflect an 8-bit region.

* Since LBA# may be used as an output-enable by both the internal and exteiiaYRE
buffers, care must be taken in selecting the externAlRE buffer to minimize
contention on the READY# signal caused by differences in buffer characteristics.

6.6.1 Interface To Intel387™ SX Math Coprocessor

The Intel387 SX Math Coprocessor is an extension to the Intel386 EX embedded processor ar-
chitecture. The combination of the Intel387 SX Math Coprocessor with the Intel386 EX embed-
ded processor dramatically increases the processing speed of computer application software that
uses high performance floagj-point operaons.

An internal Power Management Unit enables the Intel387 SX Math Coprocessor to perform float-
ing-point operations while maintaining very low power consumption. The internal Power Man-
agement Unit effectively reduces power consumption by 95% when the coprocessor is idle.

This section describes special considerations for interfacing the Intel387 SX Math Coprocessor
with the Intel386 EX embedded processor. For complete information, referltaal837™ SX
Math CoprocessodatasheetOrder number 240225).

6-38 I

Int9|® BUS INTERFACE UNIT
6.6.1.1

System Configuration

The Intel387 SX Math Coprocessor can be interfaced to the Intel386 EX embedded processor as
shown in Figure 6-15.

16
WIR# WIR#
ADSH# ADSH#
M/10# NPS1#
A23 NPS2
A2 CMDO#
Clock
Generator
CLK2 . CPUCLK2
D15:0
RESET * RESETIN Vee
Synchronous
Reset
BUSY# BUSY# CKM
PEREQ PEREQ STEN
ERROR# ERROR#
READY# . READY#
D15:0
LBA# NUMCLK2 J_
READYO# |,
Intel386™ EX Intel387™ SX
Embedded Processor Math Coprocessor
A2852-02

Figure 6-15. Intel386 EX Processor to Intel387 SX Math Coprocessor Interface

A dedicated communication protocol makes possible high-speed transfer of opcodes and oper-
ands between the Intel386 EX processor and the Intel387 SX math coprocessor. Most control pins
of the Intel387 SX Math @processor are connected directlyritel386 EX processor pins.

6-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The interface has these characteristics:

The Intel387 SX Math Coprocessor shares the local bus of the Intel386 EX processor.

The Intel386 EX processor and Intel387 SX Matiptbcessoshare the same reset signals.
They also share the same clock input.

The corresponding BUSY#, ERROR#, and PEREQ pins are connected together.

The Status Enable (STEN) selects the math coprocessor. It causes the chip to recognize
other chip select inputs. STEN is tied high.

CKM is tied high to select th&ynchronous mode of operation foe coprocssor.

The math coprocessor NPS1# and NPS2 inputs are connected to the Intel386 EX processor
M/IO# and A23 inputs respectively. For math coprocessor cycles, M/I0# is always LOW
and A23 always HIGH.

The math coprocessor input CMDO is connected to the A2 output. The Intel386 EX
embedded processor generates address 8000F8H when writing a command and address
8000FCH or 8000FEH (treated as 8000FCH by the Intel387 SX Math Coprocessor) when
writing or reading data. It does not generate any other addresses during Intel387 SX Math
Coprocessor bus cycles.

CAUTION
A chip-select signal could go active during coprocessor cycles if a match for
the lower 16 bits of addressfmund in one of the chip-select regions of the
Chip-select Unit. This can happen because only the lower 16 bits are decoded
by the Chip-select Unit during 1/O cycles.

The READYO# pin of the coprocessor must be sémbugh a buffer to prevent thetel386

EX processor and coprocessor from simultaneously driving the READY# pin. The buffer is
enabled using the LBA# pin. During internal bus cycles, the LBA# pin is asserted and the

Intel386 EX processor provides the READY# signal. In a coprocessor access, the LBA# is
deasserted, the external buffer is enabled, and the coprocessor provideAEné&Rignal

to the Intel386 EX processor.

6.6.1.2 Software Considerations

To enable math-coprocessaupport in the Intel386 EX processor, youist set the MP (Math
Present) bit and clear the EM (Coprocessor Emulation) bit in the Machine Status Word (lower
half of the CRO register in the core). This can be done using the following code:

smsw ax ;; Store Machine Status Word into AX
or ax, 2 1 Set MP bit

and ax, Offfbh ;; Clear EM bit

Imsw ax ;; Load AX into Machine Status Word

6-40

Int9|® BUS INTERFACE UNIT

Also, bit 5 in the PINCFG register (Figure 5-15 on page 5243t be cleared, to connect the
coprocessor-related signalstbgé core to the package pins.

Below is an example of a simple routine that can be executed using the math-coprocessor:

fninit ;; Initialize Math Coprocessor
fldpi ;; Load (Push on to the 387 stack) “Pi”
fld1 ;; Load (Push on to the 387 stack) “1”
fadd ;; Add the two values, i.e. Pi+ 1
fist word ptr [di] ;; Convert to integer and Store at

;; location pointed to by DS:DI

6.6.2 SRAM/FLASH Interface

SRAM and FLASH devices can be connected directly to the Intel386 EX processor as shown in
Figure 6-16. Separate @& RD# and WR# strobes enable a “glueless” interface. The WR# sig-
nal, when used with an “EARLY READY#" (described in “Write Cycle” on page 6-16), guaran-
tees the ‘WE#-Inactive-to-Address-Invalid’ time of most SRAM and FLASH devices.

Intel386™ EX SRAM
Embedded Add or FLASH
Processor ress
Data
RD# OE#
CSn# CE#
WR# WE#
A2853-02

Figure 6-16. Intel386 EX Pr ocessor to SRAM/FLASH Interface

6-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

6.6.3 PSRAM Interface

Pseudo SRAM (PSRAM) devices can be easily interfaced (Figure 6-17) to the Intel386 EX pro-
cessor. PSRAM devices have an interface that is similar to SRAM devices (They are also pin-
compatible in many cases). The two major differences between PSRAM and SRAM devices are:

* PSRAM devices require a CE# precharge (inactive) time between access cycles. Since the
Intel386 EX processor does not guarantee a minimum inactive time on rittsSighals,
control logic is required to satisfy the PSRAM device’'s CE# precharge time.

* PSRAM devices have a RFSH# input pin. This signal activates an internal refresh cycle.
The REFRESH# output of the Intel386 EX processor can be connected directly to the
PSRAM device’s RFSH# pin.

Note:

Control logic is necessary to satisfy the precharge time for the CE# signal of the
PSRAM. The precharge time is specified by the PSRAM manufacturer.

Intel386™ EX PSRAM
Embedded Address
Processor
Data

Control

CSm Logic CE#

RD# OE#

WR# WE#

REFRESH# RFSH#

A2854-02

6-42

Figure 6-17. Intel386 EX Processor to PSRAM Interface

Int9|® BUS INTERFACE UNIT

6.6.4 Paged DRAM Interface

External logic is required to interface the Intel386 EX processor to DRAM devices, as shown in
Figure 6-18. The PLD generates the RAS# and CAS# signals.

If RAS#-Only Refresh is being performed (using the Refresh Control Unit of the processor), then
during a Refresh Cycle, the PLD enables the Column Address Buffer and asserts the RAS# signal
(shaded sections in the figure). Refer to Chapter 6, “BUS INTERFACE UNIT,” for mfme in
mation.

A single multiplexer can be used instead of the separate row and column address buffers.

R Row
ow Address
Upper Address Address
Buffer
OE_ROW#
Address
REFRESH# _ S paged
"""""" age
Intel386™ EX BHE# DR?A\M
Embedded Processor CSm# PLD CAS#
BLE#
OE_COL#
Column
Address
Lower Address Buffer Column
Address
Note:
A single mux can be used in place of the row and column address buffers.
A3264-02

Figure 6-18. Intel386 EX Processor to Paged DRAM Interface

6-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

6.6.5 Non-Paged DRAM Interface

This interface is similar to the Paged DRAM Interface, except that in this case, the lower address
bits are routed to the Row Address Buffer and the higher address bits to the Galdress

Buffer. This is done to simplify the &S#-Only Refresh logic. The PLD in this case enables the
Row Address Buffer and asserts the RAS# signal (shaded sections in the figure) during a Refresh
Cycle. Refer to Chapter 15, “REFRESH CONTROL UNIT,” for more information.

A single multiplexer can be used instead of the separate row and column address buffers.

- Row
ow Address
Lower Address Address
Buffer
OE_ROW#
Address
REFRESH# _ S N q
"""""" on-page!
Intel386™ EX BHE# o
Embedded Processor CSm# PLD CAS#
BLE#
OE_COL#
Column
Address
Upper Address Buffer Column
Address
Note:
A single mux can be used in place of the row and column address buffers.
A3265-02

Figure 6-19. Intel386 EX Pr ocessor and Non-Paged DRAM Interface

6-44

intel.

SYSTEM
MANAGEMENT
MODE

intel.

CHAPTER 7
SYSTEM MANAGEMENT MODE

The Intel386™ EX processor provides a mechanism for system management with a combination
of hardware and CPU microcode enhancements. For low power systems, the primary function of
SMM is to provide a transparent means for power management. For systems where power man-
agement is not critical, SMM may be used for other functions such as alternate operating systems,
debugges, hard disk drive backup, or virtual I/O.

This chapter is organized as follows:
¢ System Management Mode Overview (see below)
* SMM Hardware Interface (page 7-1)
¢ System Management Mode Programming and Configuration (page 7-3)
* The Intel386 EX Processor Identifier Registers (page 7-15)

* Programning Considerations (page 7-16)

7.1 SYSTEM MANAGEMENT MODE OVERVIEW

An externally generated system management interrupt (SMI#) allows the execution of system-
wide routines that are independent and transparent to the operating system. The system manage-
ment mode (SMM) architectural extensions to the Intel386 CPU consist of the following ele-
ments:

¢ An interrupt input pin (SMI#) to invoke SMM
¢ An output pin (SMIACT#) to identify execution state
* A new instruction (RSM, executable only from SMM) to exit SMM

7.2 SMM HARDWARE INTERFACE
The Intel386 EX processor provides two pins for use in SMM systems: SMI# and SMIACT#.

7.2.1 System Management Interrupt Input (SMI#)

The SMI# input signal is used to invoke system management mode. SMI# is a falling edge
triggered interrupt input signal and is the highest priority of all external interrupt sources. SMI#
forces the core into SMM at the completion of the current instruction. SMI# has these
characteristics:

¢ SMI# is not maskable.

* SMI# is recognized on an instruction boundary and at each iteration for repeat string
instructions.

* SMI# does not break locked bus cycles.

I 7-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

* SMI# cannot interrupt currently executing SMM code. The processor latches the falling
edge of a pending SMI# signal while the Intel386 EX processor is executing an existing
SMI# (this allows one level of buffering). The nested SMI# is not recognized until after the
execution of a resume instruction (RSM).

* SMI# brings the processor out of idle or powexd mode.

7.2.2 SMM Active Output (SMIACT#)

This output indicates that the processor is operating in system management mode. It is asserted
when the CPU initiates the SMM sequence and remains active (low) until the processor executes
the RSM instruction (described in “Resume Instruction (RSM)” on page 7-15) to leave SMM. Be-
fore SMIACT# is asserted, the CPU waits until the end of the instrustiondary. SMIACT# is

used to establish a new memory map for SMM operation. The processor supports this function
by an extension to the internal chip-select unit. In addition, external logic can use this pin to qual-
ify RESET and SMI#. SMIACT# never transitions during a pipelined bus cycle.

7.2.3 System Management RAM (SMRAM)

The SMM architecture requires that a partition of memory be set aside for the SMM driver. This
is called the SMRAM. Several requirements must be met by the system:

* The address range of this partition must be, as a minimum (8&®00H to 03FFFFH
(32 Kbytes).

* The address range from O3FEOOH to O03FFFFH (512 bytes) is reserved for the CPU and
must be RAM.

* The SMM handler must start execution at location 038000H. It is not relocatable.
¢ During normal operation the SMRAM is only accessible when the system is in SMM.

¢ During system initialization it must be possible to access the SMRAM in order to initialize
it and possibly to install the SMM driver. Obviously, this must be done outside of SMM.

* When the SMRAM overlays other memory in the system, then address decoding and chip
selects must allow the SMM driver to access the shadowed memory locations while in
SMM.

¢ The SMRAM should not be accessible to alternate bus masters such as DMA.

These requirements are made to ensure that the SMM remains transpaoer§tdM code and
to maintain uniformity aross the various Intel processors thatport his mode.

NOTE

It is possible for the designer of an embedded system to place the SMM driver
code in read-only storage, as long as the address space between 03FEOOH and
03FFFFH is writable.

The Intel386 EX processor does not support SMRAM relocation. Bit 17 of the SMM Revision
Identifier (see “SMRAM State Dump Area” on page 4) indicates whether the processor sup-

7-2 I

Int9|® SYSTEM MANAGEMENT MODE

ports the relocation of SMRAM. When this bit is set (1), the processor supports SMRAM reloca-
tion. When this bit is cleared (0), then the processor doesupport SMRAM relocatin. Since

this device doesn't support SMRAM relocation, bit 17 of the SMM Revision Identifier is cleared.
The SMRAM address space is fixed fr&B000H to 3FFFFH.

7.3 SYSTEM MANAGEMENT MODE PROGRAMMING AND CONFIG URATION

7.3.1 Register Status During SMM

When the CPU recognizes SMI# on an instruction boundary, it feaigdl write cycles to com-

plete and asserts the SMIACT# pin. The processor then saves its register state to SMRAM space
and begins to execute the SMM handler. The RSM instruction restores the registers, deasserts the
SMIACT# pin, and returns to the user program.

Upon entering SMM, the processor’s PE, MP, EM, TS and PG bits in CRO are cleared, as shown
in Table 7-1.

Table 7-1. CRO Bits Cleared Upon Entering SMM

CRO Bit | Mnemonic Description Function

0 PE Protection Enable 0 = protection disabled
1 = protection enabled

1 MP Math Coprocessor Present |0 = coprocessor not present
1 = coprocessor present

2 EM Emulate Coprocessor 0 = coprocessor opcodes execute
1 = coprocessor opcodes generate a fault

3 TS Task Switched 0 = coprocessor ESC opcode does not cause fault
1 = coprocessor ESC opcode causes fault

31 PG Paging Enable 0 = paging disabled
1 = paging enabled

Debug register DR7 is also cleared, except for Hitsl 5.

Internally, a descriptor register (invisible to the programmer) is associated with each program-
mer-visible segment register. Each descriptor register holds a 32-bit segment base address, a 32-
bit segment limit, and other necessary segment attributes. When a selector value is loaded into a
segment register, the associated descriptor register is automatically updated with the correct in-
formation. In Real mode, only the base address is updated directly (by shifting the selector value
four bits to the left), since the segment maximum limit and attributes are fixed in Real mode. In
Protected mode, the base address, the limit, and the attributes are all updated per the contents of
the segment descriptor indexed by the selector. After saving the CPU state, the SMM State Save
sequence sets the appropriate bits in the sagohescriptor, placing the core in an environment
similar to Real mode, without the 64 Kbyte limit checking.

In SMM, the CPU executes in a Real-like mode. In this mode, the CPU can access (read and
write) any location within the 4 Gbyte logical address space. The physical address space is
64 Mbytes. The CPU can also perform a jump and a oglvbere within a 1 Mbyte boundary
address space. In SMM, the processor generates addresses as it does in real mode; however, ther

7-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

is no 64 Kbyte limit. The value loaded into the selector register is shifted to the left four bits and
moved into its corresponding descriptor base, then added to the effective address. The effective
address can be generated indirectly, using a 32-bit register. However, only 16 bits of the Extended
Instruction Pointer (EIP) register are pushed onto the stack during calls, exceptions and INTR ser-
vices. Therefore, when returning from calls, exceptions or INTRs, the upper 16 bits of the 32-bit
EIP are zero. In an SMI# handler, the EIP should not be over the 64 Kbyte boundary. The 16-bit
CS allows addressing within a 1 Mbyte boundary.

Instructions that explicitly access the stack, such as MOV instructions, can access the entire
4 Gbytes of logical address space by using a 32-bit address size prefix. However, instructions that
implicitly access the stack, such as POP, PUSH, CALL, and RET, still have Kigy&s limit.

After SMI# is recognized and the processor state is saved, the processor state is initialized to the
default values shown in Table 7-2.

Table 7-2. SMM Processor State Initialization V alues

Register Content
General Purpose Register Unpredictable
EFLAGS 00000002H
EIP 00008000H
CS Selector 3000H
DS,ES,FS,GS,SS Selectors 0000H
CS Descriptor Base 00030000H

DS,ES,FS,GS,SS Descriptor Base 00000000H
CS,DS,ES,FS,GS,SS Descriptor Limit | OFFFFFH

DS,ES,FS,GS,SS Attributes 16-bit

CRO Bits 0, 1, 2, 3, 31 cleared
DR6 Unpredictable

DR7 Bits 0-10,16-31 cleared

When a valid SMI# is recognized on an instruction execution boundary, the QRéHiately

begins execution of the SMM State Save sequence, asserting SMIACT# low (unless the CPU is
in a shutdown condition). The CPU then starts SMI# handler execution. An SMI# cannot inter-
rupt a CPU shutdown. The SMI# handler always starts &iB80/Nhen there are multiple causes

of SMI#s, only one SMI# is generated, therebgwing that SMI#s are not nested.

7.3.2 System Management Interrupt

The Intel386 EX processor extends the standard Intel386 microprocessor architecture by adding
a new feature called the system management interrupt (SMI#). This section describes in detail
how the system designer uses SMI#.

The execution unit recognizes an SMI# (falling edge) on an instruction boundary (see instruction
#3 in Figure 7-1). After all CPU bus cycles have completed, including pipelined cycles, the state

7-4

Int9|® SYSTEM MANAGEMENT MODE

of the CPU is saved to the SMM State Dump Area. After executing a RSM instruction, the CPU
proceeds to the next application code instruction (see instruction #4 in Figure 7-1). SMM latency
is measured from the falling edge of SMI# to the first ADS# where SMIACT# is active (see Fig-
ure 7-2).

SMI#

Y

1
SMIACT# |
1

Instr [Instr
#1 H2 #3 “ #4 #5
i
I
X State SMM State
! Save Handler Resume
| | Interrupts | ' Interrupts |
' | Blocked | ! Blocked |
i | D
i i i | i
1 1 1 | 1
. SMI ! ! ! i
| Latency ! ! : !
I
:(—:—): | ' |
SMI# | I ! | !
1 1 : 1
1 1 | 1
1 I 1
1 1
1 I
! I
I I

<
-

AN

2nd SMI# is blocked

A2510-02

Figure 7-1. Standard SMI#

The SMM handler may optionally enable the NMI interrupt, but NMI is disabled when the SMM
handler is entered. (Note that the CPU does not recognize NMI while executing the SMM State
Save sequence or SMM State Resume sequence.) NMI is always enabled following the comple-
tion of the first interrupt service routine (ISR) or exception handler.

Even when the processor is in SMM, address pipelined bus cycles can be performed correctly by
asserting NA#. Pipelined bus cycles can also be performed immediately before and after SMI-
ACT# assertion. The numbers in Figure 7-2 also reflect a pipelined bus cycle.

I 7-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

e AR AR
ewour [T ULULL g
SMi# \ / J(El‘ _)_D ’J(_
st N\ /TS /T T\ /T
resove T\ /T T T\L/ WT I W

A =1CLK min, B=20 CLK min, C =16 CLK min, D =4 CLK min

A2512-02

Figure 7-2. SMIACT# Latency

NOTE
Even if bus cycles are pipelined, the minimum clock numbers are guaranteed.

7-6 I

Int9|® SYSTEM MANAGEMENT MODE

7321 SMI# Priority

When more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. The priority among classes of exception angtistaurc-

es is shown in Table 7-3. The processor first services a pending exception or interrupt from the
class that has the highest priority, transferring execution to the first instruction of the handler.
Lower priority exceptions are discarded; lower priority interrupts are held pending. Discarded ex-
ceptions are reissued when the interrupt handler returns execution to the point of interruption.
SMI# has the following relative priority, where 1 is highest and 11 is lowest:

Table 7-3. Relative Priority of Exceptions and Interrupts

1 Double Fault
(Highest priority)

2 Segmentation Violation

3 Page Fault

4 Divide-by-zero

5 SMI#

6 Single-step

7 Debug

8 ICE Break

9 NMI

10 INTR

11 1/0 Lock
(Lowest Priority)

7-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

7.3.2.2 System Management Interrupt During HALT Cycle

Since SMI# is an asynchronous signal, it may be generated at any time. A condition of interest
arises when an SMI# occurs while the CPU is in a HALT state. To give the system designer max-
imum flexibility, the processor allows an SMI# to optionally exit the HALT state. Figure 7-3
shows that the CPU normally re-executes the HALT instruction after RSM; however, by modify-
ing the HALT restart slot in the SMM State Dump area, the SMM handler can redirect the instruc-
tion pointer past the HALT instruction.

|Instr HALT| Halted State 1 NnstrlNinstr
#L QA #2 A#3 #a
i .
Option
Y PP
State SMM State
Save Handler Resume

A2508-01

Figure 7-3. SMI# During HALT

7-8

Int9|® SYSTEM MANAGEMENT MODE

7.3.2.3 HALT Restart

It is possible for SMI# to break into the HALT state. In somsesahe application might want to
return to the HALT state after RSM. The SMM architectuevesthe option of restarting the
HALT instruction after RSM.

Theword at address 03FFO2H is the HALT restart slot. The processor sets bit Olo€akisn

when the processor is in the HALT state while the SMI# occurred. If the SMM driver leaves this
bit set, then the processor re-enters the HALT state when it exits from SMM. When the driver
clears this bit, the processor continues execution with the instruction just after the interrupted
HALT instruction.

7324 System Management Interrupt During I/O Instruction

Like the HALT restart feature, the processor allows restarting I/O cycles which have been inter-
rupted by an SMI#. This gives the system designer the option of performing a hardware 1/0 cycle
restart without having to modify either application, operating system, or BIOS software. (See Fig-
ure 7-4.)

When a SMI# occurs during an 1/O cycle, it then becomes the responsibility of the SMM handler
to determine the source of the SMI#. If, for example, the source pthered down I/O device,

the SMM handler would power up the I/O device and reinitialize it. The SMM handler would then

write OFFH to the I/O restart slot in the SMM State Dump area and the RSM instruction would
then restart the I/O instruction.

SMI#

{

| Instr| Instr | I/O Instr Nnstr
EERCY WS Option A# #5
Y el
State SMM State
Save Handler Resume

A2509-01

Figure 7-4. SMI# During 1/O Instruction

The SMI# input signal can be asynchronous; asaltieSMI# must be valid at least three clock
periods before READY# is asserted for it to be recognized right after the curreythusSMI#

must be sampled valid for at least two clocks, with the other clock used to internally arbitrate for
control. See Figure 7-5 for details. (Note that this diagram is only for I/O cycles and memory data
read cycles.)

I 7-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Priority Arbitration ‘

r
eve LTI LT L L L L

SMI#
Sampled

- >

SMI#

Tsu Thold
—>> - — — -

RDY# \ /

Tsy = SMI# setup time, Thojg = SMI# hold time
A2511-02

Figure 7-5. SMI# Timing
7.3.25 I/O Restart

Bit 16 of the SMM Revision Identifier is set (1) indicating that this device dapport the I/O
trap restart extension to the SMM base architecture.

The I/O trap restart slgirovides the SMM handler the option of automatically re-executing an
interrupted 1/O instruction using the RSM instruction. When the RSM instruction is executed
with the 1/O trap restart slot set to a value of OFFH, the CPU automatically re-executes the 1/0
instruction that the SMI# has trapped. If the slot contains 00H when the RSM instruction is exe-
cuted, the CPU does not re-execute the 1/O instruction. This slot is initialif&Htduring an

SMI#. It is the SMM handler’s responsibility to load the 1/O trap restart slot with OFFH when re-
start is desired.

NOTE

The SMM handler mustot set the 1/O trap restart slot to OFFH when the
SMI# is not asserted on an I/O instioatboundary, because this causes
unpredictable results.

7.3.3 SMM Handler Interruption

7331 Interrupt During SMM Handler

When the CPU enters SMM, both INTR and NMI are disabled (Figure 7-6). The SMM handler
may enable INTR by executing the STI instruction. NMI is enabled after the completion of the
first interrupt service routine (software or hardware initiated ISR) or exception handler within the
SMM handler. Software interrupt and exception instructions are not blocked during the SMM
handler.

The SMM feature can be used without any other interrupts. INTR and NMI are blocked by the
system during SMI#, unless enabled by software. If INTR or NMI are not enabled during SMM,

7-10 I

Int9|® SYSTEM MANAGEMENT MODE

then any pending INTR and NMI is serviced after completion of RSM instruction execution.
Only one INTR and one NMI can be pending.

The SMM handler may choose to enable interrupts to take advantage of device drivers. Since in-
terrupts were enabled while under control of the SMM handler, the signal SMIACT# continues
to be asserted. If the system designer wants to take advantage of existing device drivers that le-
verage interruptdhe memory controller must take this into account.

SMM 1 Intr 1 SMM

|Restore

' SMM Handler RSM —_—
SMIACT# ! |<—> < > <>
T

Application Handler | Service | Handler Application
Instr| Instr | Instr |Instr| Instr| Instr| Instr| Instr| Instr|
I SMI | i i
| Latency i i i
i(—>: | i i
SMI# l | X X X X
1 State | State
: 1
1
1
T

INTR

NMI

RESET

NMI is Blocked

A2505-02

Figure 7-6. Interrupted SMI# Service
7.3.3.2 HALT During SMM Handler

The system designer may wish to place the system into a HALT condition while in SMM. The
CPU allows this condition to occur; however, unlike a HALT while in normal mode, the CPU in-
ternally blocks INTR and NMI from being recognized until after the RSM instruction is executed.
When a HALT needs to be breakable in SMM, the SMM handler must enable INTR and NMI
before a HALT instruction execution. NMI is enabled after the completion of the first interrupt
service routine within the SMM handler.

After the SMM handler has enabled INTR and NMI, the CPU exits the HALT state and returns
to the SMM handler when INTR or NMI occurs. See Figure 7-7 for details.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

SMI#

Instr | INTR or NMI [instr
#L #2 A#3 #4
State| SMM | Enable [HALT[Halted ! SMM | State
Save |Handler | INTR & NMI _State Handler| Resume

A
Y
Interrupt
Handler

A2507-01

Figure 7-7. HALT During SMM Handler
7.3.3.3 Idle Mode and Powerdown Mode During SMM

Both Idle Mode and Powerdown Mode may be used while in SMM. Entering and exiting either
of these power management modes from SMM is identical to entering or exiting from normal
mode. The interaction between SMM and power management modes is described in Chapter 8.

7334 SMI# During SMM Operation

If the SMI# request is asserted during SMM operation, the second SMI# cannot nest the currently
executing SMM. The second SMI# request is latched, and held pending by the CPU. Only one
SMI# request can be pending. After RSM execution is completed, the pending SMI# is serviced.
At this time, SMIACT# is deasserted once at completion of RSM, then asserted again for the sec-
ond SMI#.

When the SMM handler polls the various SMI# sources for one of the SMI# triggers, and two
SMI# sources are found in the SMI#ngeation circuit, the SMM handler services both SMI#
sources and executes a RSM instruction. In this SMM handler, if the SMI# dgemerietuit as-

serts the second SMI# during the first SMI# service routine, the second SMI# is pending. Next,
the SMM handler finds and services two SMI# sources. After the CPU completes the RSM exe-
cution, the pending SMI# (second SMI#) is generated, but there is nothing to service because the
second SMI# was serviced during the first SMM handler. This unnecessary SMI# transaction re-
quires a fewhundred clocksThere may be some performance degradation if this example occurs
frequently. For good performance, it is the responsibility of the SMI# generation circuitry to man-
age multiple SMI# assertions.

7.3.4 SMRAM Programming

7341 Chip-select Unit Support for SMRAM

The internal chip-select unit (CSU) has been extended to support the SMRAM by using bit 10 in
each Low Address (CASMM) and Low Mask register (CMSMM). The CSU acts on these bits

7-12 I

SYSTEM MANAGEMENT MODE

intel.

exactly as if they represented another address line. The following optiosspgerted by the
chip select unit:

CASMM CMSMM Chip select active:
0 0 During normal mode only
1 0 During SMM only
X 1 During normal mode or SMM

To see how this extension of the CSU supports the SMRAM requirements, consider an embedded
system which has 1 Mbyte of 16-bit wide EPROM in the region 03F00000H to 03FFFFFFH and
1 Mbyte of 16-bit wide RAM in the regiod0000000H to OOOFFFFFH. Argle 32 Kbyte RAM

in the region 00038000H to 0003FFFFH is added to support SNkl chip selects for this sys-

tem during normal operation would be programmed as follows:

REGION CA25:11 CM25:11 CASMM CMSMM BS16
EPROM 111111 0000 0000 O 00 0000 1111 11111 0 0 1
RAM 00 0000 0000 0000 0 00 0000 1111 11111 0 0 1
SMRAM 00 0000 0011 1000 0 00 D000 0000 01111 1 0 0

Each row in the above table represents a region of memory and its associated chip select logic.
During initialization, these same chip selects could be programmed as follows:

REGION CA25:11 CM25:11 CASMM CMSMM BS16
EPROM 111111 0000 0000 O 00 0000 111111111 0 0 1
RAM 00 0000 0000 0000 O 00 PO00 111111111 0 0 1
SMRAM 00 0001 0011 1000 O 00 PO00 0000 0111 1 0 0 0

Only the SMRAM row has been changed; the SMRAM chip select has been redirected to the re-
gion 013F800H to 013FFFFH and the CASMM bit has been cleared. This allows the initialization
software to set up the SMRAM without entering the SMM. Note that the external design of the
system must guarantee that an SMI# cannot occur while the SMRAM is being initialized.

If the SMM driver needs to access the memory shadowed under the SMRAM, the chip selects
can be reconfigured as follows:

REGION CA25:11 CM25:11 CASMM CMSMM BS16
EPROM 111111 0000 0000 O 00p000 111111111 0 0 1
RAM 00 0001 0000 0000 0 00p0O00 111111111 0 1 1
SMRAM 00 0000 0011 10000 00 PO0OO 0000 01111 1 0 0

This leaves the SMRAM in place but moves the normal RAM into the partitioDODD® to
01FFFFFH. The CASMM bit is masked so that the RAM is selected independent of SMM.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

7.34.2

The SMM State Save sequence asserts SMIACT#. This mechanism indicates to internal modules
that the CPU has entered and is currently executing SMM. The resume (RSM) instruction is only
valid when in SMM. SMRAM space is an area located in the memory address r@tg38
3FFFFH. The SMRAM area cannot be relocated internally. SMRAM space is intended for access
by the CPU only, and should be accessible only when SMM is enabled. This area is used by the
SMM State Save sequence to save the CPU state in a stack-like fashion from the top of the
SMRAM area downward.

The CPU state dump area always starts at 3FFFFH and ends at 3FEOOH. The following is a map

SMRAM State Dump Area

of the CPU state dump in the SMRAM.

7-14

Hex Address Name Description
03FFFC CRO Control flags that affect the processor state
03FFF8 CR3 Page directory base register
03FFF4 EFLGS General condition and control flags
03FFFO EIP Instruction pointer
03FFEC EDI Destination index
O03FFES8 ESI Source index
03FFE4 EBP Base pointer
03FFEO ESP Stack pointer
03FFDC EBX General register
03FFC8 EDX General register
03FFD4 ECX General register
03FFDO EAX General register
03FFCC DR6 Debug register; contains status at exception
03FFC8 DR7 Debug register; controls breakpoints
03FFC4 TR Task register; used to access current task descriptor
03FFCO LDTR Local descriptor table pointer
03FFBC GS General-purpose segment register
03FFB8 FS General-purpose segment register
03FFB4 DS Data segment register
03FFBO SS Stack segment register
03FFAC Cs Code segment register
03FFA8 ES General-purpose segment register
03FFA7-03FF04 | — Reserved
03FF02 — Halt restart slot
03FF00 — I/O trap restart slot
03FEFC — SMM revision identifier (10000H)

03FEFB-03FEO0

Reserved

Int9|® SYSTEM MANAGEMENT MODE

Theprogrammer should not modify tikentents of this area in SMRAM space directly. SMRAM
space is reserved for CPU access only and is intended to be used only when the processor is in
SMM.

7.3.5 Resume Instruction (RSM)

After an SMI# request is serviced, the RSM instruction must be executed to allow the CPU to
return to an application transparently after servicing the SMI#. When the RSM instruction is ex-
ecuted, it restores the CPU state from SMRAM and passes control back to the operating system.
The RSM instruction uses the special opcode of OFAAH. The RSM instruction is refertrex

SMI# handler and should only be executed by the SMI# hardigrattempt to execute the RSM
outside of SMM mode results in an invalid opcode exception. At the end of the RSM instruction,
the processor drives SMIACT# high, indicating the end of an SMM routine.

7.4 THE Intel386 EX PROCESSOR IDENTIFIER REGISTERS

The processor has two identifier registers: the Component and Revision ID register and the SMM
Revision ID register. The component ID is 23H; the component revision ID is 09H. This register
can be read as 2309H. The SMM revision identifier is 210000H.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

7.5 PROGRAMMING CONSIDERATIONS

7.5.1 System Management Mode Code Example
The following code example contains these software routines.

SerialWriteStr2 Located in SMRAM upon program execution, this routio@pls
endlessly while writing a character “X” out the serial port on the
EV386EX board.

SerialWrite Str Located in the main program in FLASH, this rioetloops endlessly
while writing a string out the serial port before entering SMM.

InitS10 Initializes the serial port including the mode, baud rate, and clock
rate.

MAIN Executes th@rogram once it is located in FISH. It also configures

chip selects, copies SMM handler to SMRAM, and loops endlessly
until an SMI# is issued.

See Appendix C for the included header files.

#include “80386EX.h”
#include “EV386EX.h”
#include <string.h>
#include <conio.h>
#include <dos.h>

#if _DEBUG_ == /I _DEBUG_ must be defined on the command line
#define SIO_PORT SIO_1 /I The debugger uses SIO_0 for host communications
#else /I Under the debugger we must avoid using SIO_0
#define SIO_PORT SIO_0

#endif

#define BAUD_CLKIN 1843200L // Clock rate of COMCLK, i.e., External clocking,
extern char far SMMString[];
extern void InitEXSystem(void);

int DataSeg; /I For assembly data segment register init.
BYTE Buf{20];

/ Function SerialWriteStr2
Parameters:
None
Returns:
None
Assumptions:
Not called from main. This function is used as a jump point and is
relocated by the main to 38000H (SRAM) for SMM.
Real/Protected Mode:
No changes required

7-16

Int9|® SYSTEM MANAGEMENT MODE

*/

void SerialWriteStr2()
/* Loops while writing a char out to the serial port */

{
_asm
{
mov ax,0x3900
mov ss,ax
mov sp,0x100
Forever:
mov dx,0xf4fd
TstStatus:
in al,dx
testal,0x20
je TstStatus
/I Code below is same as _SetEXRegByte(TransmitPortAddr,"X’)
mov ax,’X’
mov dx,0xf4f8
out dx, al
jmp Forever
}
}
/ Function SerialWriteStr
Parameters:
Unit Unit number of the serial port. 0 for SIO port 0, 1 for SIO
port 1.
*str Character string to be written out the serial port.
Returns:
None
Assumptions:
None

Real/Protected Mode
*/

void SerialWriteStr(int Unit, const char far *str)
{

WORD TransmitPortAddr;

WORD StatusPortAddr;

/] Set Port base, based on serial port used
TransmitPortAddr = (Unit ? TBR1 : TBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

for(; *str 1= \0’; str++)

{
/I ' Wait until buffer is empty
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;
/I Write Character
_SetEXRegByte(TransmitPortAddr,*str);
}

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

}
/ Function InitSIO
Parameters:
Unit Unit number of the serial port. 0 for SIO port 0, 1 for SIO
port 1.
Mode Defines parity, number of data bits, number of stop bits...

Reference Serial Line Control register for various options
ModemCntrl Defines the operation of the modem control lines
BaudRate Specifies baud rate. The baud divisor value is calculated
based on clocking source and clock frequency. The clocking
frequency is set by calling the InitializeLibrary function.
ClockRate Specifies the serial port clocking rate, for internal clocking
= CLK2 for external = COMCLK
Returns: Error Codes
E_INVAILD_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:
SIOCFG Has already been configured for Clocking source and Modem control
source

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Real/Protected Mode
No changes required.
*

int InitSIO(int Unit,
BYTE Mode,
BYTE ModemCntrl,
DWORD BaudRate,
DWORD BaudClkin)

WORD SIOPortBase;
WORD BaudDivisor;

/I Check for valid unit
if(Unit > 1)
return E_INVALID_DEVICE;

/I Set Port base based on serial port used
SIOPortBase = (Unit ? SIO1_BASE : SIO0_BASE);

/I Initialized Serial Port registers
/I Calculate the baud divisor value, based on baud clocking
BaudDivisor = (WORD)(BaudCIkIn / (16*BaudRate));

/I Turn on access to baud divisor register

_SetEXRegByte(SIOPortBase + LCR, 0x80);
/I Set the baud rate divisor register, High byte first

7-18

Int9|® SYSTEM MANAGEMENT MODE

_SetEXRegByte(SIOPortBase + DLH, HIBYTE(BaudDivisor));
_SetEXRegByte(SIOPortBase + DLL, LOBYTE(BaudDivisor));

/I Set Serial Line control register
_SetEXRegByte(SIOPortBase + LCR, Mode); // Sets Mode and resets the
/I Divisor latch

/I Set modem control bits
_SetEXRegByte(SIOPortBase + MCR, ModemCnitrl);

return E_OK;

/ MAIN /
Parameters:
None
Returns:
None
Assumptions:
None
Real/Protected Mode
No changes required.
*/

#ifndef SetEXRegWordInline

#define SetEXRegWordInline(address, word) \
_asm mov dx, address; \
_asm mov ax, word; \
_asm out dx, ax;

#endif

void main(void)

{

InitSIO(SIO_PORT, /I Which Serial Port
SIO_8N1, /I Mode, 8-data, no parity, 1-stop
SIO_MCR_RTS+SIO_MCR_DTR, // Modem line controls
9600, // Baud Rate
BAUD_CLKIN); // Baud Clocking Rate

_asm /I Store registers to preserve values
{
push DI
push SI
push DS
push ES
}

SetEXRegWordInline(CS4ADL, 0x702); /I Configure chip select 4
SetEXRegWordInline(CS4ADH, 0x0);
SetEXRegWordInline(CS4MSKL, 0xFCO01);
SetEXRegWordInline(CS4MSKH, 0x0);

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

SetEXRegWordInline(CS2ADL,0x08700); /l Enables SRAM as memory
SetEXRegWordInline(CS2ADH,0x3);
SetEXRegWordInline(CS2MSKL,0x07C01);
SetEXRegWordInline(CS2MSKH,0x00);

_asm /I Copy SMM_EXAM.BIN code into SRAM
{

mov ax,0x3800 /I Starting address for SMM_EXAM file
mov es,ax /I to be placed

mov ax,seg SerialWriteStr2 /I Address where SMM_EXAM is located
mov ds,ax

mov ¢x,0x100 /I Length of SMM_EXAM file in bytes
mov si,offset SerialWriteStr2

mov di,0

rep movsb

}

SetEXRegWordInline(CS2MSKL,0x7801); // Resets SRAM to enabled in SMM only

_asm /I Restore register values
{
pop DI
pop SI
pop DS
pop ES
}
/I Loop endlessly and display another serial message
while(1) /I Serial Write Loop
{
SerialWriteStr(SIO_PORT,SMMString);
}

/ END MAIN /

7-20

intel.

CLOCK AND
POWER
MANAGEMENT
UNIT

intel.

CHAPTER 8
CLOCK AND POWER MANAGEMENT UNIT

The clock generation circuitry provides uniformmnoverlappinglock signals to the core and in-
tegrated peripherals. The power management features control the clock signals to provide power
conservation options.

This chapter is organized as follows:
* Overview (see below)
¢ Controlling the PSCLK Frequency (page 8-7)
¢ Controlling Power Management Modes (page 8-8)
¢ Design Considerations (page 8-11)

* Programning Considerations (page 8-13)

8.1 OVERVIEW

The clock and power management unit (Figure 8-1) includes clock generation, power manage-
ment, and system reset circuitry. It also provides a clock output signal (CLKOUT) for synchro-
nizing external logic to the processor’s system clock. CLKOUT is the PH1P clock.

8.1.1 Clock Generation Logic

An external oscillator must provide an input signal to CLK2, which provides the fundamental
timing for the procasor. As Figure 8-1 shows, the clock generation circuitry includes two divide-
by-two counters and a programmable clock divider. The first divide-by-two counter divides the
CLK2 frequency to generate two clocks (PH1 and PH2). For power management, independent
clock signals are routed to the core (PH1C and PH2C) and to the internal peripherals (PH1P and
PH2P).

The second divide-by-two counter divides the processor clock to generate a clock input (SER-
CLK) for the baud-rate generators of the asynchronous and synchronous serial /O units. The
SERCLK frequency is half the internal clock frequency, or CLK2/4.

The programmable divider generates a prescaled clock (PSCLK) input for the timer/counter and
synchronous serial I/O units. The maximum PSCLK frequency is the internal clock frequency di-
vided by 2 (CLK2/4) and the minimum is the internal clock frequency divided by 513
(CLK2/1026).

I 8-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Three of the internal peripherals have selectable clock sources.

* The asynchronoussal I/O (SIO) unit can use either the SERCLK signal or an external

clock (connected to the COMCLK pin) as its clock source.

* The synchronous serial I/O (SSIO) unit can use either the SERCLK signal or the PSCLK

signal.

* The timer/counters can use either the PSCLK signal or an external clock connected to the

TMRCLKnR input pin.

intel.

The individual peripheral chapters explain how to select the clock inputs.

INT Power
(From ICU) Management
IDLE To WDT
i (J————
PWRCON
smig [JF———
PWRDN {7 pwrDOWN
RESET ! I_T’ (pin mux)
Async Reset
Processor Clock PH1C
PH1/PH2 [To Core
ckz [2 Core
L Buffer PH2C
[—> To Core
PH1P
To Peripherals
L__| Peripheral CLKOUT
Buffer
izp» To Peripherals
. SERCLK
0—EI To SIO0
—> To SIO1
——> To SSIO
Programmable PSCLK
L Divider To Timer
CLKPRS L———> To SSIO

A2470-02

8-2

Figure 8-1. Clock and Power Management Unit Connections

Int9|® CLOCK AND POWER MANAGEMENT UNIT

The signal from the RESET pin is also routed to the clock generation unit, which synchronizes
the processor clock with the falling edge of the RESET signal and provides a synchronous inter-
nal RESET signal to the rest of the device. The RESET falling edge can occur in either PH1 or
PH2. If RESET falls during PH1, the clock generation circuitry inserts a PH2, so that the next

phase is PH1 (Figure 8-2). If it falls during PH2, the next phase is automatically PH1.

NOTE
The RESET signal must be high for 16 CLK2 cycles to properly reset the
processor.
? ? ? PH2 PH1 PH2

e [\ [\
PH1 ,x ,/ ._E/_:_
e XN N
reser T W\ . .

A2467-01

Figure 8-2. Clock Synchronization

In addition to internal synchronization, a CLKOUT (PH1P) clock output is provided to enable
external circuitry to maintain synchronization with the Intel386 EX processor. Since it is one of
the peripheral clock signals, it remains active during idle mode, but is driven low during power-
down mode.

8.1.2 Power Management Logic
The power management circuifpyovides two power management modes:

Idle Mode Idle mode freezes the core clocks, but leaves the peripheral clocks
running. Idle mode can reduce power consumption by about half,
depending on peripheral usage.

Powerdown mode Powerdown mode freezes both the core and peripheral clocks,
reducing current to leakage current (microamps). Peripherals that are
clocked externally (SIO, Timers, SSIO) continue to run. If inputs are
toggling, power consumption is higher.

To prepare for a power management mode, program the power control register as described in
“Controlling Power Management Modes” on page 8-8, then execute a HALT instruction. The de-

I 8-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

vice enters the pgrammed mode when the HALT cycle is terminated by a valid READY#. This
READY# may be generated either internally or externally.

A device reset, an NMI or SMI#, or any unmasked interrupt request from the interrupt control
unit causes the device to exit the power management mode. After a reset, the CPU starts execut-
ing instructions at 3FFFFFOH and the device remains in normal operation. After an interrupt, the
CPU executes the interrupt service et then returns to the instruction following the HALT

that prompted the power management mode. Unless software modifies the power agistes) re

the next HALT instruction returns the device to the programmed power management mode.

8.1.21 SMM Interaction with Power Management Modes

When the processor receives an SMI#intptwhile it is in idle or powerdown mode, it exits the
power management mode and enters System Management Mode (SMM)exitbumn SMM,
software can check whether the processor was in a halt state before entering SMM. If it was, soft-
ware can set a flag that returns the processor to the halt state when it exits SMM. Assuming the
power control register bits were not altered in SMM, the processor re-enters idle or powerdown
when it exits SMM. Figure 8-3 illustrates the relationships among these modes.

8-4

Int9|® CLOCK AND POWER MANAGEMENT UNIT

Halt Instruction
with Powerdown
Flag Set

Halt Instruction
with Idle Flag Set

Normal
Operation

Powerdown
Mode

RSM with
Powerdown Flag
and Halt Restart

Slot Set

RSM Instruction
with Idle Flag and
Halt Restart Slot Set

System
Management

Reset or
Mode

RSM Instruction
with Halt Restart
Slot Clear

A2229-03

Figure 8-3. SMM Interaction with Idle and Powerdown Modes

8.1.2.2 Bus Interface Unit Operation During Idle Mode

The bus interface unit (BIU) can process DMA, DRAM refresh, and external hold requests during
idle mode. When the first request occurs, the core wakes up long enough to relinquish bus control
to the bus arbiter, then returns to idle mode. For the remaining time in idle mode, the bus arbiter
controls the bus. DMA, DRAM refresh, and external hold requests are processed in the same way
as during normal operation.

8.1.2.3 Watchdog Timer Unit Operation During Idle Mode

When the watchdog timer unit is in system watchdog mode, idle mode stops the down-counter.
Since no software can run while the CPU is idle, a software watchdog is not needed. When it is
in bus monitor or general-purpose timer mode, the watchdog timer unit continues to run while the
device is in idle mode. (Chapter 17 describes the watchdog timer unit.)

8-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

8.1.3

intel.

Clock and Power Management Registers and Signals

Table 8-1 lists the registers and Table 8-2 list the signals associated with the clpolanthan-
agement unit.

Table 8-1. Clock and Power

Management Registers

. Expanded -
Register Address Description
Clock Prescale:
CLKPRS OF804H This register contains the programmed divisor value used to generate PSCLK
from the internal clock.
Power Control:
PWRCON 0F800H)) . .
This register selects the power management mode and internal ready options.
Table 8-2. Clock and Power Management Signals
. Device Pin or _

Signal Internal Signal Description
Input Clock:

CLK2 Device pin Connect an external clock to this pin to provide the fundamental timing for
the microprocessor.

)) Output Clock:
CLKOUT Device pin)
CLKOUT is a Phase 1 output clock (PH1P)
) Idle Output (to the Watchdog Timer Unit):
IDLE Internal signal o L
IDLE indicates that the device is in idle mode.
) Interrupt Input (from the Interrupt Control Unit):
INTR Internal signal)))
INT causes the device to exit powerdown or idle mode.
)) Nonmaskable Interrupt Input:
NMI Device pin) .)
NMI causes the device to exit powerdown or idle mode.
Prescaled Clock Output:

PSCLK Internal signal PSCLK is one of twp possible clock_inputs for the SSIO baud_—rate
generator and the Timer/counter Unit. The PSCLK frequency is controlled
by the CLKPRS register.

Powerdown Output (multiplexed with P3.6):

PWRDOWN Device pin A high state on the PWRDOWN pin indicates that the device is in
powerdown mode.
System Reset Input:

RESET Device pin This signal resets the processor and causes the device to exit powerdown

or idle mode.
Serial Clock Output:
SERCLK Internal signal | SERCLK is one of two possible clock inputs for the SIO or SSIO baud-
rate generator. The SERCLK frequency is one-fourth the CLK2 frequency.
System Management Interrupt Input:
SMI# Device pin SMI# causes the device to exit powerdown or idle mode and causes the

processor to enter System Management Mode.

8-6

intel.

8.2 CONTROLLING THE PSCLK FREQUENCY

CLOCK AND POWER MANAGEMENT UNIT

The PSCLK signal can provide a 50% duty cycle prescaled clock to the timer/counter and SSIO
units. This feature is useful for providing various frequencies, including a 1.19318 MHz output
for a PC-compatible system timer, or speaker tone generator. Determine the required prescale val-
ue using the following formula, then write this value to the CLKPRS register (Figure 8-4).

internal clock frequency (CLK2/2) 2
desired PSCLK frequency

Prescale value =

Clock Prescale Register Expanded Addr: F804H
CLKPRS ISA Addr: —
(read/write) Reset State: 0000H
15 8
-1 -7 -1 -JC =71 =1 = [ps |
7 0
| ps7 Ps6 | Pss | pPsa || pPs3 | Ps2 | pst | Pso
Bit Bit Function
Number Mnemonic
15-9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
8-0 PS8:0 Prescale Value:
These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).
divisor = PS8:0 + 2

Figure 8-4. Clock Prescale Register (CLKPRS)

To change the frequency of PSCLK, write a new value to the CLKPRS register. Theaqueswnire
cy takes effect at the first high-to-low transition of PSCLK after CLKPRS has been changed.

8-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

8.3 CONTROLLING POWER MANAGEMENT MODES

Two power management modes are available: idle and powerdown. Theseamodesk dis-
tribution functions controlled by the power control register (PWRCON), shown in Figure 8-5.

Power Control Register Expanded Addr: F800H

PWRCON ISA Addr: —

(read/write) Reset State: 00H

7 0
— — — — || woTRDY | HSREADY | PC1 PCO
Bit Bit)

Number Mnemonic Function
7-4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:
0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.
1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.
1-0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT

instruction causes a normal halt and the device remains in active mode.

PC1 PCO

0 0 active mode

1 0 idle mode

0 1 powerdown mode
1 1 active mode

Figure 8-5. Power Control Register (PWRCON)

8-8

Int€|® CLOCK AND POWER MANAGEMENT UNIT

8.3.1 Idle Mode

Idle mode freezes the core clocks (PH1C low and PH2C) high, and leaves the peripheral clocks
(PH1P and PH2P) toggling. To enter idle mode:

1. Progranthe PWRCON register (Figure 8-5).
2. Execute a HALT instruction.
3. The CPU enters idle mode when READY# terminates the halt bus cycle.

NOTE
CLKOUT continues to run while the CPU is in idle mode.

| | 1

1 1 1
I I I
PH1C ' \ \
1
]
I
]

PH2C \ '
I
I
CLKOUT/PH1P _/__[T
I I

1 1 1 1
1 1 1 1
1 1 1 1
PHIC , / \ / \
1
1 1
PH2C W
1 1 1
1 1
CLKOUT/PH1P __/__/__
1
1 1 1
me [N\ [

A2468-02

Figure 8-6. Timing Diagram, Entering and Leaving ldle Mode

I 8-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

8.3.2 Powerdown Mode

Powerdown mode freezes both the core clocks and the peripheral clocks (PH1C and PH1P low,
PH2C and PH2P high). The Bitannot acknowledge DMA, refresh, and external hold requests
in powerdown mode, since all the clocks are frozen.

To enter powerdown modggllow these steps:
1. Progranthe PWRCON register (Figure 8-5).
2. Execute a HALT instruction.

3. The CPU enters powerdown mode when READY# (internal or external) terminates the
halt bus cycle.

When P3.6/PWRDOWN is configured as a peripheral pin, the pin goes high when the clocks stop,
to indicate that the device is in powerdown mode. (Chapter 16 explains how to configure the pin
as either a peripheral pin or a general-purpose I/O port pin.)

8.3.3 Ready Generation During HALT

A halt cycle, like all other CPU bus cycles, requires a valid READY# to complete. This ready can
be generated by either external logic, or from the internal bus interface unit (BIU). Setting bit 2
of the PWRCON causes the READY# to be generated by the internal BIU, and clearing bit 2
requires it to be generated by external logic. When READY# is generated internally the LBA#
signal is driven low.

External logic can use the PWRDOWN output to control other system components and prevent
DMA and hold requests.

NOTE

When the processor exits Powerdown Mode, use the CLKOUT pin for
external synchronization with the processor clock.

8-10 I

Int9|® CLOCK AND POWER MANAGEMENT UNIT

PH1 PH2 ? ?

CLK2

CLKOUT/PH1P/PH1C

PH2P/PH2C

PWRDOWN

PH2 PH1 PH2 PH1

CLK2

CLKOUT/PH1P/PH1C

PH2P/PH2C

PWRDOWN

A2469-02

Figure 8-7. Timing Diagram, Entering and Leaving Powerdown Mode

8.4 DESIGN CONSIDERATIONS

This section outlines design considerations for the clock and power management unit.

8.4.1 Reset Considerations

External circuitry must provide an input to the RESET pin. The RESET input must remain high
for at least 16 CLK2 cycles to reset the chip properly.

The RESET pin signal is routed directly to the device’s bidirectional pins. Even in idle or power-
down, a device reset floats the bidirectional pins and turns on the weak pull-updoywaoltran-
sistors.

The clock generation logic generates a synchronous internal RESET signal for the internal pe-
ripherals. If you need a synchronous RESET signal for other systeiqmonents, you can use a
simple circuit such as the one shown in Figure 8-8 to generate it. Otherwise, the CPU does not
need a synchronous reset.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Q Synchronous
Reset Signal
to chip and

CLK2 > _q> other system
logic.

A2465-02

Asynchronous RESET D Q D

Figure 8-8. Reset Synchronization Circuit

8.4.2 Power-up Considerations

8.4.2.1 Built-in Self Test

The Intel386 EX processor supports the Intel386 SX processor builf-tesie(BIST) mode for
testing core functions. To initiate the self test, follow these steps:

1. Hold the RESET pin high for a minimum of 80 CLK2 cycles.

2. Transition the RESET pin from high to low while keeping the BUSY# pin asserted. The
BUSY# input should be asserted at least eight CLK2 cycles before the falling edge of
RESET and must be kept asserted for at least eight CLK2 cycles after the falling edge of
RESET.

Once BIST has been initiated, it takes approximat%(i);pﬁacessor clock cycles to complete. At
the completion of the BIST, the processor performs an internal reset and begins normal operation.

8.4.2.2 JTAG Reset

The processor supports an IEEE 1149.1 compliant JTAG boundary scan. The JTAG unit has its
own clock and RESET signals, independent from the rest of the processor. The processor requires
that the JTAG unit be reset before normal operation can begin. To reset the JTAG unit, invert the
processor RESET signal and connect this inverted RESET signal to the TRST# pin.

8-12 I

Int9|® CLOCK AND POWER MANAGEMENT UNIT

8.4.3 Powerdown Mode and Idle Mode Considerations

8.5

The “wake-up” signals (INT, NMI, and SMI#) are level-sensitive inputs to the wake-up
circuitry. The active state of any of these inputs prevents the device from entering
powerdown or idle mode.

The refresh control unit cannot perform DRAM refreshes during powerdown.
Powerdown mode freezes PSCLK and SERCLK.

When the device exits powerdown mode, the RMZRVN signal is synchronized with
CLK?2 (at the falling edge of PWRDOWN) so that other devices in the system exit
powerdown at the same internal clock phase as thegwoce

The INTR output of the ICU cannot be masked off to the power management unit using the
CLI instruction. If it is necessary to mask off INTR to the power management unit, all the
interrupt inputs to the 82C59As must be masked. This applies to both powerdown and idle
modes.

PROGRAMMING CONSIDERATIONS

8.5.1 Clock and Power Management Unit Code Example

This section contains these software routines:

Set_Prescale_Value Sets the clock prescale value.

Enter_ldle_Mode Programs théntel386 EX processor for idle mode.

Enter_Powerdown_Mode Programs théntel386 EX processor for powerdown
mode.

Mode_Setting_to_Active Returns the Intel386 EX processor to active mode.

See Appendix C for the included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

!

Set_Prescale_Value:

Description:

This function sets the clock prescale value.

Parameters:

Prescale Prescale value

Returns: Error Codes

E_BAD_VECTOR -- Specified Prescale is invalid
E_OK -- Initialized OK, No error.

Assumptions:

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

None
Syntax:

int error;
WORD psclk = 0x02;

error = Set_Prescale_Value(psclk);

Real/Protected Mode:
No changes required.

int Set_Prescale_Value(WORD Prescale)

{
WORD clkprs = 0x0000;

clkprs = _GetEXRegWord(CLKPRS);

/* clear lowest nine bits of clkprs */
clkprs = clkprs & 0xfe00;

/* check that prescale value is only 9 bits in length */
if (Prescale != (Prescale & 0x01ff))

return(E_BADVECTOR);
_SetEXRegWord(CLKPRS, (clkprs | Prescale));
return(E_OK);

}/*Set_Prescale_Value*/

Enter_ldle_Mode:
Description:
This function programs the 386EX for Idle mode. This freezes the
core clocks while leaving the peripheral clocks toggling.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Enter_ldle_Mode();

Real/Protected Mode:

8-14

Int9|® CLOCK AND POWER MANAGEMENT UNIT

No changes required.

void Enter_lIdle_Mode(void)
BYTE pwrcon = 0x00;
pwrcon = _GetEXRegByte(PWRCON);

/* clear lowest two bits of pwrcon */
pwrcon = pwrcon & Oxfc;

/* Set mode to idle */
_SetEXRegByte(PWRCON, (pwrcon | IDLE));

/* call HALT instruction to execute IDLE mode */
_asm {

HLT
}

}* Enter_ldle_Mode */

Enter_Powerdown_Mode:
Description:
This function programs the 386EX for Powerdown mode. This freezes
both the core and peripheral clocks.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Enter_Powerdown_Mode();

Real/Protected Mode:
No changes required.

void Enter_Powerdown_Mode(void)
BYTE pwrcon = 0x00;

pwrcon = _GetEXRegByte(PWRCON);

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

/* clear lowest two bits of pwrcon */
pwrcon = pwrcon & Oxfc;

/* Set mode to powerdown */
_SetEXRegByte(PWRCON, pwrcon | PWDWN);

/* call HALT instruction to execute POWERDOWN mode */
_asm{

HLT
}

}* Enter_Powerdown_Mode */

Mode_Setting_To_Active:
Description:
This function returns the 386EX to Active mode. Thus, the next
HALT instruction will not invoke the Idle or Powerdown Mode.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Mode_Setting_To_Active();

Real/Protected Mode:
No changes required.

void Mode_Setting_To_Active(void)
BYTE pwrcon = 0x00;
pwrcon = _GetEXRegByte(PWRCON);

[* clear lowest two bits of pwrcon */
pwrcon = pwrcon & Oxfc;

/* Set mode to active */
_SetEXRegByte(PWRCON, pwrcon | ACTIVE);

}*Mode_Setting_To_Active*/

8-16

intel.

INTERRUPT
CONTROL UNIT

intel.

CHAPTER 9
INTERRUPT CONTROL UNIT

The Interrupt Control Unit (ICU) consists of two cascaded interrupt controllers, a master and a
slave, that allow internal peripherals and external devices (through interrupt pins) to interrupt the
core through its interrupt input.

The interrupt control unit is functionally identical to two industry-standard 82C59As connected

in cascade. The system supports a maximum of 15 simultaneous interrupt sources, which can be
individually or globally disabled. The ICU passes the interrupts on to the core basgumn a
grammable priority structure.

Though the ICU can only handle a maximum of 15 simultansousces, a total of 18 interrupt
sources can be connected to the ICU. Eight of these interrupt sources comedroai periph-

erals and the other ten come from external pins. To increase the number of possible interrupts,
you can cascade additional 82C59As to six of the externafuptepins(the pins that connect to

the master 82C59A only).

This chapter describes the interrupt control unit and is organized as follows:
* Overview (see below)
¢ ICU operation (page 9-4)
* Register Definitions (page-15)
¢ Design Considerations (page 9-29)

* Programning Considerations (page 9-32)

9.1 OVERVIEW

The ICU consists of two 82C59As configured as master and slave. Each 82C59A has eight inter-
rupt request (IR) signals. The master has seven interrupt sources and a slave 82C59A connected
to its IR signals. The slave has nine interrupt sources connected to its IR signals (two sources are
multiplexed into IR1). The interrupts can be globally or individually enabled or disabled.

The master can receive multiple interrupt requests at once. It can also receive a request while the
core is already processing another interrupt. The master uses a programmable priority structure
that determines:

* The order in which to process multiple interrupt requests
* Which requests can interrupt the processing of other requests

When the master receives an interrupt request, it checks to see that the interrupt is enabled and
determines its priority. If the interrupt is enabled and has sufficient priority, the master sends the
request to the core. This causes the core to initiate an internal interrupt acknowledge cycle.

9-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The slave 82C59A is cascaded from (or connected to) the master’s IR2 signal. Like the master,
the slave uses a programmable priority structure. When the slave receives an interrupt request, it
sends the request to the master (assuming the request is enabled and has sufficient priority). The
master sees the slave request as a request on its IR2 line. The master then sends the request to tt
core (assuming the request is enabled and has sufficient priority) and the core initiates an internal
interrupt acknowledge cycle.

The internal interrupt acknowledge cycle consists of two pulses that are sent to the 82C59A IN-
TA# inputs. This cycle causes the 82C59A that received the original interrupt request to put the
request’s vector number on the bus. The master’s cascade signals (CAS2:0) determine which
82C59A is being acknowledged (i.e., which 82C59A needs to put the vector number on the bus).
The core uses its processing mode (real or protected) and the vector number to find the address
of the interrupt service routine.

The master 82C59A has six device pins (INT9:8, INT3:0) connected to it. You can cascade addi-
tional external 82C59A slaves to these pins to increase the number of possible interrupt sources.
The external interrupt signals, INT9:8, are multiplexed with the internal asynchronous serial /0
interrupt signals, SIOINTO and SIOINT1. On the slave 82C59A, the external interrupt signal,
INT6, and the DMA Unit's DMAINT signal, can be swapped before connecting to the slave’s IR4
and IR5 inputs (see Figure 9-1). The core initiategiinpt acknowledge cycles for the énhal
82C59As. External logic must decode the bus signals (M/IO#, D/C#, W/R# and REFRESH#, see
Table 6-2 on page 6-5) to generate external interrupt acknowledge signedstt#& cascade bus
determines which 82C59A is being acknowledged, each external slave must monitor the master’s
cascade signals to determine whether it is tk@awledged slave. For external slaves, the mas-
ter's cascade signals (CAS2:0) can be driven (using bit 7 of the INTCFG register) onto the
A18:16 address pins.

NOTE
Since external 82C59As require the CAS2:0 signals to stay valid through the
idle states that occur between the two interrgghawledge cycles, and since
the processor drives these lines high during these idle states, the CAS2:0 lines
must be latched externally to ensure validity during the idle states.

9-2 I

intel.

INTERRUPT CONTROL UNIT

IR0 |- OUTO (TCU)
8259A P3CFG.2 1 P3CFG.2 INTO
Master IR1 L
IR2 To/From I/O Port 3 -9, (P3.21
~<— INT MCR1.3
”\(‘;R Ral< SIOINTL
core) INTCFG.8 p3crG.1__ INTS
._(o—:(o—[] TMROUT1
OUT1(TCU) 0 P31 0 (P3.1)
INTCFG.5 MCRO.3
IRa | SIOINTO
1 INTCFGiS P3GFG.0 |\19
TMROUTO
P3CFG.3 % v ouTO(TCU) 0 P3.O—(O._D (P3.0)
IR5 |- — 'SS . P3CFG3
% 4—:(._[] Pa:
P3CFG.4 2/ To/From 1/0 Port 3 0 (P3.3)
Of— Vss P3CFG.4
-« 1
CAS2:0 " ‘ 1 o I(Egzzt)
pr— : To/From 1/O Port 3 «=>9 '
P3CFG.5 7 0
IR7 | O Vss 1 P3CFG5
‘ ® [JINT3
To/From 1/O Port 3 o (P3.5)
INTCFG.0
OF— Vss
IRO 1 ® {INT4
INT To TCU <—T (TMRCLKO)
8259A INTCFG.1
Slave Rl 0F— SSIOINT
1 o [JINT5
To TCU <—T (TMRGATEQ)
IR2 [<€«—— OUT1(TCU)
IR3 | ———————— OUT2(TCU)
INTCFG.4
}0 DMAINT
IR4 |-
& ? {7 INT6
0 ToTCU (TMRCLK1)
Vss 1
IR5
| CAS2:0
INTCFG.2 INTCFG.3
OF— Vss
IR6 1 * [} INT?7
. To TCU <—T (TMRGATEL1)
3, CAS2:0
7 (A18:16)
T Alternate pin signals are in parentheses
Heavier lines indicate multiple signals.
A2522-03

Figure 9-1. Interrupt Control Unit Configuration

9-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.2 ICU OPERATION

The following sections describe the ICU operation. The ICU’s interrupt sources, interrupt priority
structure, interrupt vectors, interrupt processing, and polling mode are discussed.

9.2.1 Interrupt Sources

The ICU support a total of 18 interrupt sources (see Table 9-1) but only a maximum of 15 simul-
taneous sources. Eight of these sources are internal peripherals and ten are external device pins
(INT9:0). However, IR3 and IR4 of the master can be connected to either SIOINT1 and SIOINTO
(internal Asynchronous SerilD interrupts), or to external device pins INT8 and INT9, respec-
tively. Similarly, IR1 of the slave can be connected to either SSIOINT (internal Synchronous Se-
rial 1/O interrupt), or to external device pin INT5. On the slave, the external interrupt signal,
INT6, and the DMA Unit's DMAINT signal can be swapped before connecting to the slave’s IR4
and IR5 inputs

The device pins (INT3:0) are multiplexed with port pins. When the port pin function (rather than
the interrupt function) is enabled at the pingi6 internally connected to the ICU’s respective
interrupt request input. The device pins, INT7, INT6, and INT4, must be enabled (using register
bits) in order to be used. The port 3 configuration register (P3CFG) controls INT3:0 interrupt
source connections, and the interrupt configuratigister (INTCFG) controls the INT9:4 inter-

rupt source connections. The modem control registers (MCR1 and MCRO) are also used to con-
trol the INT9:8 interrupt source connections.

9-4 I

intel.

INTERRUPT CONTROL UNIT

Table 9-1. 82C59A Master and Slave Interrupt Sources

Master IR Connected Slave Connected
. Source . Source
Line by IR Line by
IRO TMROUTO Hardwired IRO Vsg INTCFG.0=0
(timer control unit) INT2 INTCFG.0=1
(device pin)
IR1 Vsg P3CFG.2=0 IR1 SSIOINT INTCFG.1=0
(SSIO unit)
INTO P3CFG.2=1 INT5 INTCFG.1=1
(device pin) (Device pin)
IR2 Slave 82C59A Hardwired IR2 TMROUT1 Hardwired
Cascade (timer control unit)
IR3 SIOINT1 INTCFG.6=0 IR3 TMROUT2 Hardwired
(SIO unit) P3CFG.1=0 (timer control unit)
INT8 INTCFG.6=1
(device pin) P3CFG.1=1
MCRO0.3=1
IR4 SIOINTO INTCFG.5=0 IR4 DMAINT INTCFG.4=0
INT9 INTCFG.5=1 INT6 INTCFG.4=1
(device pin) P3CFG.0=1 (device pin)
MCR1.3=1
IR5 Vsg P3CFG.3=0 IR5 INT6 INTCFG.4=0
(device pin) INTCFG.2=1
INT1 P3CFG.3=1 DMAINT INTCFG.4=1
(deViCe pln) (DMA Unlt) INTCEG.2=1
IR6 Vss P3CFG.4=0 IR6 Vss INTCFG.3=0
INT2 P3CFG.4=1 INT7 INTCFG.3=1
(device pin) (device pin)
IR7 Vss P3CFG.5=0 IR7 WDTOUT# Hardwired
INT3 P3CFG 5-1 (watchdog timer)
(device pin)

9-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Interrupt processing begins with the assertion of an IR signal. During the ICU initialization pro-
cess (described in “Register Definitions” on p&g&5), you can program the ICU to be either
edge-triggered or level-triggered. See “Interrupt Detection” on page 9-29 for a description of the
difference between level and edge triggered signals.

9.2.2 Interrupt Priority

Each 82C59A contains eight interrupt request signals. An 82C59A can receive several concurrent
interrupt requests or can receive a request while the core is servicing another interrupt. When ei-
ther condition occurs, the 82C59A uses a programmable priority structure to determine the order
in which to process the inteipts. There are two parts to the priority structure:

¢ Assigning an interrupt level to each IR signal

¢ Determining their relative priorities

9.22.1 Assigning an Interrupt Level

By default, the interrupt structure for each 82C59A is configured so that IR0 has the highest level
and IR7 has the lowest level. Two methods (shown in Figure 9-2) are available for changing this
interrupt structure:

Specific Rotation This method assigns a specific IR signal as the lowest level. The
other IR signals are automatically rearranged in a circular manner.
For example, if you specify IR5 as the lowest level, IR6 becomes the
highest level, IR7 becomes the second-highest, and so on, with IR4
the second-lowest.

Automatic Rotation This method assigns an IR signal to the lowest level after the core
services its interrupt. As with specific rotation, the other signals are
automatically rearranged in a circular manner. For example, the IR4
signal is assigned the lowest level after the core servicesatsupt,

IR5 becomes the highest level, IR6 becomes the second-highest, and
so on, with IR3 the second-lowest.

9-6

intel.

INTERRUPT CONTROL UNIT

Highest

Lowest

Level —>»

Level —»

Default

IRO

IR1

IR2

IR3

IR4

IR5

IR6

IR7

Specific Automatic Automatic
Rotation Rotation Rotation
(Before) (After)
Becomes Highest Becomes
Highest = IR6 Level = IR4 | Highest —>{ IR5
Level Before Level
IR7 Being IR5 IR6
Serviced
IRO IR6 IR7
IR1 IR7 IRO
IR2 IRO IR1
IR3 IR1 Assigned IR2
Lowest
Specified IR4 IR2 Level IR3
Lowest After Being
Level —>IR5 IR3 Serviced > R4
A2303-02

9.22.2

Figure 9-2. Met hods for Changing the Default Interrupt Structure

Determining Priority

There are three modes that determine relative priorities, i.e., whether a level higher, lower, or
equal to another level has higher or lower interrupt priority.

Fully nested

Special fully

nested

In the fully nested mode, higher level IR signals have higher interrupt
priority. In this mode, when an 82C59A receives multipleriofgt
requests, it passes the highest level request to the core (or to the
master if the 82C59A is a slave). The core stops processing the lower
level request, processes the higher level request, then returns to finish
the lower level request.

The special fully nested mode allows higher or equal level IR signals
to have higher interrupt priority. In this mode, if the core is
processing an interrupt, a higher or equal level interrupt request is
passed through to the core. Also, since all interrupts from the slave
are directed into a single IR line (IR2) on the master (the master does
not know the priorities of the slave interrupts it receives), this mode
enables a higher-level interrupt on the slave to interrupt the

9-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

processing of a lower-level slave interrupt. The special fully nested
mode is generally used by the master in a cascaded system.

Special mask In some applications, you may want to allow lower-level requests
interrupt the processing ofdtier-level interrupts. The special mask
mode supports these applications. Unlike the special-fully nested and
fully nested modes, which are selected during ICU initialization, the
special mask mode can be enabled and disabled during program
operation. When special mask mode is enabled, only interrupts from
the source currently in service are inhibited. All other interrupt
requests (of both higher or lower levels) are passed on.

When the internal slave receives an interrupt request, it passes that request to the master. The mas
ter receives all internal slave interrupt requests on its IR2 signal. This means that in fully nested
mode, higher-level slave requests cannot interrupt lower-level slave interrupts. For esapyple,

pose the slave gets an interrupt request on its IR7 signal. The slave sends the interrupt request to
the master’s IR2 signal (assuming the slave’s IR7 interrupt is enabled and has sufficient priority).
The master sends the interrupt request to the core (assume the master’s IR2 interrupt is enabled
and has sufficient priority). The core initiates an interrupt acknowledge cycle and begins process-
ing the interrupt. Next, the slave gets an interrupt request on its IR0 signal (assume IR0 is as-
signed a higher level than IR7). It then sends another IR2 to the master.

When the master is in fully nested mode, it does not relay the request to the core because the core
is in the process of servicing the previous IR2 interrupt and only a higher-level request can inter-
rupt its process (IR2 is not higher than IR2).

When the master is in special fully nested mode, the request is passed through to the core (IR2 is
equal to IR2).

9.2.3 Interrupt Vectors

Each interrupt request has a corresponding interrupt vector nufhleanterrupt vector number

is a pointer to a location in memory where the address of the interrupt’s service routine is stored.
The relationship between the interrupt vector number antbtdagion in memory of the inter-

rupt’'s service routine address depends on the system’s programmed operating mogie{real,
tected, or virtual86). Chapter 9 of th&el386™ SX Microprocessor Programmer’s Reference
Manualexplains this relationship.

During an interrupt acknowledge cycle, the ICU puts the interrupt’s vector number on the bus.
From the interrupt vector number and the system’s operating mode, the core determines where to
find the address of the interrupt’s service routine.

You must initialize each 82C59A with an interrupt vector base number. The 82C59As determine
the vector number for each interrupt request from this base number. The base vector number cor-
responds to the IR0 signal’s vector number and must be on an 8-byte boundary.

Other vector numbers are determined by adding the line number of the IR signal to the base. For
example, if the base vector number is 32, the IR5 vector number is 37. Valid vector numbers for
maskable interrupts range from 32 to 255. Because the base vector number must reside on an
8-byte boundary, the valid base vector numbers arer82 8 where (< n< 27.

9-8

Int9|® INTERRUPT CONTROL UNIT

9.2.4 Interrupt Process
Each IR signal has a mask, a pending, and an in-service bit associated with it.

* The mask bit disables the IR signal. The respective mask bits provide a way to individually
disable the IR signals. You can globally disable all interrupts to the core using the CLI
instruction. The mask bits reside in the OCW1.

* The pending bit indicates that the IR signal is requesting interrupt service. The pending bit
resides in the IRR (Interrupt Request Register, which is accwsradjh OCW3).

* The in-service bit indicates that the processor is in the process of servicingethapint
The in-service bit resides in the ISR (Interrupt Service Register, which is actessegh
OCWS3).

When the master 82C59A receives an interrupt request, it sets the corresponding pending bit and
sends the request to the core (assuming the request is enabled and has sufficient priority). The
core then initiates an acknowledge cycle: the master clears its pending bit, sets its in-service bit,
and puts the interrupt vector number on the bus.

When the slave 82C59A receives an inipt request, it setthe correspnding pending bit and

sends the request to the master (assuming the request is enabled and has sufficient priority). When
the master receives the slave request, it sets its IR2 pending bit and sends the IR2 request to the
core (assuming the request is enabled and has sufficient priority). The core initiates an interrupt
acknowledge cycle: the master clears its IR2 pending bit and sets its IR2 in-service bit. The mas-
ter's cascade bus agtes the slave, which respds to the interrupt acknowledge cycle, clears

its pending bit, sets its in-service bit, and puts the interrupt vector number on the bus.

An 82C59A uses its in-service bits and programmed priority structure to determine whether an
interrupt has sufficient priority. The in-service bits indicate which interrupt requests are being ser-
viced. The priority structure determines whether a new interrupt request’s level has sufficient pri-
ority to interrupt the current process.

You can use one of three methods to clear an in-service bit: enable the automhatfanterrupt
(AEOI) mode, issue a specific end-of-interrupt (EOI) command, or issue a nonspecific EOI com-
mand. The AEOI mode is available only on the master 82C59A.

AEOI mode This mode is enabled during system initialization. In
this mode, the 82C59A clears the in-service bit at the
beginning of an interrupt’'s processing. This means
that interrupts of any level can interrupt the
processing of other interrupts.

Specific EOl command This command instructs the 82C59A to clear a
specific IR in-service bit.

Nonspecific EOl command This command instructs the 82C59A to clear the in-
service bit that corsponds to the highest level IR
signal active at that time.

9-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

NOTE
Unlike the AEOI mode (this is a mode, and not a command like specific EOI
or nonspecific EOI), which is enabled during initialization, the other methods
are commands issued during interrupt processing, usually at the end of an
interrupt’s service routine.

Figure 9-3 illustrates the process that takes place when the master receives a non-slave interrupt
request (which is a request on any IR signal to the master, that does not have a slave cascadec
from it). Figure 9-4 illustrates the process that occurs when a slave receives an interrupt request.
Figure 9-5 continues by showing what happens when the master receives a slave interrupt request
(for example, an IR2 request).

9-10

Int€|® INTERRUPT CONTROL UNIT

| Master receives an interrupt request. (From a non-slave source.) |

Y

| Master sets the request's pending bit. |

(operating in

| fully nested
Is s_ S ma_ster_ mode)
request special operating in No
mask mode ial-
enabled? special-fully

enabled?

Y
Is
request request
in-service equal or higher higher level
bit for this than any set than any set
request in-service in-service
set? bits?,

Yes

Master sends request to CPU. CPU initiates interrupt acknowledge cycle.

Y

Master clears request's pending bit, sets its in-service bit, and puts its
interrupt vector number on the bus.

Master clears its in-service bit. The
CPU uses its operating mode and the
interrupt vector number to find the
interrupt service routine's address.
CPU begins processing interrupt.

Is
master in
AEOI

mode?

The CPU uses its operating mode and the interrupt vector number to find
the interrupt service routine's address. CPU begins processing interrupt.

Y

The interrupt service routine sends an EOl command, causing the master
to clear its in-service bit.

<
-

\

(An interrupt return instruction is issued, ending the interrupt process.)

A2427-01

Figure 9-3. Interrupt Process — Master Requestf rom Non-slave Source

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

| Slave receives an interrupt request. |

[slave sets the request's pending bit. |

Is

special

mask mode
enabled?

Is
request
enabled?

No

Is
the
in-service
bit for this
request
set?

(operating in
fully nested mode)

request
higher
than any set
in-service
bits?

Yes

NO |-

Y

Slave sends request to master.

Note:

See the "Interrupt Process - Master Request from Slave Source" figure for the continuation of this flow chart.

A2428-01

Figure 9-4. Interrupt Process — Slave

9-12

Request

INTERRUPT CONTROL UNIT

| Master receives IR2 interrupt request. |

Y

| Master sets its IR2 pending bit. |

Is
request
enabled?

(operating in
fully nested
mode)

Is master
operating in
special-fully

Is

special

mask mode
enabled?

No

Y
Is Is
the request request
i ; equal or higher higher level
IR2 |nb?terwce than any set than any set
in-service in-service
bits?

set?)
bits?

Yes Yes

| Master sends request to CPU. CPU initiates interrupt acknowledge cycle. |
| Master clears IR2 pending bit and sets IR2 in-service bit. |

Y

Slave clears its pending bit, sets its in-service bit, and puts its interrupt

Y

The CPU uses its operating mode and the interrupt vector number to find
the interrupt service routine's address. The CPU processes the interrupt.
Interrupt routine sends an EOI command to the slave, clearing its IR2

Y

vector number on the bus.

in-service bit

Does
slave have No Interrupt routine sends an
other EOI command to the master,
in-service bits clearing its IR2 in-service bit.
set?
Yes \ —

(An interrupt return instruction is issued, ending the interrupt process.)

A2429-02

Figure 9-5. Interrupt Process — Master Request from Slave Source

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The interrupt’s priority structure determines which EOI command should be used. Use the spe-
cific EOl command for the special mask mode. In this mode, a lower-level interrupt can interrupt
the processing of a higher-level interrupt. The specific EOl command is necessary because it al-
lows you to specifically clear the lower level in-service bit.

The fully nested mode allows only interrupts of higher levels to interrupt the processilogvef a
er-level interrupt. In this mode, the nonspecific EOl command automatically clears the in-service
bit for the current process (because it has the highest level).

Special-fully nested mode allows equal or higher level requests to interrupt the processing of oth-
er interrupts. For this mode, the nonspecific EOl command automatically clears the appropriate
in-service bit. However, when processing master IR2 interrupts, you must make sure all the slave
in-service bits are cleared before issuing the nonspecific EOl command to the master.

9.2.5 Poll Mode

The 82C59A modules can operate in a polling mode. Conventional polling requires the core to
check each peripheral device in the system periodically to see whether it requires servicing. With
the 82C59A's polling mode, the core, by initiating the polling process, can determine whether any
of the devices attached to the 82C59A require servicing. This improves conventional polling ef-
ficiency by allowing the core to poll only the 82C59A, not each of the devices connected to it.
The polling mode is enabled by setting the polling bit in the Operation Command Word 3 register
(OCW3).

NOTE
After the polling procedure has been executed once, polling is disabled, i.e., it
is a one-shot operation. To repeat the polling procedure, the polling bit must be
set again.

The polling process takes the place of the standard interrupt process. In the standardpnberrupt
cess, the master sends interrupt requests to the core. In the polling mode, an interrupt request can
be detected by reading the 82C59A's poll status byte. The poll status byte indicates whether the
82C59A requires servicing. If the 82C59A requires servicing, the poll status byte indicates the
highest-priority pending interrupt request.

Polling is always a two-step process:
¢ A poll command is issued.
* The poll status byte is read.

When an 82C59A receives an interrupt request before it receives a poll command, it sets the re-
quest’s in-service bit and configures the poll status byte to reflect the interrupt request. The poll
status byte is used to determine which device connected to the 82C59A requires servicing. At the
end of a request’s servicing, you must issue a command to clear the request’s in-service bit.

The polling mode allows expansion of the system’s external interrupt capability. Without polling,
the system can have a maximum of 52 external interrupt sources. This is accomplished by cas-
cading six 82C59As to the master’s six external interrupt pins and using the four external inter-
rupt pins connected to the slave. The polling mode increases the system’s interrupt capability by

9-14

Int9|® INTERRUPT CONTROL UNIT

configuring more than six external 82C59As. Since the polling mode doesn't require that the ad-
ditional 82C59As be cascaded from the master, the number of interrupt request sources for a
polled system is limited only by the number of 82C59As that the system can address.

Polling and standard interrupt pexsing can be used within the sgonegram.Systems that use
polling as the only method of device servicing must still fully initialize the 82C59A modules. Al-
so, the interrupt requests to the core must be disabled using the mask bits or the CLI instruction.

9.3 REGISTER DEFINITIONS

The registers associated with the ICU consist of pin and signal configuration registers, initializa-
tion command words (ICWs), operation commaratds (OCWSs)and status registers.

* The configuration registers enable the external interrupt sources.

* The ICWs initialize the 82C59As during system initialization.

* The OCWs modify an 82C59As operation during program execution.
* The status registers reflect pending and in-service interrupts.

NOTE

ICW2, ICW3 and ICW4 of an 82C59A are all at the same address. Therefore a
programming sequence must be followed to program these ragibke first
access goes to ICW2, the second to ICW3 and the third to ICW4. When
programming any of these registers, the above sequence must be followed and
completed every time.

When initializing the ICU, write first to ICW1, then to ICW2, ICW3 and
ICW4 in order.

Table 9-2 describes these registers and the following sections contain bit descriptions for each
register.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table 9-2. ICU Registers (Sheet 1 of 2)

Register Expanded PC/AT* Function
9 Address Address

P3CFG 0F824H — Port 3 Configuration:

(read/write) The INT3:0 signals are multiplexed with P3.5:2. This register
determines which signals are connected to the package pins.
When a P3.n signal rather than an INTn signal is connected to
a package pin, Vg is connected to the master’s IRn signal.

INTCFG OF832H — Interrupt Configuration:

(read/write) Determines the master’s and the slave’s IR signal
connections: SIOINT1 or INT8; SIOINTO or INT9; Vg or INT7;
Vs Or INT6; SSIOINT or INT5; Vgg or INT4. Swaps DMAINT
and INT6. Also enables the master’s cascade bus (CAS2:0).
When enabled, the cascade signals appear on the A18:16
address lines during an interrupt acknowledge cycle.

ICW1 (master) | OF020H 0020H Initialization Command Word 1:

ICW1 (slave) OFOAOH 00AOH Determines whether interrupt request signals are level

(write only) sensitive or edge triggered.

ICW2 (master) | OF021H 0021H Initialization Command Word 2:

ICW2 (slave) OFOALH 00A1H Contains the base interrupt vector number for the 82C59A.

(write only) The base interrupt vector is the IR0 vector number, the base
plus one is the IR1 vector number, and so on.

ICW3 (master) | OF021H 0021H Initialization Command Word 3:

(write only) Identifies the master’s IR signals that are connected to slave
82C59A devices. The internal slave is connected to the
master’s IR2 signal. You can connect external slaves to the
master’s IR1, IR3, IR4, IR5, IR6, and IR7 signals.

ICW3 (slave) OFO0A1H 00A1H Initialization Command Word 3:

(write only) Indicates that the internal slave is cascaded from the master’s
IR2 signal.

ICW4 (master) | OF021H 0021H Initialization Command Word 4:

ICW4 (slave) OFOALH 00A1H Selects either special-fully nested or fully nested mode and

(write only) enables the automatic end-of-interrupt mode.

OCW1 (master) | OF021H 0021H Operation Command Word 1:

OCW1 (slave) | OFOA1H 00A1H Masks (disables) individual interrupt request signals.

(read/write)

OCW?2 (master) | OFO20H 0020H Operation Command Word 2:

OCW?2 (slave) | OFOAOH 00AOH Changes interrupt levels and sends end-of-interrupt

(write only) commands.

OCW3 (master) | OFO20H 0020H Operation Command Word 3:

OCWS3 (slave) | OFOAOH 00AOH Enables special mask mode, issues the poll command, and

(write only) allows access to the interrupt request and in-service registers.

NOTE: All master 82C59A registers are accessed through two expanded or PC/AT addresses; all the slave
registers are accessed through two other expanded or PC/AT addresses. The order in which you write
or read these addresses along with certain register bit settings determines which register is accessed.

9-16

Int9|® INTERRUPT CONTROL UNIT

Table 9-2. ICU Registers (Sheet 2 of 2)

Register Expanded PC/AT* Function
9 Address Address

IRR (master) OFO020H 0020H Interrupt Request:

IRR (slave) OFOAOH 00AOH Indicates pending interrupt requests.

(read only)

ISR (master) OF020H 0020H In-service:

ISR (slave) OFOAQOH 00AOH Indicates the interrupt requests that are currently being

(read only) serviced.

POLL (master) | OF020H 0020H Poll Status Byte:

OF021H 0021H Indicates whether any of the devices connected to the 82C59A

POLL (slave) OFOAOH 00AOH require servicing. If the 82C59A requires servicing, this byte

(read only) OFO0A1H 00A1H indicates the highest-priority pending interrupt.
NOTE: Once the polling bit is set in OCW3, the Poll Status
Byte of a particular 82C59A can be read by doing an access to
any of the four addresses of that 82C59A.

NOTE: All master 82C59A registers are accessed through two expanded or PC/AT addresses; all the slave
registers are accessed through two other expanded or PC/AT addresses. The order in which you write
or read these addresses along with certain register bit settings determines which register is accessed.

To initialize the 82C59As:
1. Globally disable all maskable interrupts to the core using the CLI instruction.
2. Write to the initialization commanalords.

NOTE

You must initialize both the master and the slave (either can be initialized
first).

The 8259A module has a state machine that controls access to the individual registers. Improper
initialization occurs when the following sequences are not followed:

* To initialize the master, write to its initialization commamards in order (IGV1, ICW2,
ICW3, then ICW4).

¢ To initialize the slave, write to its initialization command words in order (ICW1, ICW?2,
ICW3, then ICW4).

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.3.1 Port 3 Configuration Register (P3CFG)

Use the P3CFG register to connect the interrupt request signals (INT3:0) to the package pins.
These signals are multiplexed with port 3 signals, P3.5—-2. Connecting a port 3 signal to the pack-
age pin also connectsyto the corresponding master’s IR signal, disapthe signal.

Port 3 Configuration Expanded Addr: F824H

P3CFG ISA Addr: —

(read/write) Reset State: 00H

7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function

Number Mnemonic
7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INTO).

1 PM1 Pin Mode:
See Table 5-1 on page 5-8 for all the PM1 configuration options.
0 PMO Pin Mode:

See Table 5-1 on page 5-8 for all the PMO configuration options.

Figure 9-6. Port 3 Configuration Register (P3CFG)

9-18

Int9|® INTERRUPT CONTROL UNIT

9.3.2 Interrupt Configuration Register (INTCFG)

Use the INTCFG register to connect the INT9:4 interrupt request pins to the master’s and the
slave’s IR signals and to enable the master’s external cascade signals. When enabled, the cascads
signals appear on address lines A18:16 during interrupt acknowledge cycles. Every external slave
monitors these lines to determine whether it is the slave being addressed.

Interrupt Configuration Expanded Addr: F832H

INTCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
CE IR3 IR4 SWAP ‘ ‘ IR6 IR5/IR4 IR1 IRO
Bit Bit Function

Number Mnemonic
7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:
See Table 5-1 on page 5-8 for all the IR3 configuration options.

5 IR4 Internal Master IR4 Connection:
See Table 5-2 on page 5-8 for all the IR4 configuration options.
4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.
1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave
IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects Vg to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:
These depend on whether INTCFG.4 is set or clear.

0 = Connects Vg to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IRO Internal Slave IR0 Connection:

0 = Connects Vg to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.

Figure 9-7. Interrupt Configuration Register (I NTCFG)

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

9.3.3 Initialization Command Word 1 (ICW1)

Initialization begins with writing ICW1. Use ICW1 to select the interrupt request triggering type
(level or edge). The following actions occur within an 82C59A module when its ICW1 is written:

* The interrupt mask register is cleared, enabling altinge request signals.

* The IR7 signal is assigned the lowest interrupt level (default).

¢ Special mask mode is disabled.

Initialization Command Word 1 master slave
ICW1 (master and slave) Expanded Addr: FO20H FOAQH
(write only) ISA Addr: 0020H 00AOH
Reset State: XXH XXH
7 0
0 0 0 RSELL || s 0 0 1
Bit Bit)
Number Mnemonic Function
7-5 — Clear these bhits to guarantee device operation.
4 RSEL1 Register Select 1 (Also see OCW2 and OCW3):
ICW1, OCW?2, and OCW3 are accessed through the same addresses.
0= OCW?2 or OCWS3 is accessed (Figure 9-13 and Figure 9-15).
1= ICW1 register is accessed.
3 LS Level/Edge Sensitive:
0 = Selects edge-triggered IR input signals.
1 = Selects level-sensitive IR input signals.
All internal peripherals interface with the 82C59As in edge-triggered
mode only. This is compatible with the PC/AT bus specification. Each
source signal initiates an interrupt request by making a low-to-high
transition. External peripherals interface with the 8259As in edge-
triggered or level-sensitive mode. The modes are selected for the
device, not for individual interrupts.
NOTE: If an internal peripheral interrupt is used, the 8259A that the
interrupt is connected to must be programmed for edge-triggered
interrupts.
2-1 — Clear these bits to guarantee device operation.
0 — Set this bit to guarantee device operation.

NOTE: The 82C59A must be initialized before it can be used. After reset, the 82C59A register states are
undefined. The 82C59A modules must be initialized before the IF flag in the core FLAG register is
set. All peripherals that use interrupts connected to the ICU must be initialized before initializing
the ICU.

9-20

Figure 9-8. Initialization Command Word 1 Register (ICW1)

intel.

INTERRUPT CONTROL UNIT

9.3.4 Initialization Command Word 2 (ICW2)

Use the ICW?2 register to define the base interrupt vector for the 82C59A. Valid vector numbers
for maskable interrupts range from 32 to 255. Because the base vector number must reside on an

8-byte boundary, the valid base vector numbers arer82 & where (< n< 27. Write the base

interrupt vector’s five most-significant bits to ICW2's five most-significant bits. The 82C59A de-
termines specific IR signal vector numbers by adding the number of the IR signal to the base in-

terrupt vector.

Initialization Command Word 2 master slave
ICW2 (master and slave) Expanded Addr: F021H FOA1H
(write only) ISA Addr: 0021H 00A1H
Reset State: XXH XXH

7 0

7 T6 T5 T4 || T3 0 0 0

Bit Bit Function

Number Mnemonic
7-3 T7:3 Base Interrupt Type:
Write the base interrupt vector’s five most-significant bits to these bits.
2-0 T2:0 Clear these bits to guarantee device operation.
Figure 9-9. Initialization Command Word 2 Register (ICW2)

9-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

9.3.5 Initialization Command Word 3 (ICW3)

The ICW3 register contains information about the master/slave connections. For this reason, the

functions of the master’s ICW3 and the slave’s ICW3 differ.

ICW3 (at OF021H or 0021H) is the master’s cascade configuregigister (Figure 9-11). The
master has an internal slave cascaded from its IR2 signal. You can cascade additional slaves from
the master’s IR7, IR6, IR5, IR4, IR3 and IR1 signals. Setting a bit indicates that a slave 82C59A

is cascaded from the cosgonding master’s IR signal.

NOTE
Since the internal slave is cascaded from the master’s IR2 signal, you must set
the S2 bit.
Initialization Command Word 3 Expanded Addr: FO021H
ICW3 (master) ISA Addr: 0021H
(write only) Reset State: XXH
7
s7 S6 S5 sa || ss3 s2 s1 0
Bit Bit)
Number Mnemonic Function
7-3 S7:3 Slave IRs
0 = No slave 8259A is attached to the corresponding IR signal of the
master.
1= Aslave 82C59A is attached to the corresponding IR signal of the
master.
2 S2 0 = Internal slave not used
1 = Internal slave is cascaded from the master’s IR2 signal.
1 S1 Slave IRs
0 = No slave 8259A is attached to the master through the IR1 signal of
the master.
1= Aslave 82C59A is attached to the IR1 signal of the master.
0 — Clear this bit to guarantee device operation.

Figure 9-10. Initialization Command Word 3 Register (ICW3 — Master)

9-22

Int9|® INTERRUPT CONTROL UNIT

ICW3 (at OFOA1H or 00A1H) is the internal slave ID register (Figure 9-11). Use this register to
indicate that the slave is cascaded from the master’s IR2 signal. This gives the internal slave an
ID of 2. Each slave device uses the IDs to determine whether it is the slave being adbressed.

ing a slave access, the slave’s ID is driven on the master's CAS2:0 signals. If these signals are
enabled (bit 7 of INTCFG is 1), they appear on the A18:16 address lines.

Initialization Command Word 3 Expanded Addr: FOA1H

ICW3 (slave) ISA Addr: 00A1H

(write only) Reset State: XXH

7 0
0 0 0 o || o 0 1 0
Bit Bit Function

Number Mnemonic

7-2 — Clear these bits to guarantee device operation.

1 — Set this bit to guarantee device operation.

0 — Clear this bit to guarantee device operation.

Figure 9-11. Initialization Command Word 3 Register (ICW3 — Slave)

9-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.3.6 Initialization Command Word 4 (ICW4)

Use ICW4 to select the special-fully nested mode or the fully nested mode and to enable the au-
tomatic EOl mode.

Initialization Command Word 4 master slave

ICW4 (master and slave) Expanded Addr: F021H FOA1H

(write only) ISA Addr: 0021H 00A1H

Reset State: XXH XXH

7 0
0 0 0 SFNM || 0 0 AEOI 1
Bit Bit Function

Number Mnemonic
7-5 — Write zero to these bits to guarantee device operation.
4 SFNM Special-fully Nested Mode:

0 = Selects fully nested mode.
1 = Selects special-fully nested mode. Only the master 82C59A can
operate in special-fully nested mode.

3-2 — Write zero to these bits to guarantee device operation.

1 AEOI Automatic EOI Mode:

0 = Disables automatic EOl mode.
1 = Enables automatic EOlI mode. Only the master 82C59A can operate
in automatic EOI mode.

0 — Write one to this bit to guarantee device operation.

Figure 9-12. Initialization Command Word 4 Register (ICW4)

9-24

Int9|® INTERRUPT CONTROL UNIT

9.3.7 Operation Command Word 1 (OCW1)

OCWL1 is the interrupt mask register. Setting a bit in therinpt mask rgister disables (masks)
interrupts from the corresponding IR signal. For example, setting the master’s OCW1 M3 bit dis-
ables interrupts from the master IR3 signal. Clearing a bit in the interrupt mask register enables
interrupts from the corresponding IR signal.

Operation Command Word 1 master slave

OCW1 (master and slave) Expanded Addr: F021H FOA1H

(read/write) ISA Addr: 0021H O0OAl1H

Reset State: XXH XXH

7 0
M7 M6 M5 ma || w3 M2 M1 MO
Bit Bit Function

Number Mnemonic
7-0 M7:0 Mask IR:

0 = Enables interrupts on the corresponding IR signal.
1 = Disables interrupts on the corresponding IR signal.

NOTE: Setting the mask bit does not clear the respective interrupt
pending bit.

NOTE: The 8259A must be initialized before it can be used. After reset, the 8259A register states are
undefined. The 8259A modules must be initialized before the IF flag in the core FLAG register is
set.

Figure 9-13. Operation Command Word 1 (OCW1)

9-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.3.8 Operation Command Word 2 (OCW?2)

Use OCW?2 to change the priority structure and issue EOl commands.

Operation Command Word 2
OCW2 (master and slave)

(write only)

master slave
Expanded Addr: FO20H FOAQH
ISA Addr: 0020H 00AOH
Reset State: XXH XXH

SL

EOI RSEL1 H RSELO L2 L1 Lo

Bit
Number

Bit
Mnemonic

Function

R

SL

EOI

The Rotate (R), Specific Level (SL), and End-of-Interrupt (EOI) Bits:
These bits change the priority structure and/or send an EOl command.
SLEOI Command

Cancel automatic rotation*

Send a nonspecific EOl command

No operation

Send a specific EOl command**

Enable automatic rotation*

Enable automatic rotation and send a nonspecific EOI
Initiate specific rotation**

1 Initiate specific rotation and send a specific EOI**
These cases allow you to change the priority structure while the
82C59A is operating in the automatic EOIl mode.

** The L2:0 bits (see below) specify the specific level for these cases.

*RrpRpRrRPROOOO T
PR OORROO
oOrORrRORO

4-3

RSEL1:0

Register Select Bits:

ICW1, OCW2 and OCWS3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 00
to these bits to access OCW2.

RSEL1 RSELO

0 0 OoCw2
0 1 OCw3
1 X ICW1

2-0

L2:0

IR Level:

When you program bits 7-5 to initiate specific rotation, these bits specify
the IR signal that is assigned the lowest level.

When you program bits 7-5 to send a specific EOl command, these bits
specify the IR signal that receives the EOl command.

If SL=0, then these bits have no effect.

9-26

Figure 9-14. Operation Command Word 2 (OCW?2)

Int9|® INTERRUPT CONTROL UNIT

9.3.9 Operation Command Word 3 (OCW3)

Use OCWS3 to enable the special mask mode, issue a poll command, and provide access to the
interrupt in-service and request registers (ISR, IRR).

Operation Command Word 3 master slave
OCW3 (master and slave) Expanded Addr: FO20H FOAOQH
(write only) ISA Addr: 0020H OO0AOH
Reset State: XXH XXH
7 0
0 ESMM SMM RSEL1 ‘ ‘ RSELO POLL ENRR RDSEL
Bit Bit Function
Number Mnemonic
7 — Clear this bit to guarantee device operation.
ESMM Enable Special Mask Mode (ESMM) and Special Mask Mode (SMM):
5 SMM Use these bits to enable or disable special mask mode.
ESMM SMM
0 0 No action
0 1 No action
1 0 Disable special mask mode
1 1 Enable special mask mode
4-3 RSEL1:0 Register Select:

ICW1, OCW2 and OCWS3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 01
to these bits to access OCWa3.

RSEL1 RSELO

0 0 OoCcw2
0 1 OoCcws3
1 X ICW1
2 POLL Poll Command:
Set this bit to issue a poll command, thus initiating the polling process.
ENRR Enable Register Read Select (ENRR) and Read Register Select
(RDSEL):

0 RDSEL ’]]]]
These bits select which register is read during the next FO20H and

FOAOH (or PC/AT address 0020H, 00AOH) read access.
ENRR RDSEL Register Read on Next Read Pulse

0 0 No action

0 1 No action

1 0 Interrupt Request Register
1 1 In-service Register

Figure 9-15. Operation Command Word 3 (OCW3)

9-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.3.10 Interrupt Request Register (IRR)

This 8-bit, read-only register contains the levels requesting an interrupt to be acknowledged. It is
accessed using OCW3 (see Figen#5). The highest request levetéset from the IRR when an
interrupt is acknowledged. Bits 7:0 of this regisiez the pending bits, respectively, of interrupt
requests IR7:0.

9.3.11 In-Service Register (ISR)

This 8-bit, read-only register contains the priority levels that are being serviced. It is accessed us-
ing OCW3 (see Figur8-15). The ISR is updated when an End-of-Interrupt command is issued.
Bits 7:0 of this register are the in-service bits, respectively, of interrupt requests IR7:0.

9.3.12 Poll Status Byte (POLL)

Read the poll status byte after issuing a poll command to determine whether any of the devices
connected to the 82C59A require servicing. Once the polling bit is set in OCW3, the Poll Status
Byte of a particular 82C59A can be read by doing an access to any of the four addresses of that
82C59A.

Poll Status Byte master slave

POLL (master and slave) Expanded Addr: FO20H FOAQH

(read only) ISA Addr: 0020H OOAQOH

Reset State: XXH XXH

7 0
INT — — - || = L2 L1 LO
Bit Bit)

Number Mnemonic Function
7 INT Interrupt Pending:

0 = No request pending.
1 = Indicates that a device attached to the 82C59A requires servicing.

6-3 — Reserved. These bits are undefined.

2-0 L2:0 Interrupt Request Level:

When bit 7 is set, these bits indicate the highest-priority IR signal that
requires servicing. When bit 7 is clear, i.e., no request is pending, these
bits are indeterminate.

Figure 9-16. Poll Status Byte (POLL)

9-28

Int9|® INTERRUPT CONTROL UNIT

9.4 DESIGN CONSIDERATIONS

The following sections discuss some design considerations.

9.4.1 Interrupt Acknowledge Cycle

When the core receives an interrupt request from the master, it completes the instruction in
progress and any succeeding locked instructions, then initiates an interrupt acknowledge cycle.
The interrupt acknowledge cycle generates an internal interrupt acknowledge (INTA#) signal that
consists of two locked pulses (Figuwel7). This INTA# signal isonnected to the internal
82C59A interrupt acknowledge inputs. On the falling edge of the second INTA#, the 82C59A sets
its interrupt in-service bit. It then clears its interrupt pending bit on the rising edge ottmelse
INTA#. On the second INTA# falling edge, the addressed 82C59A (determined by the master’s
cascade signals) also drives thesinipt vector number ahe data bus.

INTA# \ / \ /

Data Bus < valid >—
Vector Number

Figure 9-17. Interrupt Acknowledge Cycle

A2430-01

9.4.2 Interrupt Detection

The processing of an interrupt begins with the assertion of an interrupt request at one of the IR
signals. During systeimnitialization, you can grgram the IR signals, as a group, to be either edge
or level triggered (using ICW1 described in Figure 9-8).

Edge triggered The 82C59A recognizes a rising edge transition on an IR signal as an
interrupt request. Alevice requesting service must maintain a high state
on an IR signal until after the falling edge of the first INTA# pulse. You
can reset the edge-detection circuit during initialization of the 82C59A
or by deasserting the IR signal. To reset the edge-detection circuit
properly, the interrupt source must hold the IR line low for a minimum
time of 10ns.

I 9-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Level triggered The 82C59A recognizes a high level on an IR line as an interrupt
request. A device must maintain the high level until after the falling edge
of the first INTA# pulse. Unlike an edge-triggered IR signal, a level-
triggered IR signal continues to generate interrupts as long as it is
asserted. To avoid continuous interrupts from the same source, a device
must deassert a level-sensitive IR signal before therrimt handler
issues an end-of-interrupt (EOI) command.

All internal peripherals interface with their respective 82C59As in edge-triggered mode. This is
compatible with the PC/AT bus specification. Each source signal initiates an interrupt by making
a low-to-high transition.

9.4.3 Spurious Interrupts

For both edge aneVel-triggered interrupts, a high level must be maintained on the IR line until
after the falling edge of the first INTA# pulse (see FigauE8). A spurious interrupt request is
generated if this stipulation is not met. A spurious interrupt on any IR line gerthetzsne vec-

tor number as an IR7 request. The spurious interrupt, however, does not set the in-service bit for
IR7. Therefore, an IR7 interrupt service routine must check the in-service register to determine
whether the interrupt source was a valid IR7 (the in-service bit is set) or a spurious interrupt (the
in-service bit is cleared).

INTA# \ / \ /
IR (Spurious) \

IR (Valid) \
x IR sampled on this edge.

A2431-01

Figure 9-18. Spurious Interrupts

9.4.4 Cascading Interrupt Controllers

Figure9-19 is a bbck diagram showing the connections for two cascaded 82C59As. The PLD
generates READY# (fothe second Interrupt Acknowledge Cycle) and INTA# to the external
82C59A devices. The PLD also generates appropriate timings for the INTA# signals to satisfy
82C59A specifications.

The RD# and WR# strobes are used to read and write to the 82C59A registers. These strobes are
inactive during Interrupt Acknowledge Cycles.

9-30 I

Int€|® INTERRUPT CONTROL UNIT

Intel386™ EX

Processor PLD
READY# | o READY# INTA#
M/IO# >| INTA#
W/R# > and
D/C# - READY#
ADS# : State
LBA# | Machine
—>> -
CLKOUT i T~
> o
CLK2 >
CASO | —g—
External External
CAS1 > CAS
CAS2 o > Decode 82C59As
T
> CASO
Latch > CAS1
> CAS2
>| A0
> Cs# INTA# |
INT | INT
INT), | >| RD#
> WR#
X D7:.0
31 CASO
3| CAS1
> CAS2
BLE# >| A0
CSxit INT INTA# |-
CSy# > CSy#
RD# >»| RD#
WR# >| WR#
D7:0 < > D7:0

A2857-01

Figure 9-19. Cascading External 82C59A Interrupt Cont rollers

9-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

9.5

PROGRAMMING CONSIDERATIONS

Consider the following when pgramming the ICU.

When an 82C59A receives an interrupt request, it sets the request’s pending bit (regardless
of whether the IR signal is masked or not). The pending bit remains set until the interrupt is
serviced.

When the LS bit in ICW1 is set to edge-triggered during initialization, all therimpter
pending bits will be cleared.

In special-fully nested mode, care must be taken when processing interrupt requests from
the master’s internal cascade signal (IR2). At the end of the slave’s interrupt service routine,
first issue a nonspecific EOI to the slave. Before issuing a nonspecific EOl command to the
master, make sure that the slave has no other in-service bits set.

Systems that use polling as the only method of device servicing must still fully initialize the
82C59A modules. Also, the interrupt requestthiacore must be disabled using the mask
bits or the CLI instruction.

The 8259A must be initialized before it can be used. After reset, the 82C59A register states
are undefined. The 82C5%Aodules nust be initialized before the IF flag in the core FLAG
register is set. All peripherals that use interrupts connected to the ICU must be initialized
before initializing the ICU.

9.5.1 Interrupt Control Unit Code Examples

The example code contains these software routines:

InitICU Initializes the Master and Slave 82C59A Interrupt Controllers

InitICUSIave Initializes the Slave 82C59A Interrupt Controllers

Disable8259Interrupt Disables inerrupts on the Master and internal Slave

Enable8259Interrupt Enables interrupts on the Master and internal Slave

SetIRQVector Loads the interrupt vector table with the address of the Interrupt
Service Routine

SetlnterruptVector Called by SetIRQVector to load vector table

Poll_Command Issues a poll command to read the poll status byte of the ICU

See Appendix C for included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

/* Globals For information about the ICU */
BYTE _IRQ_SlaveBase_= 0x30;
BYTE _IRQ_MstrBase_ = 0x20;

9-32

Int9|® INTERRUPT CONTROL UNIT

BYTE _CascadeBits_ = 0x4;

InitICU

Description:
Initialization for both the master and slave Interrupt Control
Units (ICU). tine only initializes the internal interrupt
controllers, external ICUs must be initialized separately. These
should be initialized before interrupts are enabled(i.e., enable()).

Parameters:
MstrMode Mode of operation for Master ICU
MstrBase Specifies the base interrupt vector number for the
Master interrupts.
For example, if IR1 of the master goes active and the
MstrBase = 0x20, the processor uses interrupt
vector table entry 0x21.
MstrCascade Which Master IRQs are used for Slave ICUs.
SlaveMode Mode of operation for Slave ICU
SlaveBase Specifies the base interrupt vector number for the
Slave interrupts.
For example, if IR1 of the slave goes active and the
SlaveBase = 0x40, the processor uses interrupt
vector table entry Ox41.
MstrPins Defines what EX pins are available externally to the
chip for the Master.
SlavePins Defines what EX pins are available externally to the

chip for the Slave.
Returns:Error Code
E_OK -- Initialized OK, No error.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

#define ICU_TRIGGER_EDGE 0x0

#define MPIN_INTO 0x4
#define MCAS_IR1 0x2
#define SPIN_INT4 0x1

int error_code;

error_code = InitICU(ICU_TRIGGER_EDGE,
0x20,
MCAS_IR1,
ICU_TRIGGER_EDGE,
0x30,
MPIN_INTO,
SPIN_INT4);

9-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Real/Protected Mode
No changes required.

int InitICU(BYTE MstrMode, BYTE MstrBase, BYTE MstrCascade, BYTE SlaveMode,
BYTE SlaveBase, BYTE MstrPins, BYTE SlavePins)

{
BYTE icw, cfg_pins;

/* Program Slave ICU */

_IRQ_SlaveBase_ = SlaveBase & 0xf8;
_SetEXRegByte(ICW1S, 0x11 | SlaveMode);// Set slave triggering
_SetEXRegByte(ICW2S, _IRQ_SlaveBase_); // Set slave base interrupt type,

/I least 3-bit must be 0
_SetEXRegByte(ICW3S, 0x2); /I Set slave ID
_SetEXRegByte(ICW4S, 0x1); /I Set bit 0 to guarantee operation

/* Program Master ICU */

_IRQ_MstrBase_ = MstrBase & 0xf8;
CascadeBits = MstrCascade | 0x4;
icw = (MstrMode & ICU_TRIGGER_LEVEL) ? 0x19 : 0x11;
_SetEXRegByte(ICW1M, icw); /I Set master triggering
_SetEXRegByte(ICW2M, _IRQ_MstrBase_); // Set master base interrupt

/I type, least 3-bit must be 0
_SetEXRegByte(ICW3M, _CascadeBits_); // Set master cascade pins,

/I Make sure IR2 set for Cascade
icw = (MstrMode & ~ICU_TRIGGER_LEVEL) | 1;// Set bit 0 and remove

/I Trigger_level bit (in ICW1)
_SetEXRegByte(ICWA4M, icw); /I Set slave IDs in master

/* Program chip configuration registers */

cfg_pins = _GetEXRegByte(INTCFG);
if((MstrCascade & Oxfb) !=0) /I bit 2 (IR2) is internal,
/I external signals not required
/I for just IR2
cfg_pins |= 0x80; /I Using external slaves,
/I therefore enable Cascade signals
cfg_pins |= SlavePins;
_SetEXRegByte(INTCFG, SlavePins); /I Set Slave external interrupt pins
cfg_pins = _GetEXRegByte(P3CFG); I/l Preserve other set bits
_SetEXRegByte(P3CFG, cfg_pins | MstrPins);// Set Master external
/I interrupt pins

return E_OK;

}* IniticuU */

9-34

Int9|® INTERRUPT CONTROL UNIT

InitiCUSlave

Description:
Initialization only the internal slave Interrupt Control Units (ICU).
This routine only initializes the internal interrupt controller,
external ICUs must be initialized separately.

Parameters:
SlaveMode Mode of operation for Slave ICU
SlaveBase Specifies the base interrupt vector number for the

Slave interrupts.
For example, if IR1 of the slave goes active and the
SlaveBase = 0x40 the processor uses interrupt
vector table entry Ox41.
SlavePins Defines what EX pins are available externally to the
chip for the Slave.

Returns:Error Code
E_OK -- Initialized OK, No error.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

/* 1ICU Modes */

#define ICU_SFNM 0x10
#define ICU_AUTOEOI 0x2
#define ICU_TRIGGER_LEVEL 0x8
#define ICU_TRIGGER_EDGE 0x0
/* ICU Slave Pins */

#define SPIN_INT4 0x1
#define SPIN_INT5 0x2
#define SPIN_INT6 0x4
#define SPIN_INT7 0x8

int error_code;
error_code = InitICUSlave(ICU_TRIGGER_EDGE, 0x30, SPIN_INT4);

Real/Protected Mode
No changes required.

int InitICUSIlave(BYTE SlaveMode, BYTE SlaveBase, BYTE SlavePins)
{
BYTE cfg_pins;

/* Program Slave ICU */

9-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

_IRQ_SlaveBase_ = SlaveBase & 0xf8;

_SetEXRegByte(ICW1S, 0x11 | SlaveMode); // Set slave triggering

_SetEXRegByte(ICW2S, _IRQ_SlaveBase_); // Set slave base interrupt
/I type, least 3-bit must be 0

_SetEXRegByte(ICW3S, 0x2); /I Set slave ID

_SetEXRegByte(ICW4S, 0x1); /I Set bit 0 to guarantee
// operation

cfg_pins = _GetEXRegByte(INTCFG);

cfg_pins |= SlavePins;

_SetEXRegByte(INTCFG, SlavePins); /I Set Slave external interrupt
/ pins

return E_OK;

}* InitICUSIave */

Disable8259Interrupt:

Description:
Disables 8259a interrupts for the master and the slave.

Parameters:
MstrMask Mask value for master ICU
SlaveMask Mask value for slave ICU

Each bit location that is set disables the corresponding

interrupt (by setting the bit in the interrupt control register).

For example, to disable master IR3 and IR5 set MstrMask = 0x28
(bits 3 and 5 are set).

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

/* 1ICU IRQ Mask Values*/

#define IR0 Ox1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40

9-36

Int9|® INTERRUPT CONTROL UNIT

#define IR7 0x80

Disable8259Interrupt(IRO | IR1 | IR3 | IR4 | IR5 | IR6 | IR7,
IR1|IR2 | IR3 | IR4 |IR5 | IR6);

Real/Protected Mode
No changes required.

void Disable8259Interrupt(BYTE MstrMask, BYTE SlaveMask)

{
BYTE Mask;

if(MstrMask != 0)

{
Mask = _GetEXRegByte(OCW1M);
_SetEXRegByte(OCW1M, Mask | MstrMask);
}
if(SlaveMask != 0)
{
Mask = _GetEXRegByte(OCW1S);
_SetEXRegByte(OCWL1S, Mask | SlaveMask);
}

}/* Disable8259Interrupt */

Enable8259Interrupt:

Description:
Enables 8259a interrupts for the master and the slave.

Parameters:
MstrMask Enable mask value for master ICU
SlaveMask Enable mask value for slave ICU

Each bit location that is set enables the corresponding

interrupt (by clearing the bit in the interrupt control register).

For example, to enable master IR3 and IR5 set MstrMask = 0x28
(bits 3 and 5 are set).

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

Syntax:

9-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

/* 1ICU IRQ Mask Values*/

#define IR0 Ox1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40
#define IR7 0x80

Enable8259Interrupts(IR2, IR0 | IR7); //Enable MasterIR2 for cascading

/[Enable INT4 and WDTOUT on Slave

Real/Protected Mode
No changes required.

void Enable8259Interrupt(BYTE MstrMask, BYTE SlaveMask)

{
BYTE Mask;

if(MstrMask != 0)

{
Mask = _GetEXRegByte(OCW1M);
_SetEXRegByte(OCW1M, Mask & (~MstrMask));
}
if(SlaveMask != 0)
{
Mask = _GetEXRegByte(OCW1S);
_SetEXRegByte(OCW1S, Mask & (~SlaveMask));
}

}* Enable8259Interrupt */

SetIRQVector:

Description:
Loads the interrupt vector table with the address of the interrupt
routine. The vector table entry number is determined by the vector

number.
Parameters:
InterProc Address of interrupt function, will be loaded into
the interrupt table.
IRQ Hardware Interrupt request number (0-15).
ISR_Type Specifies if the interrupt function should be treated

as a TRAP_ISR or an INTERRUPT_ISR. Real Mode only

9-38

Int9|® INTERRUPT CONTROL UNIT

supports INTERRUPT_ISR (parameter is ignored).
Protected mode supports both.

Returns:Error Code
E_INVALID_VECTOR -- An IRQ of greater than 15 was passed

E_BADVECTOR -- IRQ is used for cascading to a slave interrupt
controller
E_OK -- Initialized OK, No error.

Assumptions:
Compiler supports far and interrupt keywords

ICU must be configured before this function is call for it to
operate properly

_IRQ_SlaveBase_,_IRQ_MstrBase_,_CascadeBits_ are set before function
is called. These are initialized in the InitICU functions supplied
in this source.

Syntax:
int error_code;

error_code = SetlIRQVector(wdtISR,
15, /I Slave IR#'s are offset by 8 in
I/l Vector Table
INTERRUPT_ISR);

Real/Protected Mode
No changes required. Uses SetInterruptVector which is mode
dependant (separate source)

int SetlRQVector(void (far interrupt *IntrProc)(void), int IRQ, int IntrType)

{

int Vector;
if(IRQ > 15) return E_INVALID_VECTOR;

ifIRQ >7) /I Get Vector from Slave
Vector = _IRQ_SlaveBase_ + IRQ - 8;

else /I From Master

if((1 << IRQ) & _CascadeBits_) return E_BADVECTOR,;
Vector = _IRQ_MstrBase_ + IRQ;

}

SetinterruptVector(IntrProc, Vector, IntrType);

9-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

return E_OK;

}* SetIRQVector */

SetinterruptVector:

Description:
Loads the interrupt vector table with the address of the interrupt
routine. The vector table entry number is determined by the vector

number.
Parameters:
InterProc Address of interrupt function, will be loaded into
the interrupt table.
ISR_Type Specifies if the interrupt function. Real Mode only
supports INTERRUPT_ISR (the parameter is ignored). The
parameter is kept to maintain compatibility with the
protected mode version of this function.
Returns:
None

Assumptions:
Compiler supports far and interrupt keywords
Compiler may issue a warning about IntrType not used.
IntrType is kept for protected mode compatibility.

Syntax:
SetinterruptVector(wdtISR, INTERRUPT_ISR);

Real/Protected Mode
Real Mode only

void SetinterruptVector(void (far interrupt *IntrProc)(void),
int Vector, int IntrType)

{
(void) IntrType; /I Reference to avoid compiler warning
((unsigned long far *)(0))[Vector] = (unsigned long)IntrProc;

}* SetinterruptVector */

9-40

Int9|® INTERRUPT CONTROL UNIT

Poll_Command:

Description:
This routine issues a poll command which reads the poll status byte
of the ICU.

Parameters:
Master_or_Slave Specifies which interrupt controller is polled

Returns:
Current value of poll status byte

Assumptions:
None

Syntax:
in poll_status;
poll_status = Poll_Command();

Real/Protected Mode:
No changes required.

int Poll_Command(int Master_or_Slave)

{
int poll_status;
if (Master_or_Slave == Master) {

_SetEXRegByte(OCW3M, 0x0c);//Initiate polling sequence
poll_status = _GetEXRegByte(ICW2M);

}
else {

_SetEXRegByte(OCW3S, 0x0c); //Initiate polling sequence
poll_status = _GetEXRegByte(ICW2S);

}

return(poll_status);

} /* Poll_Command */

9-41

intel. 1 O

TIMER/COUNTER
UNIT

intel.

CHAPTER 10
TIMER/COUNTER UNIT

The Timer/counter Unit (TCU) has the same basic functionality as the industry-standard 82C54
counter/timer. It contains three independent 1@&bwn counérs, which can be driven by a pres-
caled value of the processor clock or an external clock. The counters contain two count formats
(binary and BCD) and six different operating modes, two of which are periodic. Both hardware
and software triggered modes exist, providing for internal or external control. The counter’s out-
put signals can appear at device pins, generate interrupt requests, and initiate DMA
transactions.

This chapter is organized as follows:
* Overview (see below)
* TCU Operation (page 10-5)
* Register Definitions (paged120)

* Programning Considerations (page 10-33)

10.1 OVERVIEW

The TCU contains control logic and three independent 16-bit down counters (FoglijeEach
counter has two input signals and one output signal:

CLKIN n You can independently connect each counter’s clock input (ChKsignal to
either the internal prescaled clock (PSCLK) signal or the external timer clock
(TMRCLKDnN) pin. This allows you to use either a prescaled value of the
processor’s internal clock or an external clock to drive each counter.

NOTE

The maximum CLKIM frequency, whether connected internally or externally,
is 8 MHz.

GATEnN Each counter has a gate (GATjEnput signal. This signal provides counter
operation control. In some of the counter operating modes, a high level on a
counter’s GATH signal enables or resumesunting and a lowelvel disables or
suspends counting. In other modessing edge on GATEloads a new count
value. You can independently connect each counter’s @Aidgnhal to either Y
or the external timer gate (TMRGATREpIn, or you can drive each counter’s
GATER signal high or low through register bits.

OUTn Each counter contains an output signal called @Wbu can independently
connect these signals to the external timer clock output (TMRQbIRs.
OUTO, OUT1, and OUT2 are routed to the interrupt control unit. OUT1 is also
routed to DMA channel 0, and OUT2 is also routed to DMA channel 1.

I 10-1

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

Each counter operates independently. Six different counting modes are available and two count
formats: binary (16 bits) or BCD (4 decades). Each operating mode allows you to program the
counter with an initial count and to change this value “on the fly.” You can determine the count

intel.

Therefore, the OUf signals can drive external devices, generate interrupt
requests, initiate DMA transactions or combinations of the three.

and status of each counter without disturbing its current operation.

=

S0 ~un< WM 2

nw cw

P3CFG.0

[) tmRrouTO

————> To ICU
(Master IR0)

P3CFG.1

Control Logic
[TmrcFG.7 | t
PSCLK ’:D 3| CLKINO
TMRCLKo [F—
| TMRCFG.1 | | TMRCFG.6 |
ouTo
Yee 0 > GATEO
TMRGATEO [] 1 -
TMRCFG.2 *
PSCLK 0 o:D »| cLring
TMRCLKL [}—1
| TMRCFG.3 | | TMRCFG.6 |
ouT1
Vee J 0
> GATE1
TMRGATEL [) 1
| PiNCFG5 | | TMRCFG.4 | *
PSCLK
[) CLKIN2
T™MRCLK2 [] }
| PINCFG.5 |TMRCFG.5 || TMRCFG.6 | OUT2
T™RGATE2 [) > D ‘D GATE2

[) mroUTL
——> To ICU
(Slave IR2)

——> To DMA
ChO MUX

PINCFG.5

[} TMROUT2

—>ToICU
(Slave IR3)

——> To DMA
Ch1l MUX

A2317-02

10-2

Figure 10-1. Timer/Counter Unit Signal Connections

intel.

TIMER/COUNTER UNIT

10.1.1 TCU Signals and Registers

Table 10-1 and Table 10-2 lists the signals and registers associated with the TCU.

Table 10-1. TCU Signals

Device Pin or

Signal Internal Signal Description

PSCLK Internal signal Prescaled Clock:
This is one of the two possible connections for the counter’s CLKINn
signal. PSCLK is an internal signal that is a prescaled value of the
processor internal clock. The clock and power management unit
contains a programmable divider that determines the PSCLK frequency.
See “Controlling the PSCLK Frequency” on page 8-7, for information on
how to program PSCLK'’s frequency.

TMRCLKO Device pin Timer Clock Input:

TMRCLK1 This is one of the two possible connections for the counter’s CLKINn

TMRCLK2 signal. You can drive a counter with an external clock source by
connecting the clock source to the counter's TMRCLKn pin.

TMRGATEO | Device pin Timer Gate Input:

TMRGATEL This input can be connected to the counter’s GATEn input to control the

TMRGATE2 counter’s operation. In some of the counter’s operating modes, a high
level on GATEn enables or resumes counting, while a low level disables
or suspends counting. In other modes, a rising edge on GATEn loads a
new count value.

TMROUTO | Device pin Timer Output:

TMROUT1 The counter’s OUT n signal can be connected to this pin. The operation,

TMROUT2

and consequently the waveform, of the output depends on the counter’s
operating mode.

10-3

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Table 10-2. TCU Associated Registers

Register

Expanded
Address

PC/AT*
Address

Function

P3CFG
PINCFG

(read/write)

OF824H
OF826H

Peripheral Pin Selections:

These registers determine whether a counter’s input and output
signals are connected to package pins.

TMRCFG
(read/write)

OF834H

Timer Configuration:

Enables the counter’s CLKINn input signal, selects the CLKINn
connection (PSCLK or TMRCLKn) for each counter, and either
connects TMRGATEnR or V. to each counter's GATEn input signal,
or sets GATEn high or low through register bits.

TMRCON

0F043H

0043H

TMRCON has three formats: control word, counter-latch, and read-
back. When writing to TMRCON, certain bit settings determine which
format is accessed.

Control Word Format:

Programs a specific counter. Selects a counter’s operating mode and
count format. After programming a counter, you can write a count
value to the counter's TMRn register at any time.

Counter-latch Format:

Issues a counter-latch command to a specific counter. The counter-
latch command allows you to latch the count of a specified counter.
After issuing a counter-latch command, you can check the counter’s
count by reading the counter’'s TMRn register.

Read-back Format.

Issues a read-back command to one or more counters. The read-
back command allows you to latch the count and status of one or
more counters. After issuing the read-back command, you can check
the counter’s status by reading the counter’'s TMRn register. After
checking a counter’s status, you can read the counter’s TMRn
register again to check its count.

TMRO
TMR1
TMR2

OF040H
OF041H
OF042H

0040H
0041H
0042H

Status Format:
Read this register after issuing a read-back command to check
counter n's status. Reading TMRn again accesses its read format.

Read Format.
Read this register to check counter n's count value.

Write Format.
Write this register at any time after initializing counter nto change the
counter’s count value.

10-4

Int9|® TIMER/COUNTER UNIT

10.2 TCU OPERATION

Each counter can operate in any one of six operating modes. These modes are described in sec-
tions 10.2.1 through 10.2.6. In all modes, the counters decrement on the falling edge ohCLKIN

In modes 0, 1, 4, and 5, the counters roll over to the highest count, either OFFFFH for binary
counting or 9999 for BCD counting, and continue counting down. However, the state of the
OUTn is only affected by the first run thughthe counter and does not change on subsequent
runs. Modes 2 and 3 are periodic modes; in these modes, when the counter reaches terminal count
it is reloaded with the currently programmed count value.

To specify a counter’s operating modajte to the TMRCON register’s control word format.
Writing to this register initiates counting. To specify a count, write to the counter's1Tristis-

ter’s write format. In modes 0 and 4, the count is loaded on the falling edge of GLKbdes

1 and 5 require a rising edge on a counter’s GASignal (or gate-trigger) to load the count. In
modes 2 and 3, the count is loaded when the counter reaches terminal count or when the counter
receives a gate-trigger, whichever is first.

The GATH signal affects the counting operation for each mode differently (Table 10-3). For
modes 0, 2, 3, and 4, GAREs level sensitive, and the logic level is sampled on the rising edge
of CLKINN. The action then occurs on the falling edge of the next CbhKIN these modes,
GATEN must be high for counting to begin. During a counting sequence, a low level anGATE
suspends counting, while a high level at GATEsumes counting.

For modes 1, 2, 3, and 5, GAMES rising-edge sensitive. In these modes, a rising edge atiGATE

sets an edge-sensitive flip-flop in the counter. This flip-flop is then sampled on the next rising
edge of CLKIN; the flip-flop is reset immediately after it is sampled. In this way, a trigger is
detected no matter when it occurs - a high level does not have to be maintained until the next ris-
ing edge of CLKIN. Therefore, a rising edge on GAiEhat occurs between two rising CLKiIN

edges is recognized as a gate-trigger. The operation caused by a gate-trigger occurs on the falling
CLKINnN edge following the trigger. Note that in modes 2 and 3, the GAMRLt is both edge-

and level-sensitive. In modes 1, 2, 3, and 5, a gate-trigger causes the counter to load new count
values.

I 10-5

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Table 10-3. Operations Caused by GATE n

Oﬁﬂeorg(taigg Low or Falling Rising High
0 Disables counting — Enables counting
1 — 1) Initiates counting —
2) Resets OUTn after next CLKINn

2 1) Disables counting Initiates counting Enables counting
2) Sets OUTn immediately high

3 1) Disables counting Initiates counting Enables counting
2) Sets OUTn immediately high
Disables counting — Enables counting
— Initiates counting —

10.2.1 Mode 0 — Interrupt on Terminal Count

This mode allows you to generatésing edge on a counter’s OldBignal. Initializing a counter

for mode O drives the counter’s Ob$ignal low and initiates counting. When the counter reach-

es terminal count, OUTis driven high. At this point, the counter rolls over and continues count-
ing with OUTn high. OUTh stays high and the counter keeps counting down and rolling over until

a new count is written or you reprogram the counter. You can write a new count to the counter at
any time to drive OUf low and start a new counting sequence. Writing a new control word re-
programs the counter.

Mode 0's basic operation is outlined below and shown in Figure 10-2.
1. After a control word write, OUTis driven low.
2. Onthe CLKIN pulse following a count write, the count is loaded.
3. On each succeeding CLKfNpulse, the count is decremented.
4. When the count reaches terminal count, @isTdriven high.

NOTE

Writing a count of N causes a rising edge on @QWITN + 1 CLKINN pulses
(provided GATE remains high and count was written before the rising edge of
CLKINnN).

10-6

Int€|® TIMER/COUNTER UNIT

Control _
Word=10H COUNt=4
Writes to
Counter n
CLKINn
GATEn ; ; ; ; ; ‘ 1 1
l | l l l ‘ l l
l l l l | \ . .
outn _ __ .V« | | | | s |
R
count | 2 | 2 | 2 | 2 [ooo4 | 0003 | 0002 | ooo1 | 0ooo | FFFF | FFFE
A2311-01

Figure 10-2. Mode 0 — Basic Operation

Figure 10-3 shows suspending the counting sequence. A low level om&ATEes the counter
to suspend counting (both the state of @Whd the count remain unchanged). A high level on
GATEN resumes counting.

Writes to
Counter n

CLKINn

GATEn

OUTn

Count

N

N

N

N
o
S
S
@®
o
o
S
]
o
S
S
N
o
S
S
N,
o
o
S
=
o
S
S
S
T
T
T
M

A2394-02

Figure 10-3. Mode 0 — Disabling the Count

10-7

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Figure 10-4 shows writing a new count before the current count reaches zero. The counter loads
the new count on the CLKINpulse after you write it, then decrements this new count on each
succeeding CLKINM pulse. OUT remains low until the new count reaches zero.

Control
Word = 104 ~ COUNt=3 Count =2
Writes to ! !
Counter n ; ;
: : :
CLKINR MW_WJ
l l
GATEn 1 1
| l
OUTn [1
| |
Count 0001 | 0000 | FFFF
A2395-02

Figure 10-4. Mode 0 — Writing a New Count

10.2.2 Mode 1 — Hardware Retriggerable One-shot

This mode is similar to mode 0; it allows you to generate a rising edge on a counterisiQUT

nal. Unlike mode 0, however, the counter waits for a gate-trigger before loading the count and
driving its OUTh signal low. When the counter reaches zero, ®idTdriven high. At this point,

the counter rolls over and continues counting with @Uigh. OUTh stays high and keeps count-

ing down and rolling over until the counter receives another gate-trigger or you reprogram it. You
can retrigger the one-shot at any time with a gate-trigger, causing the counter to reload the count
and drive OUT low. Writing a new control word to the counter reprograms it.

Mode 1's basic operation is outlined below and shown in Figure 10-5.
1. After a control word write, OUTis driven high.

2. Onthe CLKIN pulse following a gate-trigger, the count is loaded and @idTriven
low.

On each succeeding CLKfNpulse, the count is decremented.
4. When the count reaches zero, @ driven high.

NOTE

Writing a count of N causes a rising edge on @QWIN CLKINnN pulses after
the count is loaded (using a gate-trigger).

10-8

Int€|® TIMER/COUNTER UNIT

Control

Word = 12 Count =3
Writes to : S-:_\ : / I I I I I I I I
Counter n I I I I I I I I I
I I
i i
CLKINn
—_— S — — - —
GATEn
—-—
OUTn !
I
Count ? | ?

A2312-02

Figure 10-5. Mode 1 — Basic Operation

Figure10-6 shows reiggering the one-shot. On theKIN n pulse following the retrigger, the
counter reloads the count. The control logic then decrements the count on each succeeding
CLKINnN pulse; OUT remains low until the count reaches zero.

Control
Word = 124 Count=3
Writes to
Counter n _\

CLKINn

Count ? | ? ? ? ? 003' 0002 |0001 0003 | 0002 | 0001 iOOOO

A2396-01

Figure 10-6. Mode 1 — Retriggering the One-shot

10-9

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Figure10-7 shows wrihg a new count. The counter waits for a gate-trigger to load the new count.
The counter loads the new count on the CLK[ilse following the trigger, then decrements the
count on each succeeding CLKiNulse. OUT remains low until the count reaches zero.

Control
Word = 124~ Count =2 Count =4
Writes to ‘ ‘
Counter n _\ : _l_/

CLKINn

|
— —
1
L
1
|

|
I
l
FFFF | FEFE Po0o4 |0003

A2397-02

Figure 10-7. Mode 1 — Writing a New Count

10.2.3 Mode 2 — Rate Generator

In this periodic mode, a counter’s ObEignal remains high until the count reaches one, then
goes low for one clock pulse (CLKH)L After this single clock pulse, OUilgoes high and the

count is reloaded. The cycle then repeats. You can use a gate-trigger to reload the count at any
time. This provides a way to synchronize the counting cycle. A high level on a counter'siGATE
signal enables counting; a low level on a counter’'s GASignal disables counting.

Mode 2's basic operation is outlined below and shown in Figure 10-8.
1. After a control word write, OUTis driven high.
2. The count is loaded on the_KIN n pulse following one of these events:
* A write to a control word followed by a write tmunt
e A gate trigger
* The counter reaches one
On each succeeding CLKfNpulse, the count is decremented.
When the count reaches one, QL3 driven low.

On the following CLKIN pulse, OUT is driven high and the count is reloaded.

2

The process is repeated from step 3.

10-10

Inte|® TIMER/COUNTER UNIT

Control
Word= 144 COUNt=3
Juiesto -\ g5\ T T

CLKINn I I I I I I I I I I I

GATEn

OUTn

Count

A2313-01

Figure 10-8. Mode 2 — Basic Operation

Figure 10-9 shows suspending the counting sequence. A low level om&ATiEes the counter

to suspend counting. The count remains unchanged and @Ummediately driven (or stays)
high (If the GATE goes low when OUfis low, then OUT is immediately driven high). A ris-
ing edge on the GATiiecauses the counter to be reloaded with the count. A high level onfGATE
resumes counting.

Control _
Word = 14+ Count=3

Writes to ‘/Fs&—\ !
countern _; : N ! ! ! ! ! ! !

CLKINn I I I I | | I I I I I

GATEn

OUTn l)
I I
I I

|
o o
| | | | |
comt 2 | 2 | 2 | 27 o003 | 0002 | 0002 #0003 | 0002 | 0001 Pooos

A2398-01

Figure 10-9. Mode 2 — Disabling the Count

10-11

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Figure 10-10 shows writing a new count. The counter loads the new count after the counter reach-
es one. When the counter receives a gate-trigger after a new count was written to it, the counter
loads the new count on the next CLKiHulse. This allows GATE&to synchronize the counters.

Control
Word = 14H

Writes to ‘/FS9—\ ! ‘
Counter n _\ ‘ 1 ‘/ 1 1 _l_/ 1 1 1 : !

CLKINn | I I I I I I I I I I

Count=4 Count=5

GATEn

OUTn

Ccount

A2399-01

Figure 10-10. Mode 2 — Writing a New Count

10.2.4 Mode 3 — Square Wave

In this periodic mode, a counter’s OW$ignal remains high for half a specified count, then goes

low for the remainder of the count. A count of N results in a square wave with a period of N
CLKINnN pulses. A high level on a counter’'s GATEignal enables counting; a low level on a
counter’s GATH signal disables counting. The output produced by a counter'sa\@idmal de-

pends on whether a count is odd or even. Mode 3's basic operation for even and odd counts is
outlined below and shown in Figure 10-11 and Figure 10-12.

Even count basic operation:
1. After a control word write, OUTis driven high.
2. The count is loaded on thé_ KIN n pulse following one of these events:
* A write to a control word followed by a write tmunt
e A gate trigger
* The counter reaches terminal count
On each succeeding CLKfN\bulse, the count is decremented by two.
After the count reaches terminal count, @3 driven low and the count is reloaded.
On each succeeding CLKiN\bulse, the count is decremented by two.

After the count reaches terminal count, @i driven high and the count is reloaded.

N o o bk~ w

The process is repeated from step 3.

10-12

Int9|® TIMER/COUNTER UNIT

Control
Word = 16H

Writes to : : !
Counter n I I I I I I
I

| |
CLKINN ! !
I I I I I I I I I I I

Count=4

|
| |
| | |
I I I
Count ? | ? | ? | ? |0004|0002 0004|0002

A2314-01

Figure 10-11. Mode 3 — Basic Operation (Even Count)

Odd count basic operation:

1. After a control word write, OUTis driven high.

2. Onthe CLKIN pulse following a gate-trigger or when the count rolls over, count minus

one is loaded.

On each succeeding CLKiNbulse, the count is decremented by two.

When the count rolls over, OWTs driven low and the count minus one is loaded. (This

causes OUil to stay high for one more CLKIiNpulse than it stays low.)
On each succeeding CLKfNulse, the count is decremented by two.

After the count reaches terminal count, @l driven high and the count minus one is
loaded.

7. The process is repeated from step 3.

10-13

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Control
Word = 16H

Writes to
Counter n

Count=5

GATEn

A2400-01

Figure 10-12. Mode 3 — Basic Operation (Odd Count)

NOTE

For an even count of N, OUiTremains high for N/2 counts and low for N/2
counts (provided GATEremains high). For amdd count of N, OUM remains
high for (N + 1)/2 counts and low for (N — 1)/2 counts (provided GATE
remains high).

Figure 10-13 shows suspending the counting sequence. A low level om@ali&es the counter
to drive OUTh active (When OUT is low, a falling edge on GATiEcauses OUf to be driven
high immediately) and suspend counting. A rising edge on the @ A&kses the counter to be
reloaded with the count. A high level on GATEesumes counting.

Control
Word = 16H

Writes to _\——/'s 3“ | ' !
Counter n I
| |
\
CLKINN ’ \ ’E ‘

Count=4

| |
GATEn |)\ / | | | |
| | | | | | |
__‘\ (\ 1 1 1 1 1 1
OUT” \’)\ I I I I I I
S R R P\ 1
| | | | | | | | | |
cont 2 | 2 | 2 | 2]ooo4|o0oz 0004|000z | 0002|0002 0004|oooz 0004 | 0002

A2401-02

Figure 10-13. Mode 3 — Disabling the Count

10-14

Inte|® TIMER/COUNTER UNIT

Figure10-14and Figure 10-15 shows writing a new count. If the counter receives-friggty

after writing a new count but before the end of the current half-cycle, the count is loaded on the
next CLKINn pulse and counting continues from the new count (Figure 10-14). Otherwise, the
new count is loaded #te end of the current half-cycle (Figur@-15).

Control _ _
Word = 16H Count=8 Count =10

Writes to ! !
comtern L’ L
|

| |
CLKINn \ ‘ \
T I I I I I I I I ! I I I
/

eaten | T 7 T o o A DO
I (I I I I I I I I I 1 I I I
ouTn ‘]5‘

N |
count 2 |2 |2]|2]8|6|4]2]8]|6]4]|

A2407-02
Figure 10-14. Mode 3 — Writing a New Count (With a Trigger)
Control Count=4 Count=8
Word = 16H
Writes to ! ! !
e SN T T
| | | | | | | | | | | | |
| | |
CLKINn ‘ ‘
| ¢ ‘\ | | | | | | | | |
GATEn A
- ‘Téd
oUTn v
| |
| |
Count ? | ? | ?
A2406-01

Figure 10-15. Mode 3 — Writing a New Count (Without a Trigger)

10-15

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

10.2.5 Mode 4 — Software-triggered Strobe

Initializing a counter for mode 4 drives the counter’s @W$ignal high and initiates counting. A
count is loaded on the CLKINpulse following a count write. When the counter reaches zero,
OUTn strobes low for one clock pulse. The counter rolls over and continues counting, but does
not strobe low when it reaches zero again. The counter strobes low only the first time it reaches
zero after a count write. A high level on a counter’s GABIgnal enables counting; a low level

on a counter’s GATE signal disables counting.

Mode 4's basic operation is outlined below and shown in Figds&61

1. After a control word write, OUTis driven high.
2. On the CLKINM pulse following the count write, the count is loaded.
3. On each succeeding CLKfN\pulse, the count is decremented.
4. When the count reaches zero, QlJ driven low.
5. On the following CLKIM pulse, OUT is driven high.
NOTE
Writing a count of N causes OWTo strobe low in N + 1 CLKIN pulses,
provided GATE remains high. OUm remains low for one CLKIN pulse,
then goes high.
Control
Word =184 Count=3
Writes to ! !
doets g "_\ SR
CLKINn ‘ ‘) ! ‘ ‘ ! ; ‘ ‘ 1
| ¢ ‘\ | | | | | | | | |
|))\ | | | | | | | | |
GATEn | | | / | | |) | | | |
__ 1 (\ 1 1 1 1 1 1 1 1 1
)\ | | | | | | |
OuTn I I I I I h I I I
Count ? | ? | ? | ? | 0003 | 0002 | 0001 | 0000 | FFFF | FFFE| FFFD|
A2315-01

Figure 10-16. Mode 4 — Basic Operation

10-16

Int€|® TIMER/COUNTER UNIT

Figure 10-17 shows suspending the counting sequence. A low level om@ali&es the counter
to suspend counting (both the state of @Wihd the count remain unchanged). A high level on
GATEN resumes counting.

Writes to
Counter n

CLKINn

GATEn

¢)
| 27
4
__\ / I
OUTn A |
I

| | | |

| | | |

| | | |

| | | | | |
cont 2 | 2 | 2 | 2 Yooo3| 0003 | 0003y 000z | ooz | oooo | FrF |

A2402-01

Figure 10-17. Mode 4 — Disabling the Count

Figure 10-18 shows writing a new count. On the CLKNiIse following the new count write,
the counter loads the new count and counting continues from the new count.

Control Count=3 Count=2
Word = 18H
Writes to ! 4)—5 &‘\ ! * " ! " " " X '
comern BT\
I I I I I I I I I I
CLKINn ! ‘ ! ‘ ‘ ‘ ‘ ! ‘ ‘ |
1 (‘\ 1 1 1 1 1 1 1 1 1
I) ’\ I I I I I I I I I
GATE” | | | | | | | | | | |
_ | ‘\ | | | | | | | | |
I ’\ I I I I I I I
OUTn I I I I I I I 1 I
I I I I I I I I I I I
I I I I I I I I I I I
Count 2 | ? | ? | 2N 0003 | 0002 |0001 0002 | 0001 | 0000 | FFFFl
A2403-01

Figure 10-18. Mode 4 — Writing a New Count

10-17

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

10.2.6 Mode 5 — Hardware-triggered Strobe

Initializing a counter for mode 5 sets the counter’s @Wignal, starting the counting sequence.
A gate-trigger loads the programmed count. When the counter reaches zerostibes low
for one clock pulse. The counter then rolls over and continues counting, butd®e3 not strobe
low when the count reaches zero. The @Uirobes low only the first time it reaches zero after
a count is loaded.

Mode 5's basic operation is outlined below and shown in Figds£91

1. After a control word write, OUTis driven high.
On the CLKIN pulse following a gate-trigger, the count is loaded.
On each succeeding CLKfNpulse, the count is decremented.
When the count reaches zero, @lJ driven low.
On the following CLKINh pulse, OUT is driven high.

ok DN

NOTE
Writing a count of N causes OWTo strobe low N + 1 CLKIN pulses after
the counter receives a gate-trigger. @U&mains low for one CLKIN pulse,
then goes high.

Control
Word = 1AH

Writes to
Counter n

CLKINN

| |
| |
| |
| | | |
Count ? | ? ? | ? | ? 0003|0002|0001|0000|FFFF 0003|0002|0001|0000|

A2316-01

Figure 10-19. Mode 5 — Basic Operation

10-18

Int9|® TIMER/COUNTER UNIT

Figure 10-20 shows retriggering the strobe with a gagereri On the CLKIM pulse following

the retrigger, the counter reloads the count. The control logic then decrements the count on each
succeeding CLKIN pulse. OUT remains high until the count reaches zero, then strobes low for
one CLKINn pulse.

Control
Word = 1AH
Writes to
Counter n

CLKINN

| |
Count ? | ? ? ? ? ? 0003|0002 0003|0002|0001|OOOOlFFFFlFFFE

A2404-01

Figure 10-20. Mode 5 — Retriggering the Strobe

Figure 10-21 shows the writing of a new count value. The counter waits for a gate-trigger to load
the new count; it does not affect the current sequence until the counter receives a trigger. On the
CLKINnN pulse following the trigger, the control logic loads the new count. The control logic then
decrements the count on each succeeding Chiidse. OUh remains high until the count
reaches zero, then strobes low for one CLK[NIIse.

Control Count=3 Count =5
Word = 1AH

Writes to
Counter n

CLKINN

A2405-01

Figure 10-21. Mode 5 — Writing a New Count Value

10-19

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

10.3 REGISTER DEFINITIONS

The following sections describe how to configure a counter’s input and output signals, initialize
a counter for a specific operating mode and count format, write count values to a counter, and
read a counter’s status and count.

10.3.1 Configuring the Input and Output Signals

Each counter is driven by a clock pulse on its CLKINput. You can connect each counter’s
CLKINnN input to either its timer clock (TMRCLK pin or the prescaled clock (PSCLK) signal.

The counters can handle up to 1/2 the processor clock (CLK2/4) input frequency but only up to
a maximum of 8 MHz (CLKINM frequency can never be more than 8 MHz). PSCLK is an internal
signal that is a prescale value of the processor’s internal clock. The frequency of PSCLK is pro-
grammable. See “Controlling the PSCLK Frequency” on page 8-7.

The GATERN signals of the counters can be controlled through hardware or softwaserédmede
in the next two sections.

10.3.1.1 Hardware Control of GATE n

You can connect each counter’'s GATEn signal to:
¢ Its timer gate (TMRGATERN) pin
* Vee

Hardware (through @in or V) control of the GATE requires that the SWGTEN bit in the
TMRCFG register be reset.

10.3.1.2 Software Control of GATE n

You can also use the TMRCFG register to drive Gihigh or lowthrough register bits. The
SWGTEN and GMCON bits are used to control the GATEignal. If SWGTEN is set, then the
value of the GRCON bit causes the GATEnput of the counter to be driven to the corresponding
voltage level.

Table 10-4. GATE n Connection Options

SWGTEN GTnCON GATEn
connection
TMRGATEn
0 0
(Gaten is OFF)
1 1 1
(Gaten is ON)

The timer configuration register (TMRCFG) enables the counter’s Chi§iynals and deter-
mines each counter’s CLKiNand GATE sighal connections or logical value (Figure 10-22).

10-20 I

Int9|® TIMER/COUNTER UNIT

Timer Configuration Expanded Addr: F834H

TMRCFG ISA Addr: —

(read/write) Reset State: O00H

7 0

| TMRDIS |SWGTEN GT2CON | CK2CON || GT1CON | CKICON | GTOCON | CKOCON

Bit Bit Function
Number Mnemonic
7 TMRDIS Timer Disable:

0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.

6 SWGTEN Software GATEn Enable

0 = Connects GATEn to either the V¢ pin or the TMRGATEnR pin.
1 = Enables GT2CON, GT1CON, and GTOCON to control the
connections to GATE2, GATE1 and GATEO respectively.

5 GT2CON Gate 2 Connection:
SWGTEN GT2CON
0 0 Connects GATE2 to V¢,
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.
4 CK2CON Clock 2 Connection:

0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.

3 GT1CON Gate 1 Connection:
SWGTEN GT1CON
0 0 Connects GATEL to V¢,
0 1 Connects GATE1 to the TMRGATEL1 pin.
1 0 Turns GATEL off.
1 1 Turns GATEL on.
2 CK1CON Clock 1 Connection:

0 = Connects CLKINL to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.

1 GTOCON Gate 0 Connection:
SWGTEN GTOCON
0 0 Connects GATEO to V¢,
0 1 Connects GATEO to the TMRGATEL1 pin.
1 0 Turns GATEDO off.
1 1 Turns GATEO on.
0 CKOCON Clock 0 Connection:

0 = Connects CLKINO to the internal PSCLK signal.
1 = Connects CLKINO to the TMRCLKO pin.

Figure 10-22. Timer Configuration Register (TMRCFG)

10-21

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

automatically connected to DMA channel 1.
Use P3CFG bits 0 and 1 to connect TMROUTO and TMROUT1 to package pins.

intel.

The peripheral pin selection registers (P3CFG and PINCFG) determine whether each counter’s
OUTn signal is connected to its TMROWPin. See Figure 10-1 for the TCU signal connections.

For details on the P3CFG and PINCFG registers see Figu28 and Figure 10-2Z&he counter

output signals are automatically connected to the interrupt control unit. Counter 1's output signal
(OUT1) is automatically connected to DMA channel 0, and counter 2's output signal (OUT2) is

Port 3 Configuration

Expanded Addr: F824H

P3CFG ISA Addr: —
(read/write) Reset State: 00H
7
PM7 PM6 PM5 PM4 || PM3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.
6 PM6 Pin Mode:
0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.
5 PM5 Pin Mode:
0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).
4 PM4 Pin Mode:
0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).
3 PM3 Pin Mode:
0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).
2 PM2 Pin Mode:
0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INTO).
1 PM1 Pin Mode:
See Table 5-1 on page 5-8 for all the PM1 configuration options.
0 PMO Pin Mode:
See Table 5-1 on page 5-8 for all the PMO configuration options.

Figure 10-23. Port 3 Configuration Register (P3CFG)

10-22

intel.

TIMER/COUNTER UNIT

Use PINCFG bit 5 to connect TMROUT2, TMRCLK2, and TMRGATEZ2 to package pins.

Pin Configuration Expanded Addr: F826H
PINCFG ISA Addr: —
(read/write) Reset State: 00H
7 0
— PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:
0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.
5 PM5 Pin Mode:
0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.
1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.
4 PM4 Pin Mode:
0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.
3 PM3 Pin Mode:
0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.
2 PM2 Pin Mode:
0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.
1 PM1 Pin Mode:
0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.
0 PMO Pin Mode:
0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

Figure 10-24. Pin Configuration Register (PINCFG)

10-23

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

10.3.2 Initializing the Counters

The timer control register (TMRCON) has three formatsitrol word counter-latch andread-
back When writing to TMRCON, certain bit settings determine which format is accessed.

Use the TMRCON's control word format (Figut®-25) to specify a counter’s count format and
operating mode. Writing the contnalord forces OUT to go to an initial state that depends on
the selected operating mode.

10-24 I

intel.

TIMER/COUNTER UNIT

Timer Control (Control Word Format) Expanded Addr: FO43H
TMRCON ISA Addr: 0043H
Reset State: XXH

7 0
sc1 Sco RW1 RWO ‘ ‘ M2 M1 MO CNTFMT
Bit Bit Function

Number Mnemonic
7-6 SC1.0 Select Counter:

Use these bits to specify a particular counter. The selections you make for
bits 5-0 define this counter’s operation.

00 = counter 0
01 =counter 1
10 = counter 2

11 is not an option for TMRCON's control word format. Selecting 11
accesses TMRCON's read-back format, which is shown in Figure 10-29.

5-4

RW1:0

Read/Write Select:
These bits select a read/write option for the counter specified by bits 7-6.

01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte

00 is not an option for TMRCON's control word format. Selecting 00
accesses TMRCON's counter-latch format, which is shown in Figure
10-27.

3-1

M2:0

Mode Select:
These bits select an operating mode for the counter specified by bits 7-6.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5

Xis a don't care.

CNTFMT

Count Format:
This bit selects the count format for the counter specified by bits 7-6.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)

Figure 10-25. Timer Control Register (TMRCON — Cont rol Word Format)

10-25

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

10.3.3 Writing the Counters

Use the write format of a counter’s Timeregister (TMR) to specify a counter’s count. The
count must conform to the write selection specified in the control word (least-significant byte
only, most-significant byte only, or Issignificant byte followed by the most-significant byte).
You can write a new count to a counter without affecting the counter’s programmed operating

intel.

mode. New counts must also conform to the specified write selection.

Timer n (Write Format)

Expanded Addr: FO40H, FO41H

TMRn (n = 0-2) FO42H
ISA Addr: 0040H, 0041H
0042H
Reset State: XXH
7 0
cv7 cve cvs cv4 ‘ ‘ cv3 cv2 cvi cvo
Bit Bit Function
Number | Mnemonic
7-0 CV7.0 Count Value:

Write a count value for the counter to these bits. When writing the
counter’s count value, follow the write selection specified in the counter’s

control word.

Figure 10-26. Timer n Register (TMR n— Write Format)

Table 10-5 lists the minimum and maximum initial counts for each mode.

Table 10-5. Minimum and Maximum Initial Counts

Mode Minimum Count Maximum Count
0-1 1 0
2-3 2 0
4-5 1 0

NOTE:

10-26

0 is equivalent to 216 for binary counting and 104 for BCD counting.

Int9|® TIMER/COUNTER UNIT

10.3.4 Reading the Counter

To read the counter you can perform a simple read operation or send a latch command to the
counter. TMRCON contains two formats that allow you to send latch commands to individual
counters: the counter-latch and read-back format. The counter-latch command latches the count
of a specific counter. The read-back command latches the count and/or status of one or more spec-
ified counters.

10.3.4.1 Simple Read

To perform a simple read operation in modes 0, 2, 3 and 4, suspend the counter’s operation (using
the counter’s GATE signal), then read the counter’s TMRegister. To read an accurate value,

you must disable the counter so that the count is not in the process of changing when it is read.

However, in modes 1 and 5, where the counter’s operation can not be suspended, the counter can
still be read. But since the counter is running, there is a minor inaccuracy in the read value.

10.3.4.2 Counter- latch Command

Use the counter-latch format of TMRCON (Figl@ 27) to latch theount of a specific counter.

To issue a counter-latch command to a counter, write to the TMRCON register wikthieset

and SC1 and SCO (bits 7-6) programmed appropriately. A counter continues to run even after the
count is latched. The counter-latch command allows reading the count without disturbing the
count in progress.

10-27

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Timer Control (Counter-latch Format) Expanded Addr: F043H
TMRCON ISA Addr: 0043H
Reset State: XXH
7 0
sc1 sco 0 o || o 0 0 0
Bit Bit .
Number Mnemonic Function
7-6 SC1.0 Select Counter:

These bits specify the counter that receives the counter-latch command.

00 = counter 0
01 =counter 1
10 = counter 2

11 is not an option for TMRCON's counter-latch format. Selecting 11
accesses TMRCON's read-back format, which is shown in Figure 10-29.

5-4 — Write zeros to these bits to issue a counter-latch command to the
counter specified by bits 7-6.
01, 10, and 11 are not valid options for TMRCON'’s counter-latch format.
3-0 — Reserved; for compatibility with future devices, write zeros to these bits.
NOTE: Bits 5-0 serve another function when you select the read-back command (SC1:0 = 11). See

Figure 10-29 for the read-back bit functions.

Figure 10-27. Timer Control Register (TMRCON — Counter- latch Format)

When a counter receives a counter-latch command, it latches the count. This count remains
latched until you either read the count or reconfigure the counter. When you send multiple
counter-latch commands without reading the counter, only the first counter-latch command latch-

es the cou

nt value.

After issuing a counter-latch command, you can read the counter's\Téfster. When reading
the counter’s TMR register you must follow the countepsogrammed read selection (&aig-

nificant byte only, most-significant byte only, or least-significant byte followed by the most-sig-

nificant byte). If the counter is programmed faotbyte counts, yomust read two bytes. You
need not read the two bytes consecutively; you may insert read, wptegoamming operations

between the byte reads.

10-28

Int9|® TIMER/COUNTER UNIT

You can interleave reads and writes of the same counter; for example, if the coymter is
grammed for the two-byte read/write selection, the following sequence is valid.

1. Read least-significant byte.

2. Write new least-significant byte.
3. Read most-significant byte.
4

Write new most-significant byte.

Timer n (Read Format) Expanded Addr: FO40H, FO41H
TMRn (n=0-2) FO42H
ISA Addr: 0040H, 0041H
0042H
Reset State: XXH
7 0
cvr cve cvs cva || cvs cv2 cvi cvo
Bit Bit Function
Number Mnemonic
7-0 CV7:0 Count Value:
These bits contain the counter’s count value. When reading the
counter’s count value, follow the read selection specified in the counter’s
control word.

Figure 10-28. Timer n Register (TMR n — Read Format)

10-29

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

10.3.4.3 Read-back Command

Use the read-back format of TMRCON (Figuf@29) to latch theount and/or status of one or
more counters. Latch a counter’s status to check its programmed operating mode, count format,
and read/write selection and to determine whether the latest count written to it has been loaded.

Timer Control (Read-back Format) Expanded Addr: F043H
TMRCON ISA Addr: 0043H
Reset State: XXH
7 0
1 1 COUNT# STAT# ‘ ‘ CNT2 CNT1 CNTO 0
Bit Bit Function
Number | Mnemonic
7-6 — Write ones to these bits to select the read-back command.
00, 01, and 10 are not valid options for TMRCON'’s read-back format.
5 COUNTH# Count Latch:

0 = Clearing this bit latches the count of each selected counter. Use bits
3-1 to select one or more of the counters.
1 = No effect

4 STAT# Status Latch:

0 = Clearing this bit latches the status of each selected counter. Use bits
3-1 to select one or more of the counters.
1 = No effect

3 CNT2 Counter 2 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 2.
1 = The actions specified by bits 5 and 4 affect counter 2.

2 CNT1 Counter 1 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 1.
1 = The actions specified by bits 5 and 4 affect counter 1.

1 CNTO Counter 0 Select:

0 = The actions specified by bits 5 and 4 do not affect counter 0.
1 = The actions specified by bits 5 and 4 affect counter 0.

0 — Reserved; for compatibility with future devices, write zero to this bit.

Figure 10-29. Timer Control Register (TMRCON — Read-back Format)

10-30

Int9|® TIMER/COUNTER UNIT

The read-back command can latch the count and status of multiple counters. This single com-
mand is functionally equivalent to several counter-latch commands, one for each counter latched.
Each counter's latched count and status is held until it is read or until you reconfigure the counter.
A counter’s latched count or status is automatically unlatched when read, but other counters’
latched values remain latched until they are read.

After latching a counter’s status and count with a read-back command, reading addesses

its status format (Figure 10-30). Reading TM&jain accesses its read format. When both the
count and status of a counter are latched, the first read ohTiMiitates the counter’s status and

the next one or two reads (depending on the counter’s read selection) indicate the counter’s count.
Subsequent reads return unlatched count values. When only the count of a counter is latched, then
the first one or two reads of TMReturn the counter’'sount. When the counter is programmed

for the two-byte read selection, you must read two bytes.

10-31

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

Timer n (Status Format) Expanded Addr: FO40H, FO41H
TMRn (n=0-2) FO42H

ISA Addr: 0040H, 0041H

0042H

Reset State: XXH
7 0
OUTPUT | NULCNT RwW1 RWO ‘ ‘ M2 M1 MO CNTFMT

Bit Bit Function

Number Mnemonic
7 OUTPUT Output Status:

This bit indicates the current state of the counter’s output signal.
0= OUTnis low

1= OUTnis high

6 NULCNT Count Status:

This bit indicates whether the latest count written to the counter has
been loaded. Some modes require a gate-trigger before the counter
loads new count values.

0 = the latest count written to the counter has been loaded

1 = a count has been written to the counter but has not yet been loaded
5-4 RW1:0 Read/Write Select Status:

These bits indicate the counter’s programmed read/write selection.

00 = Never occurs

01 = read/write least-significant byte only

10 = read/write most-significant byte only

11 = read/write least-significant byte first, then most-significant byte

3-1 M2:0 Mode Status:

These bits indicate the counter’s programmed operating mode.

000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 =mode 5

X is a don't care.
0 CNTFMT Counter Format Status:
This bit indicates the counter’s programmed count format.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)

Figure 10-30. Timer n Register (TMR n — Status Format)

10-32

Int9|® TIMER/COUNTER UNIT

When a counter receives multiple read-back commands, it ignores all but the first command; the
count/status that the core reads is the count/status latched from the first read-back command (see
Table 10-6).

Table 10-6. Results of Multiple Read-back Commands Without Reads

Command Read-back Command Command Result
Sequence

1 Latch counter 0’s count and status. | Counter 0's count and status latched.

2 Latch counter 1's status. Counter 1's status latched.

3 Latch counter 2 and 1's status. Counter 2's status latched; counter 1's status
command ignored because command 2
already latched its status.

Latch counter 2's count. Counter 2's count latched.

Latch counter 1's count and status. | Counter 1's count latched; counter 1's status
command ignored because command 2
already latched its status.

6 Latch counter O's count. Counter 0’'s count command ignored because
command 1 already latched its count.

10.4 PROGRAMMING CONSIDERATIONS
Consider the following when pgramming the TCU.

* The 16-bit counters are read and written a byte at a time. The control word format of
TMRCON selects whether you read or write the least-significantdnjye mog-significant
byte only, or least-significant byte then most-significant byte (this is callecbtlnger’s
read/write selection). You must read and writedbenters according to their programmed
read/write selections.

* When you program a counter for theotbyte read or write seléot, you must read or
write both bytes. If you're using more than one subroutine to read or write a counter, make
sure that eachubroutine reads or writes both bytes before transferring control.

* You can program the counters for either an internal or external clock source (to @LKIN
The internal source is a prescaled value of the processor clock and therefore, is turned off in
the processor’'s powerdown mode (processor clock is off). If an external clock source is
used, it is not affected by the processor’s powerdown mode, because the clock signal is
provided by an off-chip source. “Controlling Power ManagatrModes” on page 8-8
describes the processor’s powerdown and idle modes.

10-33

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

¢ With the readback command:

— If both the status and counter values are latched, the user can read the value of the
Read/Write selection bits from the status register to know what bytes of the counter
value are being latched in the TMRegister.

— If only the counter value is latched, you must know the Read/Write selection before the
counter value can be read correctly.

* When a read-back command is issued to latch both the counter and the status of a timer, the
TMRn register holds both of these values. The first read of isétesses the status byte
and the next one or two reads (depending on the R/W format) ofhTddé&ess the timer’s
counter value.

10.4.1 Timer/Counter Unit Code Examples

The example code contains these software routines:

InitTimer Initializes the specified timer's mode, counter value, inputs, and outputs

SetUp_ReadBack Configures the specified timer(s) for a read-back command

CounterLatch Latches the counter value of the specified timer

ReadCounter Performs a simple read command on the specified timer’s current counter
value

TimerISR Interrupt Service Routine for timer-generated interrupts

Code is also included that demonstrdtew to change the timer’s counter value and issue a read-
back command. See Appendix C for included header files.

#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

InitTimer:

Description:
This function initializes a timer’s inputs, outputs, operating mode,
and initial counter value.

Parameters:
Unit Unit number of the timer. The processor supports 0, 1 or 2
Mode Defines Counter Mode
Inputs Specifies Input sources
Output Specifies Which Output to drive
InitCount Value to be loaded into count register
Enable Enable (1) or disable (0) Timer

10-34

Int9|® TIMER/COUNTER UNIT

Returns:Error Codes
E_INVALID_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:

REMAPCEFG register has Expanded 1/0O space access enabled (ESE bit set);

This function also initializes the Timer-Counter Unit to be in the
Read/Write Format of least-significant byte first, then most-significant
byte

Syntax:
int error;

error = InitTimer (TMR_2,
TMR_SQWAVE | TMR_CLK_BIN,
TMR_CLK_INTRN,
TMR_OUT_ENABLE,
OXFFFF,
TMR_ENABLE);

Real/Protected Mode:
No changes required.

int InitTimer(int Unit, WORD Mode, BYTE Inputs, BYTE Output, WORD InitCount,

int Enable)
BYTE TmpByte;
WORD TmrCntPort;
if(Unit > 2)

return E_INVALID_DEVICE;
TmrCntPort = 0xf040 + Unit;// Set depending on which timer

[* Set Pin configuration */

if(Unit < 2)

{
TmpByte = _GetEXRegByte(P3CFG) | (Output << Unit); // Bit 0 or 1
_SetEXRegByte(P3CFG,TmpByte);

}

else

{

TmpByte = _GetEXRegByte(PINCFG) | (Output << 5); // Bit5
_SetEXRegByte(PINCFG, TmpByte);

}

/* Set Timer Config */
TmpByte = _GetEXRegByte(TMRCFG); /I All Timers share this register,
/I Keep previous settings

10-35

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

if('Enable)
TmpByte |= 0x80; /I Set Timer Disable Bit
TmpByte |= (Inputs << (Unit*2)); /I Set CKNCON and GTnCON bits

_SetEXRegByte(TMRCFG, TmpByte);

/* Set Timer Control Register */
TmpByte = Unit << 6; /I Set counter select
TmpByte |= (0x30 | Mode); /I Set R/W low then high byte and Mode bits
_SetEXRegByte(TMRCON, TmpByte);

/* Set Initial Counter Value */
TmpByte = HIBYTE(InitCount);
_SetEXRegByte(TmrCntPort, LOBYTE(InitCount));
_SetEXRegByte(TmrCntPort, TmpByte);
return E_OK;

Y* InitTimer */

SetUp_ReadBack:

Description:
This routine configures the Control Word for a Read Back Command.
After calling this function, the latched status and counter values
can be read from the TMRn registers. Example code of how to do
this for Timer2 is included after this function.

Parameters:
Timer0 Cleared if TimerQ's values are not to be latched
Timerl Cleared if Timerl's values are not to be latched
Timer2 Cleared if Timer2's values are not to be latched
GetStatus Cleared if Status Byte is not to be latched
GetCount Cleared if Count Byte(s) is not to be latched

Returns:

None

Assumptions:
No assumptions have been made for this set-up function. However, if
a user were to latch only the counter value, the configured R/W
Format would have to be known. The setting of the R/W format can be
read from the Status Byte if this value is latched. An example of
this is included after the SetUp_ReadBack function.

Syntax:

#define ENABLE 1

10-36

Int9|® TIMER/COUNTER UNIT

#define DISABLE 0
SetUp_ReadBack(DISABLE, DISABLE, ENABLE, ENABLE, ENABLE);

Real/Protected Mode:
No changes required

void SetUp_ReadBack(BYTE Timer0, BYTE Timerl, BYTE Timer2, BYTE GetStatus,
BYTE GetCount)

{
BYTE rb_control = 0;
rb_control |= 0xcO; // Set TMRCON to read-back command

if (GetStatus != 0)
rb_control &= Oxef;

if (GetCount !=0)
rb_control &= Oxdf;

if (TimerO !=0)
rb_control |= 0x02;

if (Timerl !=0)
rb_control |= 0x04;

if (Timer2 !=0)
rb_control |= 0x08;

_SetEXRegByte(TMRCON, rb_control);

} I* SetUp_ReadBack */

CounterLatch:

Description:
This function invokes a counter-latch command for the specified
timer and returns the latched counter value.

Parameters:
Timer Unit number of timer whose counter value is to be latched

10-37

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL

Returns:
Counter Value of specified timer

Assumptions:
This function assumes that the R/W format is configured to be LSB
first, then MSB
Syntax:
WORD Counter_Value;

Counter_Value = CounterLatch(TMR_1);

Real/Protected Mode:
No changes required

WORD CounterLatch(BYTE Timer)
{

BYTE control_word = 0;
BYTE CounterL, CounterH;
WORD Counter;

control_word = Timer << 6;

control_word &= 0xcO0;

_SetEXRegByte(TMRCON, control_word); /Select which counter
switch (Timer) {

case TMR_O:
CounterL = _GetEXRegByte(TMRO);
CounterH = _GetEXRegByte(TMRO);
break;

case TMR_1:
CounterL = _GetEXRegByte(TMRL1);
CounterH = _GetEXRegByte(TMR1);
break;

case TMR_2:
CounterL = _GetEXRegByte(TMR2);
CounterH = _GetEXRegByte(TMR2);
break;

}

Counter = (((WORD)CounterH << 8) + CounterL);
return(Counter);

}* CounterLatch */

10-38

Int9|® TIMER/COUNTER UNIT

ReadCounter:
Description:
This function performs a simple read operation on the specified
timer. However, because the counter value is not latched, the timer
must be disabled, read, and then re-enabled.

Parameters:
Timer Unit number of Timer whose count is being read

Returns:
Counter value that was read

Assumptions:
This function assumes that the R/W format is configured to be LSB
first, then MSB
Syntax:
WORD Counter_Value;

Counter_Value = ReadCounter(TMRO);

Real/Protected Mode:
No changes required

WORD ReadCounter(BYTE Timer)
{

BYTE CountL, CountH;
WORD Count = 0;

DisableTimer();
switch (Timer) {

case TMR_O:
CountL = _GetEXRegByte(TMRO);
CountH = _GetEXRegByte(TMRO);
break;

case TMR_1:
CountL = _GetEXRegByte(TMR1);
CountH = _GetEXRegByte(TMR1);
break;

10-39

Intel386™ EX EMBEDDED PROCESSOR USER’S MANUAL Int9I®

case TMR_2:
CountL = _GetEXRegByte(TMR2);
CountH = _GetEXRegByte(TMR2);
break;

}

Count = (((WORD)CountH << 8) + CountL);
EnableTimer();
return(Count);

}* ReadCounter */

TimerISR:

Description:
Interrupt Service Routine for Timer-generated interrupts.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user.

Real/Protected Mode:
No changes required

void interrupt far TimerISR(void)

{

/* Write message out to serial port as an example */
SerialWriteStr(SIO_0, “In TimerISR\n");

NonSpecificEQI(); /I If this ISR services Timerl or Timer2,
/I 'an EOl is also needed for the Slave 8259

}* TimerISR */

10-40

Int9|® TIMER/COUNTER UNIT

Example of how to write a new initial counter value to a timer
This value can be rewritten at any time without affecting the
Counter’s programmed mode.

Before writing an initial count value, the Control Word must be
configured for the proper R/W and Count formats.

-->This example assumes that Timer1l is in the R/W format of LSB first,
then MSB, and that the Count format is binary.

_SetEXRegByte(TMRL1, InitialCountL);
_SetEXRegByte(TMR1, InitialCountH);

***Example of how to issue a Read Back command for Timer2, latching
both the status and the counter.

BYTE Status, CountL, CountH, RWmode;
WORD Count;

SetUp_ReadBack(0, 0, 1, 1, 1); //Configure Read Back command for timer2,
latching both status and count

Status = GetEXRegByte(TMR2);

RWmode = Status & 0x30; //Mask off bits that correspond to the Read/Write Mode

switch (RWmode) { //Read Counter Value according to configured R/W format

case 0x10: /IRead/Write least significant byte only
Count = _GetEXRegByte(TMR2);
break;

case 0x20: //Read/Write most significant byte only
CountH = _GetEXRegByte(TMR2);
Count = (WORD)CountH << 8;
break;

case 0x30: //Read/Write LSB first, then MSB
CountL = _GetEXRegByte(TMR2);
CountH = _GetEXRegByte(TMR2);
Count = (((WORD)CountH << 8) + CountL);
break;

}

10-41

intel. 11

ASYNCHRONOUS
SERIAL I/O UNIT

intel.

CHAPTER 11
ASYNCHRONOUS SERIAL I/O UNIT

The asynchronous serial I/O (S10) unit provides a means for the system to communicate with ex-
ternal peripheral devices and modems. The SIO unit performs serial-to-parallel conversions on
data characters received from a peripheral device or modem and parallel-to-serial conversions on
data characters received from the CPU. The SIO unit consists of two independent SIO channels,
each of which is compatible with National Semiconductor’s NS16C450.

This chapter is organized as follows:
* Overview (see below)
* SIO Operation (pagelid)
* Register Definitions (page 11-15)
¢ Programning Considerations (pagd-B32)

11.1 OVERVIEW

Each SIO channel contains a baud-rate generator, transmitter, receiver, and modem control unit.
These areshown in Figure 11-1 for SIO Unit(see Figure 5-8 on padel5 for the SIO Unit O
configuration). The baud-rate generator can be clocked by either the internal serial clock (SER-
CLK) signal or the COMCLK pin. The transmitter and receiver contain shift registers and buffers.
Data to be transmitted is written to the transmit buffer. The buffer’'s contents are transferred to the
transmit shift register and shifted out via the transmit data pin ()XData received is shifted

in via the receive data pin (RX) When a data byte is received, the contents of the receive shift
register are transferred to the receive buffer. The modem control logic provides interfacing for the
handshaking signals between an SIO channel and a modem or data set.

In addition to the transmit and receive channels, each SIO can generate an interrupt or a request
to the DMA unit, or both. An interrupt can be generated when an error has occurred in the receive
channel, when the transmit channel is ready to transmit another character, when thelaceive c

nel is full, or when a change in any of the modem control signals has occurred. A DMA request
may be issued any time a channel’s receive buffer is full or its transmit buffer is empty. This al-
lows the SIO to run at higher speeds for more efficient processing of serial data.

I 11-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

T Alternate pin signals are in parentheses.

SIOo1 SIOCFG.1
1 P3CFG.7
0 L COMCLK
BCLKIN TolFrom I/O Port 3 <€>® (P37t
1}— SERCLK 0
Receive Data |- RXD1
To DMA 4 D (DRQ1)
SIOINT1 |—> To ICU
RBFDMA1 |——> To DMA
TXEDMA1 |/ To DMA
1 PINCFG.2
Transmit Data :0/. TXD1
SIOCFG.7 From DMA —>® (DACK1#)
1 PINCFGé
?0 ° CTS1#
Clear to Send |- % To/From DMA 0{ (EOP#)
1 PINCFG.0
Request to Send >0 & RTS1#
From SSIO 0 (SSIOTX)
; DSR1#
Data Set Ready |- \0 To/From SSIO (—)’ (STXCLK)
1
; DCD1#
Data Carrier |« 0 To DMA (—, D
- (DRQO)
Detect k—‘
1 PINCFG.1
Data Terminal L >0 DTR1#
Ready To/From SSIO <<>»® 0 (SRXCLK)
_ _ 0 RIL#
Ring Indicator To SSIO ‘_, S (SSIORX)
1 Vee

A2519-02

11-2

Figure 11-1. Serial /0O Unit 1 Configuration

intel.

11.1.1 SIO Signals

Table 11-1 lists the Sl®signals.

ASYNCHRONOUS SERIAL I/O UNIT

Table 11-1. SIO Signals

Device Pin or

Signal Internal Signal Description
Baud-rate Internal signal SERCLK:
Generator Device pin This internal signal is the processor’s input clock, CLK2, divided by
Clock Source (input) four.
COMCLK:
An external source connected to this pin can clock the SIOn baud-rate
generator.
TXDn Device pin Transmit Data:
(output) The transmitter uses this pin to shift serial data out. Data is
transmitted least-significant bit first.
RXDn Device pin Receive Data:
(input) The receiver uses this pin to shift serial data in. Data is received least-
significant bit first.
CTSr# Device pin Clear to Send:
(input) Indicates that the modem or data set is ready to exchange data with
the SIOn channel.
DSRm# Device pin Data Set Ready:
(input) Indicates that the modem or data set is ready to establish the
communications link with the SIOn channel.
DCDn# Device pin Data Carrier Detect:
(input) Indicates that the modem or data set has detected the data carrier.
RIn# Device pin Ring Indicator:
(input) Indicates that the modem or data set has detected a telephone ringing
signal.
RTSn# Device pin Request to Send:
(output) Indicates to the modem or data set that the SIOn channel is ready to
exchange data.
DTRm# Device pin Data Terminal Ready:
(output) Indicates to the modem or data set that the SIOn channel is ready to
establish a communications link.
SIOINTn Internal Signal SIOINT:

This signal is connected to the interrupt control unit and is asserted
(HIGH) when any one of the following interrupt types has an active
condition and is enabled via the IER register: Receiver Error flag,
Received Data Available, Transmitter Holding Register Empty, or
Modem Status. The SIOINT signal is deasserted (LOW) upon the
appropriate interrupt service or reset operation.

11-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table 11-1. SIO Signals

Signal Device Pin or Description
9 Internal Signal P

TXEDMAnN Internal Signal Transmitter Empty:
When this signal is high, the Transmitter Holding Register is empty
(transmit data has been loaded into the Transmit Shift Register).

RBFDMAnN Internal Signal Receiver Full:
When high, this signal indicates that the Receive Buffer has been
loaded with data from the Receive Shift Register.

11.2 SIO OPERATION

The following sections describe the operation of the baud-rate generator, transmitter, and receiver
and discusses the modem control logic, SIO diagnostic mode, and SIO interrupt sources.

11.2.1 Baud-rate Generator

Each SIO channel's baud-rate generator provides the clocking source foatimeks transmitter

and receiver. The baud-rate generator can divide its input (BCLKIN) by any divisor from 1 to
(216-1). The output frequency is 16 times the desired bit time. The transmitter shifts data out on
the rising edge of BCLKIN. The receiver samples input data in the middle of a bit time.

The internal serial clock (SERCLK) signal or the COMCLK pin can be connected batiae
rate generator’s BCLKIN signal (Figure 11-2). The SIO configuration register (SIOCFG) selects
one of these sources.

Baud-rate
SERCLK Generator Baud Rate
ck2 [} =2 +2 1 BCLKIN Generator
0 Output
| Frequency
COMCLK [}—
(pin mux)
A2524-02

Figure 11-2. SIO n Baud-rate Generator Clock Sources

SERCLK provides a baud-rate input frequency (BCLKIN) of CLK2/4. The COMCLK pin allows
an external source with a maximum frequency of CLK2/4 to provide the baud-rate generator in-
put frequency.

11-4

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

The baud-rate generator’s output frequency is determined by BCLKIN and a divisor as follows.

baud-rate generator output frequency = —BCLKIN .frequency ,
divisor
baud rate generator output frequency
16

bit rate =

The minimum divisor value is 1, giving a maximum baud rate of BCLKIN. The maximum divisor
value is OFFFFH (65535), giving a minimum of BCLKIN/65535. Baraple, the maximum and
minimum bit-rate frequencies using SERCLK with a 25 MHz device (CLK2 = 50 MHz) or
COMCLK with a 12.5 MHz input arshown in Table 11-2. Table 11-3 shows the divisor values
required for common baud rates.

Table 11-2. Maximum and Minimum Output Bit Rates

Input Clock (BCLKIN) Divisor Output Bit Rate
12.5 MHz 0001H 781.25 KHz (max)
12.5 MHz OFFFFH 11.921 Hz (min)

Table 11-3. Divisor Values for Common Bit Rates

Divisor Input Clock (BCLKIN) Output Bit Rate %] Error
1AEH 16.5 MHz (processor clock = 33 MHz) 2400 b/s -0.07
6BH 16.5 MHz (processor clock = 33 MHz) 9600 b/s +0.39
48H 16.5 MHz (processor clock = 33 MHz) 14.4 Kb/s -0.54
145H 12.5 MHz (processor clock = 25 MHz) 2400 b/s +0.15
51H 12.5 MHz (processor clock = 25 MHz) 9600 b/s +0.47
36H 12.5 MHz (processor clock = 25 MHz) 14.4 Kb/s +0.46
104H 10 MHz (processor clock = 20 MHz) 2400 b/s +0.15
41H 10 MHz (processor clock = 20 MHz) 9600 b/s +0.16
2BH 10 MHz (processor clock = 20 MHz) 14.4 Kb/s +0.94
ODOH 8 MHz (processor clock = 16 MHz) 2400 b/s +0.16
34H 8 MHz (processor clock = 16 MHz) 9600 b/s +0.16
23H 8 MHz (processor clock = 16 MHz) 14.4 Kb/s -0.79

11-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.2.2 SIOn Transmitter

The data frame for transmissionpregrammable. Itonsists of a start bit, 5 to 8 data characters,

an optional parity bit, and 1 to 2 stop bits. The transmitteipcaduce even, odd, forced, or no
parity. The transmitter can alpooducebreak conditions. A break condition forces the serial out-
put (TXDn) to the spacing (logic 0) state for longer than a transmission time (the time of the start
bit + data bits + parity bit + stop bits). On the receiving end, a break condition sets an error flag.

Forced parity (“sticky bit”) allows the SIO to be used in multiprocessor communications. When
using forced parity the serial port uses the parity bit to distinguish between address and data bytes.

Forced parity is enabled in the SIO by setting the PEN and SP bits in the serial line control register
(Figure 11-15). When enabled for forced parity, the bit that is transmitted in the parity bit location
is the complement of the EPS bit (also in the serial line control register). In the receiver, if PEN
and SP are 1, the receiver compares the bit that is received in the parity bit location with the com-
plement of the EPS bit. If the values being compared are not equal, the receiver sets the Parity
Error bit in LSR and causes an error interrupt if line status interanptsnabled.

For example, if forced parity is enabled and EPS is 0, the receiver expects the bit received at the
parity bit location to be 1. If it is not, the paritsrer bit is set. By forcing the bit value at the parity

bit location, rather than calculating a parity value, a system with a master transmitter and multiple
receivers can identify some transmitted characters as receiver addresses and the rest of the char
acters as data. If PEN = 0, the SP bit is ignored.

Each SIO channel transmitter contains a transmit shift register, a transmit buffer, and a transmit
data pin (TXDn). Data to be transmitted is written to the transmit buffer. The transmitter then
transfers the data to the transmit shift register. The transmitter shifts the data along with asynchro-
nous communication bits (start, stop, and parity) out via thempiD. The TXDO and TXD1

pins are multiplexed with other functions. The pin configuration registers (PINCFG and P2CFG)
determine whether a TXbDsignal or an alternate function is connected to the package pin.

11-6

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

Baud-rate
Clock

l

SI0n Transmit Shift D TXDn

Register (pin mux)

{}

SI0n Transmit Buffer |——————>» Transmit Buffer Empty

(To ICU and DMA)
u i

Figure 11-3. SIO n Transmitter

gm-—-w~<m2

w

A2326-01

The transmitter contains a transmitter empty (TE) flag and a transmit buffer empty (TBE) flag.
At reset, TBE and TE are set, indicating that the transmit buffer and shift register are empty. Writ-
ing data to the transmit buffer clears TBE and TE. When the transmitter transfers data from the
buffer to the shift register, TBE is set. Unless new data is written to the transmit buffer, TE is set
when the transmitter finishes shifting out the shift register’s contents.

The transmitter’s transmit buffer empty signal can be connected to the interrupt control and DMA
units. Figure 11-4 shows the process for transmitting data.

11-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Select the BCLKIN source and
the transmitter input baud rate.

\i
Select the data frame. (Word length, number

of stop bits, and type of parity.) Enable interrupts
and/or DMA.

Is
transmit buffer
empty?

Yes

>| Yes
Y

Write data to transmit buffer register.
(ISR or DMA cycle)

Y

Transmitter transfers data to shift register
and sets transmit buffer empty flag, causing
an interrupt or DMA request.

{

Transmitter shifts data frame onto
the TXDn pin. Data is transmitted
least-significant bit first.

S
>

Y

Transmitter shifts out last stop bit
then sets the transmitter empty flag.

More
Data to

Transmit
?

End

A2527-02

11-8

Figure 11-4. SIO n Data Transmission Process Flow

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.2.3 SIOn Receiver

The data frame for receptions is programmable, and is identical to the data frame for transmis-
sions. It consists of a start bit, 5 to 8 data characters, an optional parity bit, and 1 to 2 stop bits.
The receiver can be programmed for even, odd, forced, or no parity. When the receiver detects a
parity condition other than what it wasogrammed for, it sets a parity error flag.aldition to
detecting parity errors, the receiver can detect break conditions, framing errors, and overrun er-
rors.

* A break condition indicates that the received data input is held in the spacing (logic 0) state
for longer than a data transmission time (the time of the start bit + data bits + parity + stop
bits).

* A framing erorindicates that the received character did not have a valid stop bit.
¢ An overrun error indicates that new data overwrote old data before the old data was read.

Each SIO channel receiver contains a receive shift register, a receive buffer, and a receive data
pin (RXDn). Data received is shifted into the receive shift register via therRD Once a data

byte has been received, the receiver strips off the asymmisa@ommunication bits (start, stop,

and parity) and transfers the contents of its shift register to the receive buffer.

The RXDO pin is multiplexed with another function. The pin configuration register (P2CFG) de-
termines whether the RXDO signaltbe alternate function is connected to the package pin.

Baud-rate
Clock

|

RXDn (——> SIOn Receive Shift
(pin mux) Register

A

SI0n Receive Buffer

Receiver Errors
> (To ICU)

3m~m'~<7%

5 Receive Buffer Full
(To ICU and DMA)

N
)

Sm:m

A2327-02

Figure 11-5. SIO n Receiver

11-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The receiver contains a receive buffer full (RBF) flag and flags for each of the error conditions
described above. At reset, RBF and each of the error flags (PE, FE, OE, and Bl) are clear, indi-
cating that the receive buffer is empty, and no error has occurred. When a character is received
the receiver checks for parity, framing or break errors, and sets the appropriate bits, if necessary.
It then shifts the data into the receive buffer, sets the OE bit if an overrun occurs, and then sets
the RBF flag. Reading the receive buffer clears the RBF flag and any error flags in the LSR that
may have been set, except for the OE bit. The OE bit is cleared by reading the LSR.

High speed serial transfers may require using the DMA to eliminate interrupt latency time in ser-

vicing the SIO. Since the SIO unit clears the error bits in the line status register each time the re-
ceive buffer register is read, it would be impossible to detect an error using DMA. Because of

this, two RBF signals are used:

* One RBF signal (RBFDMA) goes directly to the DMA unit. This signal is blocked when an
error (parity, overrun, break, or framing) occurkisTprevents a DMA request from being
generated by the RBF.

* The other RBF signal (RBFINT) goes directly to the interrupt priority logic and out on
SIOINT if enabled in the Interrupt Enable Register.

When the Interrupt Enable Register is programmed to generate an SIOINT on receiver errors, the
error can be serviced as part of the interrupt handler.

11-10 I

ASYNCHRONOUS SERIAL I/O UNIT

Service error
interrupt
(if enabled)

Select the BCLKIN source and
the receiver input baud rate.

Y

Select the data frame. (Word length,
number of stop bits, and type of
parity.) Enable interrupts and/or DMA.

[

Receiver shifts data into shift register
from the RXDn pin.

Was
a framing error
detected?

Was
a parity error
detected?

Receiver sets
the framing
error flag.

Receiver sets the
parity error flag.

Any
error flags

Yes

Was
a break condition
detected?

No

Receiver sets
the break
interrupt flag.

A

set?

Is
receive
buffer full flag
set?

Receiver transfers data to receive
buffer and sets receive buffer full
flag.

End

Receiver transfers >| Service error
data to receive interrupt
buffer and sets (if enabled)
overrun error flag.

A2525-02

Figure 11-6. SIO n Data Reception Process Flow

11-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.2.4 Modem Control

The modem control logiprovides interfacing for four input signals and two output signals used
for handshaking and status indication between then&i@ a modem or data set. An external
modem or data set uses the input signals to inform tha 8h@n:

¢ ltis ready to establish a communications link (D8R
* It has detected a data carrier signal (DEPD

* It has detected a telephone ringing signah{|

* ltis ready to exchange data (QFS

The SIQh uses its output signals to inform the modem or data set when it is ready to establish a
communication link (DTR#), and when it is ready to exchange data ({R)S

The modem output signals can be internally connected to the modem input signals using the SIO
configuration register. In this case, the modem input signals are disconnected from the pins,
RTS# is connected to CT#, DTR# is connected to both D®R and DCDw, and \.. is con-

nected R,

The SIO contains status flags that indicate the current state of the modem control input signals
and status flags that indicate whether any of the modem control input signals have changed state.

11.2.5 Diagnostic Mode

The SIO channels provide a diagnostic mode to aid in isolating faults in the communications link.
In this mode, data that is transmitted is immediately received. This feature allows the processor
to verify the internal transmit and receive data paths of an St@nnel.

The diagnostic mode connections are as follows:
* The transmitter serial output (TXIDis set to a logic 1 state.
* The receiver serial input (RXb) is disconnected from the pin.
* The transmit shift register output is “looped back” into the receive shift register.

* The four modem control inputs (C& DSR#, DCDn#, and Rh#) are disconnected from
the pins and controlled by modem control register bits.

* The modem control output pins (R#& DTR) are forced to their inactive states.

11-12

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.2.6 SIO Interrupt and DMA Sources

11.2.6.1 SIO Interrupt Sources

Each SIO channel has four status signals: receiver line status, receiver buffer full, transmit buffer
empty, and modem status. An overrun error, parity error, framing error, or break condition can
activate the receiver line status signal. When the receiver transfers data from its shift register to
its buffer, it activates the receive buffer full signal. When the transmitter transfers data from its
transmit buffer to its transmit shift register, it activates the transmit buffer empty signal. A change
on any of the modem control input signals activates the modem status signal. When the modem
signals are connected internally either through the configuration register or the diagnostic mode,
changes of state still activate the modem status signal. For these cases, however, the signal values
are controlled by register bits rather than by external input signals.

Each of the four status signals can be used as an interrupt request source for the SIgDIN.T

The Interrupt Enable register (IER) is used to enable any or all of the status signals as interrupt
sources. When an SIOIMiToccurs the IP# bit (bit 0) of the krrupt ID register (IIR) is cleared

and the interrupt handler must determine which of the status signals caused the interrupt by read-
ing bits 1 and 2 of the liRregister (Table 11-4). When more than one status signal is enabled as
an interrupt source and two or more are active at the same time then the source of the interrupt is
based on a fixed priority scheme (Table 11-4).

Table 11-4. Status Signal Priorities and Sources

Interrupt ID Register
Priority Status Signal Activated By
Bit2 | Bitl |BitO
1 1 0 1 (Highest) Receiver Line Status | overrun error, parity error, framing error, or
break condition
1 0 0 2 Receive Buffer Full the receiver transferring data from its shift
register to its buffer
3 Transmit Buffer Empty | the transmitter transmitting data from its
0 1 0 h . P .
transmit buffer to its transmit shift register
4 (Lowest) Modem Status a change on any of the modem control
0 0 0 input signals (CTSr#, DCDn#, DSRn#, and
Rl

11.2.6.2 SIO DMA sources

The transmit and receive channel on each SIO is supported by both DMA channels. The receiver
buffer full and transmit buffer empty signals of the line status register are brought out as
RBFDMAnN, and TXEDMAn. The TXEDMAn signal is connected directly to theultiplexers
controlling the source of DRE®Yor each of the two DMA channels. The RBFDKAignal is

also connected to the DREB@huxes, but it is qualified by the LS&ror conditions sthat the

DMA request is blocked if an error has occurred in the reception of a character. This prevents the
DMA from transferring a character from the SIO with an error.

11-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.2.7 External UART Support

Many PC compatible applications may need to support COM3 and COM4 serial ports. Since the
integrated serial ports are mapped to I/O addresses that support only COM1 and COM2, an inter-
face to support an exterrggrial I/O unit has been included. The master ICU interrupt inputs IR3
and IR4 may béroughtout to package pins as INT8 (muxed with P3.1/TMROUT1) and INT9
(muxed with P3.0/TMROUTO), respectively.

In order to select between the internal SIO units and the external SIO units, use the OUT2 bit in
the modem control register (MCR). In normal user mode (with no loopback) clear the OUT2 bit
to enable external SIO support, and set OUT2 to enable internal SIO support. Doing this, com-
bined with the correct settings of the P3CFG.1:0 and INTCFG.6:5 bits connect the INT8 and
INT9 pins to IR3 and IR4 of the master ICU, respectively. Note that the reset state of P3CFG and
INTCFG enables SIOINT and disconnects OUT2 gating. See Chapter 5, “DEVICE CONFIGU-
RATION” (Tables 5-1 and 5-2) for more details on how to select this option.

11-14 I

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3 REGISTER DEFINITIONS

Table 11-5 lists the registers associated with the SIO unit and the following sections contain bit
descriptions for each register.

Table 11-5. SIO Registers (Sheet 1 of 2)

. Expanded PC/AT* .
Register Address Address Function

PINCFG O0F826H — Pin Configuration:

(read/write) Connects the SIO1 transmit data (TXD1), data terminal ready
(DTR1#), and request to send (RTS1#) signals to package pins.

P1CFG OF820H — Port 1 Configuration:

(read/write) Connects the SIOO ring indicator (RI0#), data set ready (DSRO#),
data terminal ready (DTRO#), request to send (RTS0#), and data
carrier detected (DCDO#) signals to package pins.

P2CFG O0F822H — Port 2 Configuration:

(read/write) Connects the SIOO clear to send (CTSO0#), transmit data (TXDO),
and receive data (RXDO0) signals to package pins.

P3CFG 0F824H — Port 3 Configuration:

(read/write) Connects COMCLK to the package pin.

SIOCFG OF836H — SIO and SSIO Configuration:

(read/write) Connects the SIOn modem input signals internally or to package
pins and connects either the internal SERCLK signal or the
COMCLK pin to the SIOn baud-rate generator input.

DLLO OF4F8H 03F8H Divisor Latch Low:

DLL1) OF8F8H 02F8H Stores the lower 8 bits of the SIOn baud-rate generator divisor.

(read/write)

DLHO OF4F9H 03F9H Divisor Latch High:

DLH1 . OF8F9H 02F9H Stores the upper 8 bits of the SIOn baud-rate generator divisor.

(read/write)

TBRO OF4F8H 03F8H Transmit Buffer:

TBRl OF8F8H 02F8H Holds the data byte to transmit.

(write only)

RBRO OF4F8H 03F8H Receiver Buffer:

RBR1 OF8F8H 02F8H Holds the data byte received.

(read only)

LCRO OF4FBH 03FBH Line Control:

LCR1) OF8FBH 02FBH Specifies the data frame (word length, number of stop bits, and

(read/write) type of parity) for transmissions and receptions. Allows the
transmitter to transmit a break condition.

LSRO OF4FDH 03FDH Line Status:

LSR1 OF8FDH 02FDH Contains the transmitter empty, transmit buffer empty, receive

(read only) buffer full, and receive error flags.

IERO OF4F9H 03F9H Interrupt Enable:

IER1) OF8F9H 02F9H Independently connects the four signals (modem status, receive

(read/write) line status, transmit buffer empty, and receive buffer full) to the
interrupt request output (SIOINTn).

11-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table 11-5. SIO Registers (Sheet 2 of 2)

Register Expanded PC/AT* Function
9 Address Address
IIRO OF4FAH 03FAH Interrupt ID:
IIR1 OF8FAH 02FAH Indicates whether the modem status, transmit buffer empty,
(read only) receive buffer full, or receiver line status signal generated an
interrupt request.
MCRO OF4FCH 03FCH Modem Control:
MCR1 . OF8FCH 02FCH Controls the interface with the modem or data set.
(read/write)
Allows use of external UARTS.
MSRO OF4FEH 03FEH Modem Status:
MSR1 . OF8FEH 02FEH Provides the current state of the control lines for the modem or
(read/write) data set to the CPU.
SCRO OF4FFH 03FFH Scratch Pad:
SCR1) OF8FFH 02FFH An 8-bit read/write register available for use as a scratch pad; has
(read/write) no effect on SIOn operation.

For PC compatibility, the SIO unit accesses its 11 registessigh 8 /0 addres. The RBR,
TBRn, and DLLn registers share the same addresses and thed&RDLH registers share the
same addresses. Bit 7 (DLAB) of the L&Betermines which register is accessed during a read
or write operation (Table 11-6).

Table 11-6. Access to Mul tiplexed Registers

Register Accessed

Expanded Address PC/AT Address
DLAB =0 DLAB =1
OF4F8H (read) 03F8H (read) RBRO DLLO
OF4F8H (write) 03F8H (write) TBRO DLLO
OF4F9H (read/write) 03F9H (read/write) IERO DLHO
OF8F8H (read) 02F8H (read) RBR1 DLL1
OF8F8H (write) 02F8H (write) TBR1 DLL1
OF8F9H (read/write) 02F9H (read/write) IER1 DLH1

11-16

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.1 Pin and Port Configuration Registers (PINCFG and P nCFG [n =1-3])
Use PINCFG bits 2:0 to connect the SIO1 signals to package pins.

Pin Configuration Expanded Addr: F826H

PINCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
— PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function

Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PMO Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

Figure 11-7. Pin Configuration Register (PINCFG)

11-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Use P1CFG bits 4:0 to connect SIO0 signals to package pins.

intel.

Port 1 Configuration

Expanded Addr: F820H

11-18

P1CFG ISA Addr: —
(read/write) Reset State: 00H
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.
6 PM6 Pin Mode:
0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.
5 PM5 Pin Mode:
0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.
4 PM4 Pin Mode:
0 = Selects P1.4 at the package pin.
1 = Selects RI0O# at the package pin.
3 PM3 Pin Mode:
0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.
2 PM2 Pin Mode:
0 = Selects P1.2 at the package pin.
1 = Selects DTRO# at the package pin.
1 PM1 Pin Mode:
0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.
0 PMO Pin Mode:
0 = Selects P1.0 at the package pin.
1 = Selects DCDO# at the package pin.
Figure 11-8. Port 1 Configuration Register (P1CFG)

intel.

ASYNCHRONOUS SERIAL I/O UNIT

Use P2CFG bits 7-5 to connect SIO0 signals to package pins.

Port 2 Configuration

Expanded Addr: F822H

P2CFG ISA Addr: —
(read/write) Reset State: 00H
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.
6 PM6 Pin Mode:
0 = Selects P2.6 at the package pin.
1 = Selects TXDO at the package pin.
5 PM5 Pin Mode:
0 = Selects P2.5 at the package pin.
1 = Selects RXDO at the package pin.
4 PM4 Pin Mode:
0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.
3 PM3 Pin Mode:
0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.
2 PM2 Pin Mode:
0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.
1 PM1 Pin Mode:
0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.
0 PMO Pin Mode:
0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.

Figure 11-9. Port 2 Configuration Register (P2CFG)

11-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Use P3CFG bit 7 to connect the COMCLK pin to the package pin.

Port 3 Configuration Expanded Addr: F824H

P3CFG ISA Addr: —

(read/write) Reset State: 00H

7 0
PM7 PM6 PM5 PM4 ‘ ‘ PM3 PM2 PM1 PMO
Bit Bit Function

Number Mnemonic
7 PM7 Pin Mode:

0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.

6 PM6 Pin Mode:

0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.

5 PM5 Pin Mode:

0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).

4 PM4 Pin Mode:

0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).

3 PM3 Pin Mode:

0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).

2 PM2 Pin Mode:

0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INTO).

1 PM1 Pin Mode:
See Table 5-1 on page 5-8 for all the PM1 configuration options.
0 PMO Pin Mode:

See Table 5-1 on page 5-8 for all the PMO configuration options.

Figure 11-10. Port 3 Configuration Register (P3CFG)

11-20

intel.

ASYNCHRONOUS SERIAL I/O UNIT

11.3.2 SIO and SSIO Configuration Register (SIOCFG)

Use SIOCFG to select the baud-rate generator clock source for the SIO channels and to have a
channel’s modem input signals connected internally rather than to package pins. Selecting the in-
ternal modem signal connection option connects RTS# to CTS#, DTR# to DSR# and DCD#, and
Vcto RI#. The modem signal connections for this internal option are shown in Fig@ 1

SIO and SSIO Configuration

Expanded Addr: F836H

SIOCFG ISA Addr: —
(read/write) Reset State: 00H
7 0
SIM SOM — - || - SSBSRC | S1BSRC | SOBSRC
Bit Bit Function
Number Mnemonic
7 S1iM S101 Modem Signal Connections:
0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.
6 SOM S100 Modem Signal Connections:
0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.
5-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 SSBSRC SSIO Baud-rate Generator Clock Source:
0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.
1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.
1 S1BSRC S101 Baud-rate Generator Clock Source:
0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate
generator.
0 SOBSRC S100 Baud-rate Generator Clock Source:
0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate
generator.

Figure 11-11. SIO and SSIO Configuration Register (SIOCFG)

11-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.3.3 Divisor Latch Registers (DLL n and DLH n)

Use these registers to progréne baud-rate generator’s output frequency. The baud-ratz-ge
ator’s output determines the transmitter and receiver bit times.

Divisor Latch Low DLLO DLL1

DLLO, DLL1 Expanded Addr: F4F8H F8F8H

(read/write) ISA Addr: 03F8H 02F8H

Reset State: 02H 02H
7 0
LD7 LD6 LD5 o4 || Lp3 LD2 LD1 LDO

Divisor Latch High DLHO DLH1

DLHO, DLH1 Expanded Addr: F4F9H F8F9H

(read/write) ISA Addr: 03F9H 02F9H

Reset State: 00H 00H
7 0
uD15 uD14 uD13 uD12 ‘ ‘ ubD11 uD10 uD9 uD8
Bit Bit Function
Number Mnemonic

DLLn LD7:0 Lower 8 Divisor and Upper 8 Divisor Bits:

(7-0) Write the lower 8 divisor bits to DLLn and the upper 8 divisor bits to
DLHn. The baud-rate generator output is a function of the baud-rate
generator input (BCLKIN) and the 16-bit divisor.

DLHn UD15:8

7-0

(7-0) baud-rate generator output frequency = m

divisor
bit rate (shifting rate) = baud-rate generator output frequency/16
NOTE: The divisor latch registers share address ports with other SIO registers. Bit 7 (DLAB) of
LCRn must be set in order to access the divisor latch registers.
If DLL = DLH = 00H, baud-rate generator ouput frequency = 0 (stops clock).

Figure 11-12. Divisor Latch Registers (DLL n and DLH n)

11-22

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.4 Transmit Buffer Register (TBR n)

Write the data words to be transmitted to TBRIse the interrupt control or DMA units or poll
the serial line status register (L§Ro determine whether the transmit buffer is empty.

Transmit Buffer TBRO TBR1

TBRO, TBR1 Expanded Addr: FAF8H F8F8H

(write only) ISA Addr: 03F8H 02F8H

Reset State: XXH XXH

7 0
TB7 TB6 TB5 TB4 ‘ ‘ TB3 TB2 TB1 TBO
Bit Bit Function

Number Mnemonic
7-0 TB7:0 Transmit Buffer Bits:

These bits make up the next data word to be transmitted. The transmitter
loads this word into the transmit shift register. The transmit shift register
then shifts the bits out, along with the asynchronous communication bits
(start, stop, and parity). The data bits are shifted out least-significant bit
(TBO) first.

NOTE: The transmit buffer register shares an address port with other SIO registers. You must clear
bit 7 (DLAB) of LCRn before you can write to the transmit buffer register.

Figure 11-13. Transmit Buffer Register (TBR n)

11-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.3.5 Receive Buffer Register (RBR n)

Read RBR to obtain the last data word receiveide the interrupt control or DMA units or poll
the serial line status register (L8Ro determine whether the receive buffer is full.

Receive Buffer RBRO RBR1

RBRO, RBR1 Expanded Addr: FAF8H F8F8H

(read only) ISA Addr: 03F8H 02F8H

Reset State: XXH XXH

7 0
RB7 RB6 RB5 RB4 ‘ ‘ RB3 RB2 RB1 RBO
Bit Bit Function

Number Mnemonic
7-0 RB7:0 Receive Buffer Bits:

These bits make up the last word received. The receiver shifts bits in,
starting with the least-significant-bit. The receiver then strips off the
asynchronous bits (start, parity, and stop) and transfers the received
data bits from the receive shift register to the receive buffer.

NOTE: The receive buffer register shares an address port with other SIO registers. Bit 7 (DLAB) of
the LCRn must be cleared in order to read the receive buffer register.

Figure 11-14. Receive Buffer Register (RBR n)

11-24

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.6 Serial Line Control Register (LCR n)

Use LCRh to provide access to the multiplexed registers, send a break condition, and determine
the data frame for receptions and transmissions.

Serial Line Control LCRO LCR1
LCRO, LCR1 Expanded Addr: FAFBH F8FBH
(read/write) ISA Addr: 03FBH 02FBH
Reset State: O0H OO0H
7 0
DLAB SB SP EPS ‘ ‘ PEN STB WLS1 WLSO
Bit Bit Function
Number Mnemonic
7 DLAB Divisor Latch Access Bit:

This bit determines which of the multiplexed registers is accessed.

0 = Allows access to the receiver and transmit buffer registers (RBRn and
TBRn) and the interrupt enable register (IERn).
1 = Allows access to the divisor latch registers (DLLn and DLHn).

6 SB Set Break:

0 = No effect on TXDn.
1 = Forces the TXDn pin to the spacing (logic 0) state for as long as bit is

set.
5 SP Sticky Parity, Even Parity Select, and Parity Enable:
EPS These bits determine whether the control logic produces (during
transmission) or checks for (during reception) even, odd, no, or forced
PEN parity.
SP EPS PEN Function
X X 0 parity disabled (no parity option)
0 0 1 produce or check for odd parity
0 1 1 produce or check for even parity
1 0 1 produce or check for forced parity (parity bit = 1)
1 1 1 produce or check for forced parity (parity bit = 0)
2 STB Stop Bits:

This bit specifies the number of stop bits transmitted and received in each
serial character.

0 = 1 stop bit
1 = 2 stop bits (1.5 stop bits for 5-bit characters)
1-0 WLS1:0 Word Length Select:

These bits specify the number of data bits in each transmitted or received
serial character.

00 = 5-bit character
01 = 6-bit character
10 = 7-bit character
11 = 8-bit character

Figure 11-15. Serial Line Control Register (LCR n)

11-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

11.3.7 Serial Line Status Register (LSR n)

Use LSk to check the status of the transmitter and receiver.

Serial Line Status

LSRO LSR1

LSRO, LSR1 Expanded Addr: F4FDH F8FDH
(read only) ISA Addr: O03FDH 02FDH
Reset State: 60H 60H
7 0
— TE TBE Bl || FE PE OE RBF
Bit Bit)
Number Mnemonic Function

7 — Reserved. This bit is undefined.

6 TE Transmitter Empty:
The transmitter sets this bit to indicate that the transmit shift register and
transmit buffer register are both empty. Writing to the transmit buffer
register clears this bit.

5 TBE Transmit Buffer Empty:
The transmitter sets this bit after it transfers data from the transmit buffer
to the transmit shift register. Writing to the transmit buffer register clears
this bit.

4 BI Break Interrupt:
The receiver sets this bit whenever the received data input is held in the
spacing (logic 0) state for longer than a full word transmission time.
Reading the receive buffer register or the serial line status register clears
this bit.

3 FE Framing Error
The receiver sets this bit to indicate that the received character did not
have a valid stop bit. Reading the receive buffer register or the serial line
status register clears this bit. If data frame is set for two stop bits the
second stop bit is ignored.

2 PE Parity Error:
The receiver sets this bit to indicate that the received data character did
not have the correct parity. Reading the receive buffer register or the
serial line status register clears this bit.

1 OE Overrun Error:
The receiver sets this bit to indicate an overrun error. An overrun occurs
when the receiver transfers a received character to the receive buffer
register before the CPU reads the buffer’s old character. Reading the
serial line status register clears this bit.

0 RBF Receive Buffer Full:
The receiver sets this bit after it transfers a received character from the
receive shift register to the receive buffer register. Reading the receive
buffer register clears this bit.

Figure 11-16. Serial Line Status Register (LSR n)

11-26

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.8 Interrupt Enable Register (IER n)

Use IERn to connect the Sl@status signals to the interrupt control unit. All four status signals
can be connected to the interrupt control unit.

Interrupt Enable IERO IER1

IERO, IER1 Expanded Addr: F4F9H F8F9H

(read/write) ISA Addr: 03F9H 02F9H

Reset State: O00OH 00H

7 0
— — — — || ws RLS TBE RBF
Bit Bit Function

Number Mnemonic
7-4 — Reserved; for compatibility with future devices, write zeros to these bits.
3 MS Modem Status Interrupt Enable:

0 = Modem input signal changes do not cause interrupts.

1 = Connects the modem status signal to the interrupt control unit's
SIOINTn output. A change on one or more of the modem input
signals activates the modem status signal.

2 RLS Receiver Line Status Interrupt Enable:

0 = LSR error conditions do not cause interrupts.

1 = Connects the receiver line status signal to the interrupt control unit's
SIOINTn output. Sources for this interrupt include overrun error,
parity error, framing error, and break interrupt.

1 TBE Transmit Buffer Empty Interrupt Enable:

0 = Transmit Buffer Empty signal does not cause interrupts.
1 = Connects the transmit buffer empty signal to the interrupt control
unit's SIOINTn output.

0 RBF Receive Buffer Full Interrupt Enable:

0 = Receive buffer full signal does not cause interrupts.
1 = Connects the receive buffer full signal to the interrupt control unit's
SIOINTn output.

NOTE: The interrupt enable register is multiplexed with the divisor latch high register. You must clear
bit 7 (DLAB) of the serial line control register (LCRn) before you can access the interrupt
control register.

Figure 11-17. Interrupt Enable Register (IER n)

11-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.3.9 Interrupt ID Register (IIR n)

Use the IIR to determine whether an interrupt is pending and, if so, which status signal generated
the interrupt request.

Interrupt ID IIRO IIR1

IIRO, IIR1 Expanded Addr: F4AFAH F8FAH

(read only) ISA Addr: 03FAH 02FAH

Reset State: 01H 01H

7 0
— — — — ‘ ‘ — 1S2 IS1 IP#
Bit Bit Function

Number Mnemonic
7-3 — Reserved. These bits are undefined.
2 1S2:1 Interrupt Source:

If an interrupt is pending (bit 0 = 0), these bits specify which status signal
caused the pending interrupt.

IS2 IS1 Interrupt Source

0 0 modem status signal*

0 1 transmitter buffer empty signal
1 0 receive buffer full signal

1 1 receiver line status signal**

* When one of the modem input signals (CTSrm#, DSRn#, RIn#, and
DCDm#) changes state, the modem status signal is activated.

** A framing error, overrun error, parity error, or break interrupt activates
the receiver line status signal.

Reading the modem status register clears the modem status signal.
Reading the IIRn register or writing to the transmit buffer register clears
the transmit buffer empty signal. Reading the receive buffer register
clears the receive buffer full signal. Reading the receive buffer register or
the serial line status register clears the LSRn error bits, which clears the
receiver line status signal.

0 IP# Interrupt Pending:
This bit indicates whether an interrupt is pending.

0 = Interrupt is pending
1 = No interrupt is pending

Figure 11-18. Interrupt ID Register (IIR n)

11-28

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.10 Modem Control Register (MCR n)

Use MCRh to put the Sl@ into a diagnostic test mode. In this mode, the modem input signals
are disconnected from the package pins and controlled by the lower foun MBRnd the mo-
dem output signals are forced to their inactive states (Figure 11-19). Additionally, the $it=R
nals are also forced into the MSR register bits.

MCRn.1 ————>| CTS#

RTS#p——— [) RTSH#
MCRn.0 ——— | DSR# (forced high)
MCRn.3 = > DCD# DTR# D f——
MCRn.2 =————>| RI# (forced high)

Note: MCRn.1 indicates that modem control register bit 1 controls the CTS input, and so on.

A2529-01

Figure 11-19. Modem Control Signals — Diagnostic Mode Connections

Besides the diagnostic mode, there are two other options for connecting the modem input signals.
You can connect the signals internally using the SIO configuration (SIOCFG) register. The inter-
nal connection mode disconnects the modem input signals from the package pins and connects
the modem output signals to the modem input signals (in this case, the modem output signals re-
main connected to package pins). See Figli¥2d In thismode, the values you write to M@QR

bits 0 and 1 control the state of the modem’s internal input signals and output pins.

> cTs#
RTSm#
_E: bsry | RTSH ' o
DCD# prR# P [DTRm#
Vee > RI#

A2528-01

Figure 11-20. Modem Control Signals — Internal Connections

The other option is standard mode. In standard mode, the modem input and output signals are
connected to the package pins. In this mode, the values you write to BIGGF and 1 control
the state of the modem’s output pins.

11-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Modem Control

MCRO, MCR1 Expanded Addr:

(read/write) ISA Addr:
Reset State:

MCRO
F4FCH
03FCH
00H

MCR1
F8FCH
02FCH
00H

— ‘ — ‘ — LOOP ‘ ‘ ouT2 OUTL

RTS

DTR

Bit Bit

) Function
Number Mnemonic

7-5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 LOOP Loop Back Test Mode:
0= Normal mode

the SIO channel to:
« setits transmit serial output (TXDn)

package pins

¢ connects MCRn bits to MSRn bits

1= Setting this bit puts the SIOn into diagnostic (or loop back test) mode. This causes

« disconnect its receive serial input (RXDn) from the package pin
« loop back the transmitter shift register’s output to the receive shift register’s input
« disconnect the modem control inputs (CTSn#, DSRn#, RIn#, and DCDr#) from the

« force modem control outputs (RTSr# and DTR#) to their inactive states

3-2 ouT2:1 Test Bits:

clear OUT2 deactivates the internal DCDn bit.

5-8 for the configuration options.

In diagnostic mode (bit 4=1), these bits control the ring indicator (RIn) and data carrier
detect (DCDn#) modem inputs. Setting OUTL1 activates the internal RIn bit; clearing
OUT1 deactivates the internal RIn bit. Setting OUT2 activates the internal DCDn bit;

In normal user mode (bit 4=0) OUT1 has no effect and OUT2 in conjunction with
INTCFG.5/6 selects internal SIO interrupt or external interrupt. See Table 5-1 on page

1 RTS Ready to Send:

deactivates the internal CTSn bit.

the RTSn# pin. Note that pin is inverted from bit.

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal CTSn bit; clearing this bit

In internal connection mode, setting this bit activates the internal CTSn# signal and the
RTSn# pin; clearing this bit deactivates the internal CTSn# signal and the RTSn# pin.

In standard mode, setting this bit activates the RTSr# pin; clearing this bit deactivates

0 DTR Data Terminal Ready:

deactivates the internal DSRn# signal.

the DTRr# pin. Note that pin is inverted from bit.

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal DSRr# signal; clearing this bit

In internal connection mode, setting this bit activates the internal DSRn# and DCDn#
signals and the DTRn# pin; clearing this bit deactivates the internal DSRn# and DCDn#
signals and the DTRn# pin. Note that pin is inverted from bit.

In standard mode, setting this bit activates the DTR# pin; clearing this bit deactivates

Figure 11-21. Modem Control Register (MCR n)

11-30

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.3.11 Modem Status Register (MSR n)

Read MSRto determine the status of the modem control input signals. The upper four bits reflect
the current state of the modem input signals and the lower four bits indicate whether the inputs
(except for RI#) have changed state since the last time this register was read. Thekautower
bits are reset to zero when the CPU reads the Modem Status register.

Modem Status MSRO MSR1
MSRO, MSR1 Expanded Addr: F4FEH F8FEH
(read only) ISA Addr: O03FEH O02FEH
Reset State: XOH XOH
7 0
DCD RI DSR CTS ‘ ‘ DDCD TERI DDSR DCTS
Bit Bit Function
Number Mnemonic
7 DCD Data Carrier Detect:

This bit is the complement of the data carrier detect (DCDn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.3 (OUT2).

6 RI Ring Indicator:

This bit is the complement of the ring indicator (RIr#) input. In diagnostic
test mode, this bit is equivalent to MCRn.2 (OUT1).

5 DSR Data Set Ready:

This bit is the complement of the data set ready (DSRn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.0 (DTR).

4 CTS Clear to Send:

This bit is the complement of the clear to send (CTSr#) input. In
diagnostic test mode, this bit is equivalent to MCRn.1 (RTS).

3 DDCD Delta Data Carrier Detect:

When set, this bit indicates that the DCDn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

2 TERI Trailing Edge Ring Indicator:

When set, this bit indicates that the RIn# input has changed from a low
to a high state since the last time this register was read. Reading this
register clears this bit.

1 DDSR Delta Data Set Ready:

When set, this bit indicates that the DSR# input has changed state
since the last time this register was read. Reading this register clears
this bit.

0 DCTS Delta Clear to Send:

When set, this bit indicates that the CTSr# input has changed state
since the last time this register was read. Reading this register clears
this bit.

Figure 11-22. Modem Status Register (MSR n)

11-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

11.3.12 Scratch Pad Register (SCR n)

SCRnis available for use as a scratch pad. Writing and reading this register has no effect on SIO
operation.

Scratch Pad SCRO SCR1

SCRO, SCR1 Expanded Addr: FAFFH F8FFH

(read/write) ISA Addr: 03FFH 02FFH

Reset State: XXH XXH

7 0
SP7 SP6 SP5 SP4 ‘ ‘ SP3 sP2 SP1 SPO
Bit Bit Function

Number Mnemonic
7-0 SP7:0 Writing and reading this register has no effect on SIOn operation.

Figure 11-23. Scratch Pad Register (SCR n)

11.4 PROGRAMMING CONSIDERATIONS
Consider the following when pgramming the SIO.

* The divisor latch low register (DL) is multiplexed with the receive and transmit buffer
registers (RBR and TBR) and the divisor latch high register (DhHs multiplexed with
the interrupt enable register (IBRBit 7 of the serial line control register (L@Rcontrols
which register is accessed.

* The SIO contains four status signals: receiver line status, receive buffer full, transmit buffer
empty, and modem status. You can connect (OR) these signals to the interrupt control unit’s
SIOINTh interrupt request signal using the interrupt enable registenjlERyou receive
an interrupt request on the SIOINSignal, read the interrupt ID register (HRo
determine which status signal with the highest priority caused the request.

Several sources can activate the receiver line status and the modem status signals. If lIR
indicates that the receiver line status signal caused an interrupt request, read the serial line
status register (LS to determine the receive error condition that activated the receiver

line status signal. If lIR indicates that the modem status signal caused an interrupt request,
read the modem status register (M3 determine which modem input signal activated

the modem status signal.

* DMA can be used for servicing the SIO channels for higher baud rates. When doing this,
remember that the isolated RBF and TBE (RBFDMA and TBEDMA) signals are connected
to the DMA DREQ inputs. RBFDMA is blocked if any of the error bits in the LSR are set.
Neither signal is gated by the IBRegister.

11-32

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

11.4.1 Asynchronous Serial I/O Unit Code Examples

The code example contains these software routines:

InitS10 Initializes the SIO for asynchronous transfers

SerialReadStr Polled serial read function that reads a specified number of
characters

SerialReadChar Polled serial read function that reads a single character

SerialWriteChar Polled serial write function that writes a single character

SerialWrite Str Polled serial write function that writes out an entire string of
characters

SerialWriteMem Polled serial write function that writes out a specified number of
characters stored in a buffer

Serial0_ISR Template interrupt service routine f8fO_0 interrupts

Service_RBF Service routine for interrupts generated by the Receive Buffer Full
signal

SerialWriteStr_Int Interrupt driven serial write function

Service_TBE Service routine for interrupts generated by the Transmit Buffer
Empty signal

The last software routine shows how to use these functions to enable RBF interrupts on the SIO.
See Appendix C for the included header files.

#include <conio.h>
#include <stdio.h>
#include “80386ex.h”
#include “ev386ex.h”

[* Variable Declarations */
int Tbuffer_index = 0O;
char trans_buffer[1024];
char rec_buffer;

/
InitSI10:

Description:
Initialization routine for Asynchronous Serial 1/0 Port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,
1 for SIO port 1.
Mode Defines Parity, number of data bits, number of stop bits--

Reference Serial Line Control register for various

11-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

options
ModemCntrl Defines the operation of the modem control lines
BaudRate Specifies baud rate. The baud divisor value is calculated
based on clocking source and clock frequency. The
clocking frequency is set by calling the
InitializeLibrary function.
ClockRate

Specifies the serial port clocking rate, for internal
clocking = CLK2, for external = COMCLK

Returns:Error Codes

E_INVAILD_DEVICE -- Unit number specifies a non-existing device
E_OK -- Initialized OK, No error.

Assumptions:

SIOCFG Has already been configured for Clocking source and Modem
control source

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

#define SIO_0 0x0

#define SIO_8N1 (SIO_8DATA | SIO_1STOPBIT | SIO_NOPARITY)
#define SIO_MCR_RTS 0x2

#define SIO_MCR_DTR 0x1

#define SIO_8DATA 0x3

#define SIO_1STOPBIT 0x0
/IClock rate of COMCLK, i.e., External clocking
#define BAUD_CLKIN 1843200L

int error;

error = InitSIO(SIO_0, /I Which Serial Port
SIO_8N1, /I Mode, 8-data, no parity, 1-stop
SIO_MCR_RTS+SIO_MCR_DTR, // Modem line controls
9600, // Baud Rate
BAUD_CLKIN); /I Baud Clocking Rate

Real/Protected Mode:
No changes required.

int InitSIO(int Unit, BYTE Mode, BYTE ModemCntrl, DWORD BaudRate,
DWORD BaudClIkIn)
{

WORD SIOPortBase;
WORD BaudDivisor;

/* Check for valid unit */
if(Unit > 1)

11-34

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

return E_INVALID_DEVICE;

/* Set Port base based on serial port used */
SIOPortBase = (Unit ? SIO1_BASE : SIO0_BASE);

/* Initialized Serial Port registers */

/* Calculate the baud divisor value, based on baud clocking */
BaudDivisor = (WORD)(BaudClkIn / (16*BaudRate));

/* Turn on access to baud divisor register */
_SetEXRegByte(SIOPortBase + LCR, 0x80);

/* Set the baud rate divisor register, High byte first */
_SetEXRegByte(SIOPortBase + DLH, HIBYTE(BaudDivisor));
_SetEXRegByte(SIOPortBase + DLL, LOBYTE(BaudDivisor));

[*** Set Serial Line control register ***/
_SetEXRegByte(SIOPortBase + LCR, Mode);// Sets Mode and
/Ireset the Divisor latch

/* Set modem control bits */
_SetEXRegByte(SIOPortBase + MCR, ModemCnitrl);

return E_OK;
}* InitSI10 */

SerialReadStr

Description:
Is a Polled serial port read function that waits forever or until
count characters are read from the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port 0,
1 for SIO port 1.
str Address of where to place the input data
count Number of characters to read before returning.

Returns: Error Code
E_OK or Error code status (value of Line Status Register (LSR)

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

11-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

#define SIO_0 0
#define LENGTH 32

char String_Read[LENGTH];
int error;

error = SerialReadStr (S10_0,
String_Read,
LENGTH);

Real/Protected Mode
No changes required.

int SerialReadStr(int Unit, char far *str, int count)
{

WORD ReceivePortAddr;

WORD StatusPortAddr;

BYTE Status;

inti;

/* Set Port base, based on serial port used */
ReceivePortAddr = (Unit ? RBR1 : RBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

for(i=0; i < count-1; i++)
{
I Status register is cleared after read, so we must save
/l'it's value when read
while(!((Status=_GetEXRegByte(StatusPortAddr)) & SIO_RX_BUF_FULL))
if(Status & SIO_ERROR_BITS) /* Error Bit set then return NULL */
{
strli+1] = \0’;
return Status & SIO_ERROR_BITS;

str[i] = _GetEXRegByte(ReceivePortAddr);
}
str[i] = \0’;
return E_OK;
}* SerialReadStr */

SerialReadChar:

Description:
Is a Polled serial port read function that waits forever or

11-36

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

until a character has been received from the serial port.
Parameters:
Unit Unit number of the serial port. O for SIO port 0,
1 for SIO port 1.

Returns:
BYTE Read from serial port, if zero an error occurred.

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.
Syntax:
#define SIO_0 0
BYTE character;

character = SerialReadChar (SIO_0);

Real/Protected Mode
No changes required.

BYTE SerialReadChar(int Unit)
{
WORD ReceivePortAddr;
WORD StatusPortAddr;
WORD Status;

/* Set Port base, based on serial port used */
ReceivePortAddr = (Unit ? RBR1 : RBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

/I Status register is cleared after read, so we must save

/I it's value when read

while(!((Status=_GetEXRegByte(StatusPortAddr)) & SIO_RX_BUF_FULL))
if(Status & SIO_ERROR_BITS) // Error Bit set then return NULL
{

}

return _GetEXRegByte(ReceivePortAddr);
}* SerialReadChar */

return O;

11-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

SerialWriteChar:

Description:
Is a Polled serial port write function that waits forever or
until a character has been written to the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port O,

1 for SIO port 1.
ch Character value to be written out

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.
Syntax:
#define SIO_0 0
char Char_Out = ‘a’;

SerialWriteChar (SIO_0, Char_Out);

Real/Protected Mode
No changes required.

void SerialWriteChar(int Unit, BYTE ch)
{

WORD TransmitPortAddr;

WORD StatusPortAddr;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;

_SetEXRegByte(TransmitPortAddr,ch);
}* SerialWriteChar */

SerialWriteStr:

11-38

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

Description:
Is a Polled serial port write function that waits forever
or until all characters have been written to the serial port.
The NUL character (\0') is used to indicate end of string.

Parameters:
Unit Unit number of the serial port. 0 for SIO port O,
1 for SIO port 1.
str Address of a zero terminated string to be transmitted

Returns:
None

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).
The processor Port pin are initialized separately.

Syntax:

#define SIO_0 0

SerialWriteStr (SIO_0,
HelloString);

Real/Protected Mode
No changes required.

void SerialWriteStr(int Unit, const char far *str)

{
WORD TransmitPortAddr;

WORD StatusPortAddr;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

for(; *str 1= \0’; str++)

{
/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;
[* Write Character */
_SetEXRegByte(TransmitPortAddr,*str);

}* SerialWriteStr */

11-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

SerialWriteMem:

Description:
Is a Polled serial port write function that waits forever or
until count characters have been written to the serial port.

Parameters:
Unit Unit number of the serial port. 0 for SIO port O,
1 for SIO port 1.
mem Address of a buffer to be transmitted
count Number of characters in buffer to be transmitted

Returns:
None

Assumptions:

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

The processor Port pin are initialized separately.
Syntax:

#define SIO_0 0
#define COUNT 32

char BufferfCOUNT];

SerialWriteMem (slo_o,
Buffer,
COUNT);

Real/Protected Mode
No changes required.

void SerialWriteMem(int Unit, const char far *mem, int count)
{

WORD TransmitPortAddr;

WORD StatusPortAddr;

inti;

/* Set Port base, based on serial port used */
TransmitPortAddr = (Unit ? TBR1 : TBRO);
StatusPortAddr = (Unit ? LSR1 : LSRO);

for(i=0 ; i < count; i++)

{
/* Wait until buffer is empty */
while(!(_GetEXRegByte(StatusPortAddr) & SIO_TX_BUF_EMPTY)) ;
[* Write Character */
_SetEXRegByte(TransmitPortAddr,mem[i]);

11-40

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

}

} I* SerialWriteMem */

Serial0_ISR:

Description:
Template Interrupt Service Routine for Serial Port0 interrupts.
This function identifies the cause of the interrupt and branches
to the corresponding action.

Parameters:
None (Not called by user)

Returns:
None

Assumptions:
None

Syntax:
Not a user function.

Real/Protected Mode:
No changes required.

void interrupt far Serial0_ISR (void)

{

BYTE iir0, IsrO, msr0;
iir0 = _GetEXRegByte(lIR0);
switch ((iir0&0x06) >> 1) {

case 0:
/* modem status signal */

msr0 = _GetEXRegByte(MSRO);
if (Msr0&0x08) && (msr0&0x80)){

/* data carrier detect has been set */

}

11-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

if (Mmsr0 & 0x04) && (msr0 & 0x40)) {

/* ring indicator */

}

if (Mmsr0 & 0x02) && (msr0 & 0x20)) {

/* data set ready bit has been set */

}

if (msr0 & 0x01) && (msr0&0x10)) {

/* clear to send signal has been set */

}

break;

case 1:

Service_TBE(); /* Routine for Interrupt driven Serial Writes */
break;

case 2:

/* RBF signal */

Service_RBF(); /* Routine specific to RBF generated interrupts */

break;

case 3:

/* receive line status signal */

Isr0 = _GetEXRegByte(LSRO);

if (Isr0 & 0x10) {
/* break interrupt */

}

if (Isr0 & 0x08) {

/* framing error */
}
if (Isr0 & 0x04) {

[* parity error */

}

if (Isr0 & 0x02) {
[* overrun error */

}
break;
} /* End of switch */
NonSpecificEOI(); // Send End-Of-Interrupt Signal to Master

}* Serial0_ISR */

11-42

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

Service_RBF:

Description:
Service routine for interrupts generated by RBF signal. This
routine is used for Interrupt-Driven Serial Reads. It echoes
the typed character to the screen, stopping when it receives
an ESC character.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

void Service_RBF (void)
{

/* Read in contents of RBRO */
rec_buffer = _GetEXRegByte(RBRO);

SerialWriteChar(SI10_0, rec_buffer); // Echo to screen
if (rec_buffer == 0x1b) {

/* ESC character received, disable RBF interrupts*/
_SetEXRegByte(IERO, 0x00);

}

}* Service_RBF */

SerialWriteStr_Int:

11-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Description:
Is an interrupt driven serial port write function.
The NUL character (\0') is used to indicate end of string.

Parameters:
Unit Unit number of the serial port. 0 for SIO port O,
1 for SIO port 1.
str Address of a zero terminated string to be transmitted

Returns:
None

Assumptions:

REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

The processor Port pin are initialized separately.
Syntax:

#define SIO_0 0

SerialWriteStr_Int (SIO_0, HelloString);

Real/Protected Mode
No changes required.

void SerialWriteStr_Int(int Unit, const char far *str)
{

BYTE PortIntEnable;

PortintEnable = (Unit ? IER1 : IERO);

strepy (trans_buffer, str); // Copy string into buffer

/* Enable TBE interrupts */
_SetEXRegByte(IER0,0x02);

}* SerialWriteStr_Int */

Service_TBE:
Description:
Service routine for TBE generated interrupts. This function is used

for Interrupt-Driven Serial Transmits.

Parameters:

11-44

Int9|® ASYNCHRONOUS SERIAL I/O UNIT

None

Assumptions:
None

Syntax:
Not called by user.

Real/Protected Mode:
No changes required.

void Service_TBE(void)
{
if (trans_buffer[Tbuffer_index] != 10’) {
_SetEXRegByte(TBRO, trans_buffer[Tbuffer_index]);
Tbuffer_index++;
}
else {
/* Disable TBE interrupts */
_SetEXRegByte(IERO, 0x00);

}

}* Service_TBE */

Example code to show how to set up for a Serial Port interrupt.

This example is for an interrupt on SIO_0 sourced by the

Receive Buffer Full Signal. The source code for the functions “SetIRQVector”
and “Disable8259Interrupt” is included in the Interrupt Control Unit chapter.

SetIRQVector(Serial0_ISR, 4, INTERRUPT_ISR); // Set vector for Interrupt
/I on Master line 4

Disable8259Interrupt(IR1+IR5+IR6+IR7, IRO+IR1+IR2+IR3+IR4+IR5+IR6+IR7);
Enable8259Interrupt(IR2+IR4,0);// Enable slave interrupt to master(IR2),
/l Enable SIO_0 (IR4)

_enable(); // Enable Interrupts

_SetEXRegByte(IERO, 0x01); // Enable interrupt on RBF signal

/ /

11-45

intel. 1 2

DMA
CONTROLLER

intel.

CHAPTER 12
DMA CONTROLLER

The DMA controller mprovessystem performance by allowing external or internal peripherals
to directly transfer information to or from the system. The DMA controller can transfer data be-
tween any combination of memory and 1/O, with any combination of data path widths (8 or 16
bits). It contains two identical channels. The DMA controller has features that are unavailable on
an 8237A, but it can be configured to operate in an 8237A-compatible mode.

This chapter is organized as follows:
* Overview (see below)
* DMA Operation (page 12-5)
* Register Definitions (page2128)
¢ Design Considerations (pa@g-50)

* Programning Considerations (page 12-50)

12.1 OVERVIEW

Figure 12-1 shows a block diagram of the DMA unit. The DMA channels are independently con-
figurable. Each channel contains a request input (DRE&hd an acknowledge output
(DMAACK n#). An external peripheral (connected to the DRfh) or one of the internal pe-
ripherals (asynchronous serial /O, synchronsesal I/O, or timer control unit) can request

DMA service. The DMA configuration register is used to select one of the possible sources. In
addition to these hardware request sources, each channel contains a software request register tha
can be used to initiate software requests. The channels share an end-of-process signal (EOP#).
This signal functions as either an input or an open-drain output. EOP# either terminates a transfer
(as an input) or signals that a transfer is completed (as an output).

I 12-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

DMACFG.2:0
PMA 3 0 DRQO
1}——— RBFDMAO (SIO0) To SIOL l (DCD1#)t
2l—— TXEDMAL (SIO1)
DREQO 3}——— SSTBE (SSIO)
4 ouTi(TCu)
5l——— RBFDMAL (SIO1)
6——— TXEDMAO (SIO0)
J[—— SSRBF (SSIO)
DMACFG.3
PINCFG.4
>0 & {) DACKo#
DMAACKO# _I_Z> From CSU—>>® (CS5#)
DMACFG.6:4
4 RBFDMAL (SIO1) JD DRQ1
! RXD1
> TXEDMAO (SI00) To SIO1 ()
DREQ1 3 SSRBF (SSIO)
4 OUT2 (TCU)
5 RBFDMAO (SIO0)
6 TXEDMAL (SIO1)
Y SSTBE (SSIO)
DMACFG.7
o PINCFG.2
>0 & {) DACK1#
DMAACKT# From SIO1—>@ ; (TXD1)
PMAINT Tolcy o PINCFG.3
End of Process =& >0 o D EOP#
) 7 From SIO1—>@ 1 (CTS1#)
. PICFG.6
HOLD |- ° [JHOLD
To/From 1/O Port 14—)“0 (P1.6)
Bus Arbiter
1 P1CFG.7
HLDA >0 HLDA
To/From 1/O Port 1 (P1.7)

T Alternate pin signals are in parentheses.

0

A2531-02

12-2

Figure 12-1. DMA Unit Block Diagram

intel.

DMA CONTROLLER

12.1.1 DMA Terminology

This section provides a definition of some of the terms used in this chapter to déseililidA

controller.
DMA Process

Buffer
Buffer Transfer

Data Transfer

Bus Cycle

Requester

Target

Source

Destination

A DMA process is the execution of a programmed DMA task from
beginning to end. Each DMA process requires initial programming
by the Intel386 EX processor.

A contiguous block of data.
The action required by the DMA to transfer an entire buffer.

The DMA action in which a group of bytes or words are moved
between devices by the DMA controller. A data transfer operation
may involve movement of one or many bytes.

Access by the DMA to a single byte or word.

The Requester is the device which requests service by the DMA
controller. All of the control signals which the DMA monitors or
generates for specific channels are logically related to the requester.
Only the requester is considered capable of initiating or terminating a
DMA process. The requester may be either I/O or memory and may
be the Source or the Desdtion of the transfer or neither.

The Target is the device with which the Requester wishes to
communicate. As far as the DMA process is concerned, the Target is
a slave which is incapable of control over the process. The Target
may be either 1/O or rmory, and may be either the Sourcelar
Destination of the transfer.

The Source is the memory or /O from which data is being read.

The Destination is the memory or I/O to which data is being written.

12-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.1.2 DMA Signals
Table 12-1 describes the DMA signals.

Table 12-1. DMA Signals

Device Pin
Signal or Internal Description
Signal
DRQO Device pin DMA Channel 0 Requests:
(input) The SIO channel 0 receiver, SIO channel 0 transmitter,
S100 RBFDMAO/TXEDMAO Internal SIO channel 1 receiver, SIO channel 1 transmitter, SSIO
SI01 TXEDMA1/RBFDMA1 signals transmitter, SSIO receiver, TCU counter 1 output, or an
SSIO Transmitter/Receiver external device can request DMA channel O service.
TCU Counter 1 These sources are referred to as channel O hardware
requests. You can also issue channel O software
requests by writing to the DMA software request register.
DRQ1 Device pin DMA Channel 1 Requests:
(input) The SIO channel 1 receiver, SIO channel 1 transmitter,
SI01 RBFDMA1/TXEDMA1 Internal SIO channel 0 transmitter, SIO channel O receiver, SSIO
SI00 TXEDMAO/RBFDMAO signals receiver, SSIO transmitter, TCU counter 2 output, or an
SSIO Receiver/Transmitter external device can request DMA channel 1 service.
TCU Counter 2 These sources are referred to as channel 1 hardware

requests. You can also issue channel 1 software
requests by writing to the DMA software request register.

DACKn# Device pin DMA Channel n Acknowledge:

(output) Indicates that channel n is ready to service the
requesting device. An external device uses the DRQn
pin to request DMA service; the DMA uses the DACKn#
pin to indicate that the request is being serviced.

EOP# Device pin End-of-process:

(input/open-

. As an input:
drain output) | activating this signal terminates a DMA transfer.

As an output:
This signal is activated when a DMA transfer completes.

12-4

Int9|® DMA CONTROLLER

12.2 DMA OPERATION

The following sections describe the operation of the DMA. See “Register Definitions” on page
12-28 for details on implementing DMA Controller options.

12.2.1 DMA Transfers

The DMA transfers data between a requester and a target. The data can be transferred from the
requester to target or vice versa. The target addresses and requester addresses can be located
either memory or I/O space, and data transfers can béyte ar word basis. The requester can

be in external device I/O space, in internal peripheral 1/0O space, or memory mapped 1/O. (Very
simply, the requester is the thing that activated DRJE®N external device or an internal periph-

eral requests service by activating a channel’s request input (BRE@quester in memory re-

quests service through the DMA software request register. The requester either deposits data to
or fetches data from the target.

A channel is programmed by writing to a set of requester address, target address, byte count, and
control registers. The address registers specify base addresses for the target and requester, and th
byte count registers specify the number of bytes that need to be transferred to or from the target.
Typically, a channel is programmed to transfer a block of data. Therefore, it is necessary to dis-
tinguish between the process of transferring one byte or word (data transfer) and ¢lss pfoc
transferring the entire block of data (buffer transfer).

The byte count determines the number of data transfers that make up a buffer transfer. After each
data transfer within a buffer transfer, the byte count is decremented (by 1 for byte transfers and
by 2 for word transfers) and the requester and target addresses are either incremented, decrement
ed, or left unchanged. When the byte count expires (reaches FFFFFFH), the buffer transfer is
complete. If the channel’'s end-of-process (EOP#) signal is activated before the byte count ex-
pires, the buffer transfer is terminated.

NOTE

Since the buffer transfer is complete when the byte count reaches FFFFFFH,
the number of bytes transferred is the byte count + 1.

12.2.2 Bus Cycle Options for Data Transfers

There are two bus cycle options for transferring data, fly-bytaoetycle. Fly-by dbws data to

be transferred in one bus cycle. It requires that the requester be in external I/O and the target be
in memory. The two-cycle ojain allows data to be transferred between any combination of mem-
ory and I/O through the use of a four-byte temporary buffer.

12.2.2.1 Fly-By Mode

The fly-by option performs either a memory write or a memory read bus cycle. A write cycle
transfers data from the requester to the target (memory), and a read cycle transfers data from the
target (memory) to the requester. When a data transfer is initiated, the DMA placesrbeyme
address of the target on the bus and selects the requesteettingthe DACHK# signal. The
requester then either deposits the transfer data on the data bus or fetches the transfer data off the

I 12-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

data bus, depending on the transfer direction. Since the requester is selected via tim BI§CK
nal the requester address is not meaningful in a fly-by mode transfer.

Support bgic (either external or built in to the I/O device) must be designed to monitor the
DACKn# signal and accordingly generate the correct control signals to the I/O device, since all
processor signals are used to access memory. This means that if it is an I/O to memory transfer,
this logic generates an I/O read cycle and the processor generates the memory write cycle. Ifitis
a memory to I/O transfer, the logic generates an 1/O write cycle and the processor generates the
memory read cycle. This way the data is driven by the 1/0 device and latched by the memory de-
vice during an 1/0O to memory transfer, and driven by the memory device and latched by the 1/O
device during a memory to I/O transfer.

12.2.2.2 Two-Cycle Mode

The two-cycle option first fills théour-byte temporary buffer with data from the source, then
writes that data to the destination. This method allows transfers between any combination of
memory and I/O with any combination of data path widths (8- or 16-bit). The amount of data and
the data bus widths determine the number of bus cycles required to transfer data. For example, it
takes six bus cycles to transfeur bytes of data from an 8-bit source to a 16-bit destinafom:

read cycles to fill the temporary buffer from the 8-bit source, and two eyrifes to transfer the

data to the 16-bit destination.

A buffer transfer can complete, be terminated, or be suspended before the temporary buffer is
filled from the source. If the buffer transfer completes or is terminated before the temporary buff-
er is filled, the DMA writes the partial data to the destination. When a requester suspends a buffer
transfer, the contents of the patrtially filled temporary buffer are stored until the transfer is restart-
ed. At this point, the DMA performs read cycles until the buffer is full, then performs write cycles
to transfer the data to the destination.

12.2.2.3 Programmable DMA Transfer Direction

The relationship between Requester, Target, Source, and Destination is determinefrby the
grammable DMA transfer direction. The transfer directions are defined as Write, Read, or Verify.
The following table describes which operations are being performed by the Requester and Target
for each transfer direction. In this table, the device being read is the Source, and the device being
written is the Destination. The Verify cycle is used to perform a data read only. No write cycle is
indicated or assumed in a Verify cycle. The Verify cycle is useful for validating block fill opera-
tions. An external comparator must be provided to do any comparisons on the data read.

Table 12-2. Operations Performed During Transfer

Read Write Verify
Requester Read Write Read
Target Write Read Read

A special case not indicated in this table is when the Requester is neither the Source nor Destina-
tion. One example of this case would be when the DMA is being used to transfer data from one
memory or I/O location to another, and one of the timer outputs is being used to initiate that trans-
fer. In this case, the timer outputould be selected as the DMA request source (using the

12-6

Int9|® DMA CONTROLLER

DMACFG register), but the Requester address registers would be programmed with one of the
memory addresses. It doesn'’t really matter which memory is the Requester and which is the Tar-
get, as long as the transfer direction is set to provide the correct SouMDestimation.

12.2.2.4 Ready Generation For DMA Cycles

DMA cycles are identical to any other type of memory or I/O cycles in terms of how they are
completed. A valid READY# must be sampled at the end of the last T2 state in order to complete
a DMA Read or Write cycle. This READY# may be generated externally, or internally using the
appropriate chip select unit (see Chapter 14, “CHIP-SELECT UNIT” for a description of gener-
ating READY# internally).

12.2.2.5 DMA Usage of the 4-Byte Temporary Register

Each DMA channel has a 4-byte temporary FIFO register used for temporary dataditioirzge

two cycle transfers. The way the DMA channel fills and empties this register depends on the data
transfer mode, the bus sizes of the source and destination, and the data transfer direction. The fol-
lowing describes how the Temporary Register is filled and emptied for the Read and Write Trans-
fer Directions.

Filling the Temporary Register:

Read Cycle Ina Read Cycle data is transferred from the Requester to the Target. Each request
(DRE@) in a Read Cycle results in the DMA transferring a byte (if requester is
an 8-bit device) or a word (if the requester is a 16-bit device) from the Source
(Requester) to the temporary register. This continues until either the Temporary
Register is full, or until the byte count or terminal count is reached.

Write Cycle In a Write Cycle data is transferred from the Target to the Requester. The first
request (DREQ) initiates a fill of the temporary register (four byte reads of the
Target if the Target is 8-bit, or two word reads if it is 16-bit). The buffer is
considered full if either four bytes have been stored, or if less than four bytes, the
byte count or terminal count has been reached.

Emptying the Temporary Register:

Read Cycle Once the Temporary Register has been filled the DMA empties it by doing four
byte write cycles (if Target is 8-bit), or tweord writecycles (if Target is 16-bit).
This is done in a burst-type fashion since all four requests have already occurred.
The byte counter is decremented after each write has occurred.

Write Cycle Once the Temporary Register has been filled the DMA does a single write cycle
transferring the first byte (if Requester is 8-bit), or the first word (if Requester is
16-bit). This first write cycle happens immediately after the buffer has been
filled. Each subsequent request (DR @esults in another write cycle
transferring another byte or word from the Temporary Register to the Requester.
This continues until either the Temporary Register is empty, or byte count or
terminal count has been reached.

I 12-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Figures12-2 and 12-3 are simpleadjrams of how the Temporary Register is filled and emptied
for a Read DMA cycle and a Write DMA cycle.

Filling the Temporary Register Emptying the Temporary Register

DREQn| |DREQn| |DREQn| |DREQn
#1 #2 #3 #4

Four separate requests each with a read
of the requester. Each byte is stored in
the Temporary Register.

Write Write Write Write
#1 #1 #1 #1

Once the Temporary Resister is full, the
DMA does four burst writes to the target
to empty it.

A3381-01

Figure 12-2. DMA Temporary Buffer Operation for a Read Transfer

Filling the Temporary Register Emptying the Temporary Register

DREQn
#1

A single request with four separate reads of
the target. Eacr_1 read stores a byte in the DREQn DREQn DREQn
Temporary Register. #2 #3 #4

Once the Temporary Resister is full, the
DMA does a write cycle to transfer the first
byte from the Temporary Register to the
target. On each subsequent request, the
DMA performs a write cycle transferring a
byte from the Temporary Register to the
target. This continues until empty.

A3382-01

Figure 12-3. DMA Temporary Buffer Operation for A Write Transfer

12-8

Int9|® DMA CONTROLLER

12.2.3 Starting DMA Transfers

Internal 1/0O, external I/O, or memory can request DMA service. The internal /O requesters (the
asynchronouserial 1/0,synchronous serial I/O, and timer control units) are internally connected

to the DMA request inputs. You must connect an external I/0O source to the DMA;BR®N

you are using fly-by mode, you must also connect an external I/O source to thenBAiQKals.

In addition, memory mapped I/O peripherals may use FRACKn#. DACKn# is active during

the entire fly-by mode transfer, but during a two-cyolede transfer it is only active during the
access to the requester. These sources make up the DMA hardware request sources. The DMA
unit also contains a software request register that allows you to generate software DMA requests.
This allows memory-to-memory transée Figurel2-4 shows the timing for the start of a DMA
transfer.

. Tx . Tx , Ti , Ti . T1 ., T2 ., T
TN VA A AU
o N e B S
A25:1 I I I I IX I X
BHE#, BLE# : : : : :X : k
M/10# I I I : X I k
DACKr# ; ; ; ; : i i

ADS# a a 5 5 NS N
READY# ' N s I\

x Cycle Transition to DMA DMA Cycle 1
Cycle : i

A2480-02

Figure 12-4. Start of a Two-cycle DMA Transfer | nitiated by DRQ n

12.2.4 Bus Control Arbitration

The bus arbiter services bus control requests from the two DMA channels, an external device, and
the refresh control unit. The DMA channels interface with the bus arbiter through its DMA chan-
nel request signals (DRERand its DMA channel acknowledge signals (DMAAGH. Other
external bus masters interface with the bus artiiteugh similar request and acknowledge sig-
nals, the HOLD and HOLDA signals respectively. The refresh control unit gains bus control
through an internal Refresh request. The REFRESH# status pin indicates that the Refresh Control
Unit has gained bus control and that a valid refresh cycle is being executed. After receiving a bus

12-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

control request, the bus arbiter services these requests by issuing an internal hold signal request-
ing control of the bus from the core. The core returns an internal hold acknowledge signal to the
arbiter when bus ownership is granted. The arbiter then issues an acknowledge signal to the re-
questing device.

Refresh requests always have the highest priority, while the priority structure of the other three
requests is configurable. By default, DMA channel 0 requests have the next highest priority, fol-
lowed by DMA channel 1 requests, and external bus master requests There are two methods for
changing the priority of the DMA and external bus requests, low-priority selection or rotation.
The priority requests aggrogrammed ithe DMACMD?2 register (see Figui2-24). The low-

priority selection method allows you to assign a particular request to the lowest priority level.
With the rotation method, a request is automatically assigned to the lowest priority level after it
gains bus control. The rotation method allows requesting devices to share the system bus more
evenly. With both methods, the other request priority levels are adjusted in a circular manner (see
Figure 12-5).

Low-priority)
Default Select Rotating
Highest DMA E?Cﬁmfs External Bus B_ecomes DMA
Level Channel 0 ighest —» Master Highest —3 Channel 1
Level Leve
DMA DMA External Bus
Channel 1 Channel 0 Master
Lowest | External Bus Specified DMA Assigned DMA
Level Master Lowest Channel 1 Lowest Channel 0
Level Level
After Gaining
Bus Control
A2532-01

Figure 12-5. Changing the Priority of the DMA Channel and External Bus Requests

12.2.5 Ending DMA Transfers

When a channel’s byte count expires, the buffer transfer is complete and tbéprndess

(EOP#) output is activated (Figure 12-6). A buffer transfer can be terminated before the byte
count expires by activating the EOP# input. The channel can sample the EOP# input synchro-
nously or asynchronously. With synchronous sampling, the channel samples EOP# at the end of
the last state of every data transfer. With asynchronous sampling, the DMA samples the inputs at
the beginning of every state of requester access, then waits until the end of the state to act on the
input. Figure 12-7 illustrates terminating a buffer transfer by activating the EOP# input; the figure
shows both asynchronous and synchronous EOP# sampling. EOP# sampling is programmed in
the DMACMD?2 register (Figure2t24).

12-10

Int€|® DMA CONTROLLER

Terminating a buffer transfer by deasserting DRE@n also be done either synchronously or
asynchronously. The effect is identical to that of synchronous or asynchromopbngaof
EOP#. When DRE®is used to terminate a DMA transfer in asynchronous mode, DRE Gt

be sampled inactive one CLKOUT before READY#. In synchronous mode it must be sampled
inactive at the same time as READY#. When DRESsampled active in either of the above
cases another DMA cycle is executed (depending on operating mode).

CLKOUT
ey T |
ost T N

(As an oitcp))if)t : : :_/

DMA Cycle 1 1 X Cycle

A2483-02

Figure 12-6. Buffer Transfer Ended by an Expired Byte Count

CLKOUT

ADS /N
READY# N TN\
EOP# (Async) \ /

EOP# (Sync)

DMA Cycle :

A2482-02

Figure 12-7. Buffer Transfer Ended by the EOP# Input

12-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.2.6 Buffer-transfer Modes

After a buffer transfer is completed or terminated, a channel can either become idle (require re-
programming) or reprogram itself and begin another buffer transfer after it is initiated by a hard-
ware or software request. The DMA's three buffer-transfer modes (single, autoinitialize, and
chaining) determine whether a channel becomes idle or is reprogrammed after it completes or ter-
minates a buffer transfer.

12.2.6.1 Single Buffer-Transfer Mode

By default (single buffer-transfer mode), the DMA transfers a channel’s buffer only once. When
the entire buffer of data has been transferred, the channel becomes idle and nepsb-be
grammed before it can perform another buffer transfer. The single buffer-transfer mode is useful
when you knowthe exact amount of data to be transferred and you know that there is time to re-
program the channel (requester and target addresses and byte count) before another buffer of date
needs to be transferred.

12.2.6.2 Autoinitialize Buffer-Transfer Mode

When programmed for the autoinitialize buffer-transfer mode, the DMA automatically reloads
the channel with the original transfefarmaion (the requester and target addresses and the byte
count) when the transfer completes. The channel then repeats the original buffer transfer. The au-
toinitialize buffer-transfer mode is useful when you need to transfer a fixed amount of data be-
tween the same locations multiple times.

12.2.6.3 Chaining Buffer-Transfer Mode

This mode is similar to the autoinitialize buffer-transfer mode, in that the DMA automatically re-
programs the channel after the current buffer transfer is complete. The difference is that the au-
toinitialize buffer-transfer mode uses the original transfer information, while the chaining buffer-
transfer mode uses new transfer information. While a channel is performing a chaining buffer
transfer, you write new requester and target addresses and a new byte count to it. This prepares
the channel for the next buffer transfer, without affectimg current buffer transfer. When the
channel completes its current buffer transfer, the channel is automaticaihammed with the

new transfer information that you wrote to it. The chaining buffer-transfer mode is useful when
you need to transfer data between multiple requesters and targets.

NOTE
If a channel does not contain new transfer information at the end of its buffer
transfer, the channel becomes idle, ending the chaining process; it must be
reprogrammed before it can perform another buffer transfer.

The Chaining Buffer Transfer Mode is entered from the Single Buffer Transfer Mode. The mode
registers should be programmed first, with all of the transfer modes defined as if the channel were
to operate in the Single Buffer Transfer Mode. The channel’'s base and current registers are then
loaded. When the channel has been set up in this way and the chaining interrupt service routine
is in place, the Chaining Buffer Transfer Mode can be entered by programming the Chaining reg-
ister. “Chaining Register (DMACHR)” on page 12-47 describes thisegsc

12-12

Int9|® DMA CONTROLLER

The DMAINT signal is active immediately after the Chaining Process has been entered, as the
channel then perceives the Base Registers to be empty and in need of reloading. It is important to
have the interrupt service routine in place at the time the Chaining Process is entered. The inter-
rupt request is removed when the most significant byte of the Base Target Address is loaded.

NOTE
Since the most significant byte of the Base Target Address only exists in
OFXXXH 1/O address space, the Chaining Buffer Transfer Mode cannot be
used in a DOS Compatible-only mode.

The interrupt occurs again when the first buffer transfer expires and the Current Registers are
loaded from the Base Registers. The cycle continues until the Chaining Process is disabled, or the
host fails to respond to DMAINT before the CurrentfBuexpires.

Exiting the Chaining Process can be done by resetting the Chaining Mode Register. If an interrupt
is pending for the channel when the Chaining Register is reset, the interrupt request is removed.
The Chaining Process can be temporarily disabled by setting the channel’'s mask bit in the Mask
Register.

The interrupt service routine for DMAINT halse responsibility of reloading the Base Register

as necessary. It should check theustaf the channel to determine the cause of the channel ex-
piration, etc. It should also have access to operating system information regarding the channel, if
any exists. The DMAINT service routirghould be capable of determinimdhether the chain
should becontinued or terminated and act on that information.

NOTE
The chaining buffer-transfer mode is not useful with block transfer mode since
the CPU must be able to get control of the bus before the end of the “block” in
order to reprograrthe new values into the DMA registers. Since block
transfer mode locks out any other bus requests (except refresh) the processor
cannot regain control of the bus until the entire block has been transferred.

12.2.7 Data-transfer Modes

There are three data-transfer modes (single, block, and demand) that determine how the bytes or
words that make up a buffer of data are transferred. The DMAMODL register is used to select a
channel’s data transfer mode.

Single Mode A channel request causes one byte or word (depending on the
selected bus widths) to be transferred. Single mode requires a
channel request for every data transfer within a buffer transfer.

Block Mode A channel request causes the entire buffer of data to be transferred.

Demand Mode The amount of buffer data (bytes or words) that the channel transfers
depends on how long the channel request input is held active. In this
mode, the channel continues to transfer data while the channel
request input is held active; when the signal goes inactive, the buffer

I 12-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

transfer is suspended and the channel waits for the request input to be
reactivated before it continues.

12.2.7.1 Single Data-transfer Mode

In single data-transfer mode, a DMA request causes the channel to gain bus control. The channel
transfers data (a byte or a word), decrements the buffer byte count (by 1 for byte transfers and 2
for word transfers), then relingghies bus control. The channel will then Autoinitialize if it has
been programmed to do so. The channel continues to operate in this manner until the buffer trans-
fer is complete or terminated. In this mode, the channel gives up bus control after every data trans-
fer and must regain bus control (through priority arbitration) before every data transfer. The
channel’s buffer-transfer mode determines whether the channel becomes idle or is reprogrammed
after a buffer transfer completes or is terminated.

The single data-transfer mode is compatible with all of the buffer-transfer modes. The following
flowcharts show the transfer process flav a channel programmed for single datansfer

mode with each buffer-transfer mode: single (Figure 12-8), autoinitialize (Figure 12-9), and
chaining (Figure 2-10).

12-14

DMA CONTROLLER

After initialization, the DMA channel is
programmed with the requester and
target addresses and a byte count.

DREQn
active?

DMA gains bus control.

Y

DMA transfers one byte or word of data
and decrements the byte count.

Y

DMA channel relinquishes bus control.

Byte
count = FFFFFFH
or EOP#
active?

Buffer transfer is complete, so channel
becomes idle.

A2331-02

Figure 12-8. Single Data-transfer Mode with Single Buffer-transfer

Mode

12-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

After initialization, the DMA channel is
programmed with the requester and
target addresses and a byte count.

DREQn
active?

DMA gains bus control.

Y

DMA transfers one byte or word of data
and decrements the byte count.

Y

DMA channel relinquishes bus control.

Byte
count = FFFFFFH

A

No or EOP#

active?

DMA channel is reprogrammed with the
original addresses and byte count.

A2332-02

12-16

Figure 12-9. Single Data-transfer Mode with Autoinitialize Buffer-transfer

Mode

DMA CONTROLLER

After initialization, the DMA channel is
programmed with the requester and
target addresses and a byte count.

DREQn
active?

DMA gains bus control, transfers one byte
or word of data, decrements byte count, and
then relinquishes bus control.

Is there
a new process
to set up?

Yes

Write new requester and
target addresses and a
new byte count.

Byte
count = FFFFFFH
or EOP#
active?

DMA is programmed

and byte count.

with the new addresses

Was the
channel set up
for a new
process?,

C becomes idle.

No new transfer information, so channel)

A2335-02

Figure 12-10. Single Data-transfer Mode with Chaining Buffer-transfer Mode

12-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.2.7.2 Block Data-transfer Mode

In block data-transfer mode, a channel request initiates a buffer transfer. The channel gains bus
control, then transfers the entire buffer of data. The BBi@nal only needs to be held active until
DACKnN# is active.

NOTE

Block mode, unlike the single mode, only gives up control of the bus for
DRAM refresh cycles.

As with single mode, the channel's buffer-transfer mode determines whether the channel be-
comes idle or is reprogrammed after the buffer transfer completes or is terminated.

The block data-transfer mode is compatible with the single and autoinitialize buffer-transfer
modes, but not with the chaining buffer-transfer mode. The chaining buffer-transfer mode
requires that the transfer information for the next buffer transfer be written to the channel before
the current buffer transfer completes. This is impossible with block data-transfer mode, because
the channel only relinquishes control of the bus for DRAM refresh cycles during the buffer
transfer. The following flowcharts show the transfer process flow for a channel programmed for
the block data-transfer mode with the single (Figlell) and autoinitializeF{gure 12-12)
buffer-transfer modes.

12-18

Int€|® DMA CONTROLLER

After initialization, the DMA channel is
programmed with the requester and target
addresses and a byte count.

DREQn
active?

| DMA gains bus control.

>¢

DMA transfers one byte or word of data and
decrements the byte count.

Byte
count = FFFFFFH
or EOP#
active?

No

DMA channel relinquishes bus control.

Buffer transfer is complete, so channel
becomes idle.

A2334-02

Figure 12-11. Block Data-transfer Mode with Single Buffer-transfer Mode

12-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

After initiallization, the DMA channel is
programmed with the requester and target
addresses and a byte count.

DREQn
active?

DMA gains bus control.

>
Y

DMA transfers one byte or word of data
and decrements the byte count

Byte
count = FFFFFFH
or EOP#
active?

No

*Yes

DMA channel relinquishes bus control.

Y

DMA channel is reprogrammed with the
original addresses and byte count.

A2333-02

12-20

Figure 12-12.

Block Data-transfer Mode with Autoinitialize Buffer-transfer

Mode

Int9|® DMA CONTROLLER

12.2.7.3 Demand Data-transfer Mode

In demand data-transfer mode, a channel request initiates a buffer transfer. The channel gains bus
control and begins the buffer transfer. As long as the request signain(D&®ains active, the
channel continues to perform data transfers. When therDdR§dal goes inactive, the channel
completes its current bus cycle and relinquishes bus control, suspending the buffer transfer. In this
way, the demand mode allows peripherals to access memory in small, irregular bursts without
wasting bus control time. As in other data-transfer modes, a buffer transfer is completed when the
buffer’s byte count expires or is terminated if the EOP# input is activated. At this poirttatie c

nel’'s buffer-transfer mode determines whether the channel becomes idle or is reprogrammed.

Since DR going inactive suspends a buffer transfer, the channel continually samples DRQ
during a demand buffer transfer. During a buffer tranpgferchannel can sample DRynchro-
nously or asynchronously (it always samples DRQynchronously at the start of a buffer trans-
fer). With synchronous sampling, the channel samplesD&@he end of the last state of every
data transfer. With asynchroms sampling, the channel samples DR®the beginning of every
state, then waits until the end of the state to act on the input. See R2gliBe The DRQ@ sam-

pling is programmed in the DMACMD?2 register (Figure 12-24).

CLKOUT
ADS#
READY#
DRQn (Async)
DRQn (Sync) '
)) : X
DMA Cycle i Cycle

A2481-02

Figure 12-13. Buffer Transfer Suspended by the Deactivation of DRQ n

The demand data-transfer mode is compatible with all of the buffer-transfer modes. The follow-
ing flowcharts show the transfer process flow for a chapredrammed for the desnd data-
transfer mode with each buffer-transfer mode: single (Fidix€l4), autoinitialize (Figure
12-15), and chaining (Figure 12-16).

12-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

After initialization, the DMA channel is
programmed with the requester and target
addresses and a byte count.

DREQn
active?

DMA gains bus control.

Y

DMA transfers one byte or word of data
and decrements the byte count.

>

Byte

DMA channel
relinquishes DREQn count = FFFFFFH
bus control. active? or EOP#

active?

| DMA channel relinquishes bus control. |
Y

Buffer transfer is complete, so channel
becomes idle.

A2338-02

Figure 12-14. Demand Data-transfer Mode with Single Buffer-transfer Mode

12-22

DMA CONTROLLER

After initialization, the DMA channel is
programmed with the requester and target
addresses and a byte count.

DMA channel
relinquishes
bus control.

DREQn
active?

DMA gains bus control.

w

DMA transfers one byte or word of data
and decrements the byte count.

Byte
count = FFFFFFH
or EOP#
active?

DREQn
active?

DMA channel relinquishes bus control.

Y

DMA channel is reprogrammed with the

original addresses and byte count.

A2339-02

Figure 12-15. Demand Data-transfer Mode with Autoinit ialize Buffer-transfer

Mode

12-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

After initialization, the DAM channel is
programmed with the requester and target
addresses and a byte count.

Write new
requester

and target
addresses
and a new
byte count.

DREQn
active?

Is there
a new process
to set up?

DMA gains bus control.

)i

DMA transfers one byte or word of data
and decrements the byte count.

DMA channel
relinquishes
bus control.

Byte
count = FFFFFFH
or EOP#

DREQn
active?

active?

DMA channel relinquishes bus control. |

-

DMA is
programmed
Yes | with the new
addresses and
byte count.

Was the
channel set up
for a new
process?

No new transfer information, so channel
becomes idle.

A2336-02

12-24

Figure 12-16. Demand Data-transfer Mode with Chaining Buffer-transfer Mode

Int9|® DMA CONTROLLER

12.2.8 Cascade Mode

Cascade mode allows an exter®2B7A or andter DMA-type device to gain bus control. A cas-
caded device requests bus control by holding a channel's request inpuh)2&{ye. Once
granted bus control, the cascaded device remains bus master until it relinquishes bus control by
deactivating DRQ.

If a refresh request occurs while a cascaded device has bus control, the cascaded device must
deassert its request or the refresh cycle will be missed. The following steps take place in response
to a refresh request.
1. The channel deasserts its acknowledge signal (D#Q ko0 the cascaded device.
— At this point, the cascaded device should relinquish bus control by removing.DRQ

2. As soon as DRQis removed, the refresh cycle is started.

— At this point, if the cascaded device wants to regain bus control after the refresh cycle,
it must reassert DR

3. Ifthe cascaded device has reasserted DRI@EnN the refresh cycle is complete, the
channel reasserts DAGI, giving bus control back to the cascaded device without bus
priority arbitration.

The following flowchart (Figure 12-17) showsig process flow.

I 12-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

After initialization, the DMA channel
is programmed.

Cascaded device gains bus control.

3|
>

Refresh Cascaded
cycle is device Refresh DR
d t :Qn
performed. |-€&— D?;Sfffs request? active?
relinquishing
bus control.

Cascaded device relinquishes bus
control.

(Cascade cycle complete.)

A2337-02

Figure 12-17. Cascade Mode

12.2.9 DMA Interrupts

Each channel contains two interrupt causing signals, chaining status and transfer complete. When
a channel is configured for the chaining buffer-transfer mode, the chaining status signal indicates
that the channel has started its buffer transfer and new transfer information can be written without
affecting the current buffer transfer. Once activated, the chaining status signal remains active until
the most significant byte of the base target address is written, or resetting the chaining enable bit.

The transfer complete status signal indicates that the channel has finished a buffer transfer —
either the channel’s byte count has expired or the buffer transfer was terminated by an EOP#
input. DMACLRTC clears the DMAINT signal going to the Interrupt Control Unit. DMACLRTC

is executed by writing to location FO1EH; the data written to the location is immaterial — writing
any data to the location causes the DMA to deactivate the transfer complete status signal.

12-26

Int9|® DMA CONTROLLER

Thefour interrupt source signals (two per channel) are internally connected (ORed) to the inter-
rupt request output (DMAINT). When an interrupt from DMAINT is detected, you can determine
which signal caused the request by reading the DMA interrupt status register.

12.2.10 8237A Compatibility

Although the DMA is an enhancement over the 8237A, you can configure it to operate in an
8237A-compatible mode. A list of the features common to the DMA and 8237A and a list of
DMA enhancements follow.

Features common to the DMA and 8237A:
¢ Data-transfer modes (single, block, and demand)
¢ Buffer-transfer modes (single and autoinitialize)
* Fly-by data transfer bus cycle option
* Programmed via 8-biegisters

* Transfers between memory and I/O (target must be in memory and requester must be
external)

DMA enhancements:
¢ Chaining buffer-transfer mode

¢ Two-cycle data transfer bus cycle option (provides byte assembly and allonyrie-
memory transfers using only one channel)

¢ Transfers between any combination of memory and 1/0O

* Address registers for both the target and the requester; addresses can be incremented,
decremented, or left unchanged during a buffer transfer

A channel is configured for 8237A compatibility by enabling only the common features and lim-
iting the byte count and the target address modification capability. The 8237A uses a 16-bit target
address and a 16-bit byte count, while the DMA uses a 26-bit target address and a 24-bit byte
count. Therefore, for compatibility, the DMA contains an overflow register that aljowso
configure the target and byte count so that éiméylower 16 bits are modified during buffer trans-

fers. With this configuration, the upper byte count bits are ignored; the byte count expires when
it is decremented from 0000H to FFFFH (16-bit versus 24-bit rollovers).

I 12-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3 REGISTER DEFINITIONS

Table 12-3 lists the ggsters associated with the DMA unit, and the following sections contain bit
descriptions for each register.

Table 12-3. DMA Registers (Sheet 1 of 3)

. Expanded PC/AT* _
Register Address Address Description

PINCFG F826H — Pin Configuration:

(read/write) Connects the DMA channel acknowledge
(DMAACKO#, DMAACK1#) and end-of-process
signals to package pins DACKO0#, DACK1# and
EOP#, respectively.

DMACFG F830H — DMA Configuration:

(read/write) Determines which signal is connected to the DMA
channel request inputs (DREQn). Masks the channel
acknowledge signals (DMAACKO#, DMAACK1#),
which is useful when using internal requesters.

DMACMD1 FO08H 0008H DMA Command 1:

(write only) Simultaneously enables or disables both DMA
channels. Enables the rotating method for changing
the bus control priority structure.

DMAOREQO FO10H — Channel 0 and 1 Requester Address:

DMAOREQ1 FO10H - Contains channel n's 26-bit requester address.

DMAOREQ2 FO11H - During a buffer transfer, this address may be

DMAOREQS3 FO11H - incremented, decremented, or left unchanged.

Reading these registers returns the current address.
DMA1REQO FO12H —

DMA1REQ1 FO12H —
DMA1REQ2 FO13H —
DMA1REQ3 FO13H —
(read/write)

DMAOTARO FOOOH 0000H Channel 0 and 1 Target Address:

DMAOTAR1 FOOOH 0000H Contains channel n's 26-bit target address. During a
DMAOTAR2 FO87H 0087H buffer transfer, this address may be incremented,

DMAOTAR3 FO86H - decremented, or left unchanged. Reading these
registers returns the current address.

DMAITARO FO02H 0002H

DMA1TAR1 FO02H 0002H

DMA1TAR2 FO83H 0083H

DMAI1TAR3 FO85H —

(read/write)

DMAOBYCO FO01H 0001H Channel 0 and 1 Byte Count:

DMAOBYC1 FOO1H 0001H Contains channel n's 24-bit byte count. During a

DMAOBYC2 FO98H - buffer transfer, this byte count is decremented.
Reading these registers returns the current byte

DMA1BYCO FOO3H 0003H count.

DMA1BYC1 FOO3H 0003H

DMA1BYC2 FO99H —

(read/write)

12-28

intel.

DMA CONTROLLER

Table 12-3. DMA Registers (Sheet 2 of 3)

Register

Expanded
Address

PC/AT*
Address

Description

DMASTS
(read only)

FOO08H

0008H

DMA Status:

Indicates whether a hardware request is pending on
channel 0 and 1. Indicates whether channel O’s or
channel 1's byte count has expired.

DMACMD2
(write only)

FO1AH

DMA Command 2:

Assigns a bus control requester (DMA channel 0,
DMA channel 1, or external bus master) to the lowest
priority level. Selects the type of sampling for the end-
of-process (EOP#) and the DMA request (DRQn)
inputs. The DMA can sample these signals
asynchronously or synchronously.

DMAMOD1
(write only)

FOOBH

000BH

DMA Mode 1:

Determines the data-transfer mode. Enables the
autoinitialize buffer-transfer mode. Determines the
transfer direction (whether the target is the
destination or source for a transfer). Determines
whether the DMA increments or decrements the
target address during a buffer transfer (only if the
DMA is set up to modify the target address; see
DMAMOD?2).

DMAMOD?2
(write only)

FO1BH

DMA Mode 2:

Selects the data transfer bus cycle option. Specifies
whether the requester and target are in memory or
I/O. Determines whether the DMA modifies the target
and requester addresses. Determines whether the
DMA increments or decrements the requester
address during a buffer transfer (only if the DMA is set
up to modify the requester address).

DMASRR
(read/write)

FOO9H

0009H

DMA Software Request:

Write Format

Generates a channel 0 and/or a channel 1 software
request.

Read Format

Indicates whether a software request is pending on
DMA channel 0 or 1.

DMAMSK
(write only)

FOOAH

000AH

DMA Individual Channel Mask:

Individually masks (disables) channel O's and 1's
hardware request input (DREQO and DREQ1). This
does not mask software requests.

DMAGRPMSK
(read/write)

FOOFH

000FH

DMA Group Channel Mask:

Simultaneously masks (disables) both channels’
hardware request inputs (DREQO and DREQ1). This
does not mask software requests.

DMABSR
(write only)

FO18H

DMA Bus Size:

Determines the requester and target data bus widths
(8 or 16 bits).

12-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table 12-3. DMA Registers (Sheet 3 of 3)

Register Expanded PC/AT” Description

9 Address Address P

DMACHR FO19H DMA Chaining:

(write only) Enables chaining buffer-transfer mode for a specified
channel.

DMAIEN FO1CH DMA Interrupt Enable:

(read/write) Connects the channel transfer complete status
signals to the interrupt request output (DMAINT).

DMAIS FO19H DMA Interrupt Status:

(read only) Indicates which signal generated an interrupt request:
channel 0 transfer complete, channel 1 transfer
complete, channel 0 chaining, or channel 1 chaining
status.

DMAOVFE FO1DH DMA Overflow Enable:

(read/write) Included for 8237A compatibility. Controls whether all

26 bits or only the lower 16 bits of the requester and
target addresses are incremented or decremented
during buffer transfers. Controls whether the byte
count is 24 bits or 16 bits.

12-30

intel.

12.3.1 Pin Configuration Register (PINCFG)

Use PINCFG to connect DACKO#, EOP#, and DACK1# to package pins.

DMA CONTROLLER

Pin Configuration Expanded Addr: F826H
PINCFG ISA Addr: —
(read/write) Reset State: 00H
7 0
— PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:
0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.
5 PM5 Pin Mode:
0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.
1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.
4 PM4 Pin Mode:
0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.
3 PM3 Pin Mode:
0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.
2 PM2 Pin Mode:
0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.
1 PM1 Pin Mode:
0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.
0 PMO Pin Mode:
0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

Figure 12-18. Pin Configuration Register (PINCFG)

12-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.2 DMA Configuration Register (DMACFG)

Use DMACEFG to select one of the hardware sources for each channel and to mask the DMA ac-
knowledge (DMAACKn#) signals when using internal requesters.

DMA Configuration Expanded Addr: F830H

DMACFG ISA Addr: —

(read/write) Reset State: 00H

7 0

DIMSK | DIREQ2 | DIREQL | D1IREQO H DOMSK | DOREQ2 | DOREQ1 | DOREQO

Bit Bit)
Number Mnemonic Function
7 D1IMSK DMA Acknowledge 1 Mask:
0 = DMA channel 1's acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1's acknowledge (DMAACKZ1#) signal. Useful
when channel 1's request (DREQ1) input is connected to an internal
peripheral.
6-4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1's
request input (DREQ1).

000 = DRQL1 pin (external peripheral)

001 = SIO channel 1's receive buffer full signal (RBFDMA1)

010 = SIO channel 0's transmit buffer empty signal (TXEDMAQ)
011 = SSIO receive holding buffer full signal (SSRBF)

100 = TCU counter 2's output signal (OUT2)

101 = SIO channel 0's receive buffer full signal (RBFDMAQ)

110 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 DOMSK DMA Acknowledge 0 Mask:

0 = DMA channel 0's acknowledge (DMAACKO#) signal is not masked.

1 = Masks DMA channel 0's acknowledge (DMAACKO#) signal. Useful
when channel 0's request (DREQO) input is connected to an internal
peripheral.

2-0 DOREQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0's
request input (DREQO).

000 = DRQO pin (external peripheral)

001 = SIO channel 0's receive buffer full signal (RBFDMAO)

010 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
011 = SSIO transmit holding buffer empty signal (SSTBE)

100 = TCU counter 1's output signal (OUT1)

101 = SIO channel 1's receive buffer full signal (RBFDMA1)

110 = SIO channel 0's transmit buffer empty signal (TXEDMAO)
111 = SSIO receive holding buffer full signal (SSRBF)

Figure 12-19. DMA Configuration Register (DMACFG)

12-32

Int9|® DMA CONTROLLER

12.3.3 Channel Registers

To program a DMA channel’s requester and target addresses and its byte count, write to the DMA
channel registers. Some of the channel registers require the use of a byte pointer (BP) flip-flop to
control the access to the upper and lower bytes. After you write or read a register that requires a
byte pointer specification, the DMA toggles the byte pointer. For example, writing to
DMAOTARO with BP=0 causes the DMA to set BP. The clear byte pointer software command
(DMACLRBP) is available so that you can force BP to a known state (0) before writing to the
channel registers. Issue DMACLRBP by writing to location FOOCH or 000CH; the data written
to the location doesn’t matter —writing to the location is all that is necessary to cause the DMA
to clear the byte pointer.

DMA Channel 0

24 16 8 0
Requester Address DMAOREQ3 ‘ ‘ DMAOREQ2 ‘ ‘ DMAOREQ1 ‘ ‘ DMAOREQO
FO11H (BP=1) FO11H (BP=0) FO10H (BP=1) FO10H (BP=0)

24 16 8 0
Target Address DMAOTARS | | DMAOTAR2 | | DMAOTARL | | DMAOTARO
FO86H FO87H FOOOH (8p=1) FOOOH (8P-0)

16 8 0

Byte Count DMAOBYC2 | | DMAOBYC1 | | DMAOBYCO

FO98H FOO1H (BP=1) FOO1H (BP=0)
DMA Channel 1

24 16 8 0
Requester Address DMA1REQ3 ‘ ‘ DMALREQ? ‘ ‘ DMALREQ1 ‘ ‘ DMALREQO
FO13H (BP=1) FO13H (BP=0) FO12H (BP=1) FO12H (BP=0)

24 16 8 0
Target Address DMAITAR3 H DMAITAR2 H DMAITAR1 H DMALTARO
FO85H FO83H FO02H (8P-1) FOO2H (BP=0)

16 8 0

Byte Count ‘ DMALBYC2 ‘ ‘ DMA1BYC1 ‘ ‘ DMALBYCO

FO99H FOO3H (BP=1) FOO3H (BP=0)

Figure 12-20. DMA Channel Address and Byte Count Registers
(DMANREQn, DMANTARNn, DMANBYCn)

12-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

NOTE

The value you write to the byte count register must be one less than the

number of bytes to be transferred. To transfer one byte, write zero to the byte

count register (byte count = number of bytdg. To transfer oneord, write
one (byte) to the byte count register (byte count = [numbemoods X 2]-1).

12.3.4 Overflow Enable Register (DMAOVFE)

Use DMAOVFE to specify whether all 26 bits or only the lower 16 bits of the target and requester
addresses are incremented or decremented during buffer transfers and to determine whether all
24 bits of the byte count or only the lower 16 bits of the byte count are decremented during buffer
transfers. A byte count configured for 16-bit decrementing expires when it is decremented from

0OOOH to OFFFFH.

DMA Overflow Enable

Expanded Addr: FO1DH

DMAOVFE ISA Addr: —
(read/write) Reset State: 0AH
7
— — — — || rov1 TOV1 ROVO TOVO
Bit Bit Function
Number Mnemonic
7-4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
3 ROV1 Channel 1 Requester Overflow Enable:
0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement
2 TOV1 Channel 1 Target & Byte Counter Overflow Enable:
0 = lowest 16 bits of target address and byte count
increment/decrement
1 = all bits of target address and byte count increment/decrement
1 ROVO Channel 0 Requester Overflow Enable:
0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement
0 TOVO Channel 0 Target & Byte Counter Overflow Enable:
0 = lowest 16 bits of target address and byte count
increment/decrement
1 = all bits of target address and byte count increment/decrement

12-34

Figure 12-21. DMA Overflow Enable Register (DMAOVFE)

intel.

Int9|® DMA CONTROLLER

12.3.5 Command 1 Register (DMACMD1)

Use DMACMD1 to enable both channels and to select the rotating method for changing the bus
control priority structure.

DMA Command 1 Expanded Addr: FOO8H

DMACMD1 ISA Addr: 0008H

(write only) Reset State: 00H

7 0
— —_ — PRE || — CE — —
Bit Bit)

Number Mnemonic Function
7-5 — Reserved; for compatibility with future devices, write zeros to these bits.
4 PRE Priority Rotation Enable:

0 = Priority is fixed based on value in DMACMD?2.

1 = Enables the rotation method for changing the bus control priority
structure. That is, after the external bus master or one of the DMA
channels is given bus control, it is assigned to the lowest priority
level.

— Reserved; for compatibility with future devices, write zero to this bit.

CE Channel Enable:

0 = Enables channel 0 and 1.
1 = Disables the channels.

1-0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 12-22. DMA Command 1 Register (DMACMD1)

12-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.6 Status Register (DMASTS)

Use DMASTS to check the status of the channels individually. The DMA sets bits in this register
to indicate that a channel has a hardware request pendingt@ channel's byte count has ex-
pired.

DMA Status Expanded Addr: FOO8H

DMASTS ISA Addr: 0008H

(read only) Reset State: 00H

7 0
— — R1 RO ‘ ‘ — — TC1 TCO
Bit Bit Function

Number | Mnemonic

7-6 — Reserved. These bits are undefined.

5 R1 Request 1:

When set, this bit indicates that channel 1 has a hardware request
pending. When the request is removed, this bit is cleared.

4 RO Request 0:

When set, this bit indicates that channel 0 has a hardware request
pending. When the request is removed, this bit is cleared.

3-2 — Reserved. These bits are undefined.

1 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC1 in DMAIS.

0 TCO Transfer Complete O:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TCO in DMAIS.

Figure 12-23. DMA Status Register (DMASTS)

12-36

intel.

DMA CONTROLLER

12.3.7 Command 2 Register (DMACMD2)

Use DMACMD?2 to select the DRE®and EOP# sampling: asynchronous or synchronous. Bus
timing diagrams that show the differences between asynchronous and synchronous sampling are

shown in Figure 12-5 on page 12-10 and Figure 12-13 on&@4.Also, use DMACMD?2 to
assign a particular bus request to the lowest priority level for fixed priority mode.

7

DMA Command 2
DMACMD2
(write only)

Expanded Addr: FO1AH
ISA Addr: —
Reset State: 08H

_ _ H PL1 PLO ES DS

Bit
Number

Bit
Mnemonic

Function

-4

Reserved; for compatibility with future devices, write zeros to these bits.

3-2

PL1:0

Low Priority Level Set:

Use these bits to assign a particular bus request to the lowest priority
level in fixed priority mode.

00 = Assigns channel 0's request (DREQO) to the lowest priority level

01 = Assigns channel 1's request (DREQ1) to the lowest priority level

10 = Assigns the external bus master request (HOLD) to the lowest
priority level

11 = Reserved

ES

EOP# Sampling:

0 = Causes the DMA to sample the EOP# input asynchronously.
1 = Causes the DMA to sample the end-of-process (EOP#) input
synchronously.

DS

DREQn Sampling:

0 = Causes the DMA to sample the DREQn inputs asynchronously.
1 = Causes the DMA to sample the channel request (DREQn) inputs
synchronously.

Figure 12-24. DMA Command 2 Register (DMACMD?2)

12-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.8 Mode 1 Register (DMAMOD1)

Use DMAMODL1 to select a particular channel’s data-transfer mode and transfer direction and to
enable the channel’s auto-initialize buffer-transfer mode. You can configure the DMA to modify
the target address during a buffer transfer by clearing DMAMOD2.2, then use DMAMOD1.5 to
specify how the channel modifies the address.

12-38 I

Int9|® DMA CONTROLLER

DMA Mode 1 Expanded Addr: FOOBH
DMAMOD1 ISA Addr: 000BH
(write only) Reset State: O00H
7 0
DTM1 DTMO TI Al ‘ ‘ TD1 TDO 0 cs
Bit Bit Function
Number Mnemonic
7-6 DTM1:0 Data-transfer Mode:
00 = Demand
01 = Single
10 = Block
11 = Cascade
5 TI Target Increment/Decrement:

0 = Causes the target address to be incremented after each data
transfer in a buffer transfer.

1 = Causes the target address for the channel specified by bit O to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant
(DMAMOD2.2 = 1), this bitis a don't care.
4 Al Autoinitialize:

0 = Disables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

1 = Enables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

3-2 TD1:0 Transfer Direction:
Determines the transfer direction for the channel specified by bit 0.

00 = Target is read; nothing is written (used for testing)
01 = Data is transferred from the requester to the target
10 = Data is transferred from the target to the requester
11 = Reserved

Note: In cascade mode, these bits become don't cares.

0 Must be 0 for correct operation.

0 Cs Channel Select:

0 = The selections for bits 7-2 affect channel 0.
1 = The selections for bits 7-2 affect channel 1.

Figure 12-25. DMA Mode 1 Register (DMAMOD1)

12-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.9 Mode 2 Register (DMAMOD?2)

Use DMAMOD? to select the data transfer bus cycle option, specify whether the requester and
target are in memory or I/O, and determine whether the DMA modifies the target and requester
addresses. If you set up the DMA to modify the requester address, use DMAMOD?2 to determine
whether the DMA increments or decrements the requester address during a buffer transfer.

12-40 I

intel.

DMA CONTROLLER

DMA Mode 2 Expanded Addr: FO1BH
DMAMOD2 ISA Addr: —
(write only) Reset State: 00H
7 0
BCO RD D R || R TH 0 cs
Bit Bit)
Number Mnemonic Function
7 BCO Bus Cycle Option:
0 = Selects the fly-by data transfer bus cycle option for the channel specified
by bit 0.
1 = Selects the two-cycle data transfer bus cycle option for the channel
specified by bit 0.
6 RD Requester Device Type:
0 = Clear this bit when the requester for the channel specified by bit 0 is in
memory space.
1 = Set this bit when the requester for the channel specified by bit 0 is in I/O
space.
This bit is ignored if BCO is cleared.
5 TD Target Device Type:
0 = Clear this bit when the target for the channel specified by bit 0 is in
memory space.
1 = Set this bit when the target for the channel specified by bit 0 is in I/O
space.
4 RH Requester Address Hold:
0 = Causes the address to be modified (incremented or decremented,
depending on DMAMOD?2.3).
1 = Causes the requester’s address for the channel specified by bit 0 to
remain constant during a buffer transfer.
3 RI Requester Address Increment/Decrement:
0 = Causes the requester address to be incremented after each data transfer
in a buffer transfer.
1= Causes the requester address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.
Note: When the target address is programmed to remain constant
(DMAMOD2.4 = 1), this bit is a don't care.
2 TH Target Address Hold:
0 = Causes the address to be modified (incremented or decremented,
depending on DMAMODL.5).
1= Causes the target's address for the channel specified by bit 0 to remain
constant during a buffer transfer.
1 0 Must be 0 for correct operation.
0 CSs Channel Select:
0 = The selections for bits 7-2 affect channel 0.
1 = The selections for bits 7-2 affect channel 1.

Figure 12-26. DMA Mode 2 Register (DMAMOD?2)

12-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

12.3.10 Software Request Register (DMASRR)

Write DMASRR to issue software DMA service requests. Software requests are subject to bus
control priority arbitration with all other software and hardware requests. A software request ac-
tivates the internal channel request signal. This signal remains active until the channel completes
its buffer transfer (either by an expired byte count or an EOP# input). In the demand data-transfer
mode, a buffer transfer is suspended by deactivating the channel request signal. Because you can-
not deactivate the internal channel request signal before the end of a buffer transfer, you cannot

use software requests with demand data-transfer mode.

DMA Software Request (write format) Expanded Addr: FOO9H
DMASRR ISA Addr: 0009H
Reset State: O00OH
7 0
— — — - || = SR 0 cs
Bit Bit Function
Number Mnemonic
7-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 SR Software Request:
Setting this bit generates a software request for the channel specified by
bit 0. When the channel’s buffer transfer completes, this bit is cleared.
0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

Figure 12-27. DMA Software Request Register (DMASRR — write format)

12-42

Int9|® DMA CONTROLLER

Read DMASRR to see whether a software request for a particular channel is pending. Each re-
quest bit is cleared uporefiminal Count or external EOP#. When in auto-initialize mode, both
bits are cleared when a Terminal Count or external EOP# occurs.

DMA Software Request (read format) Expanded Addr: FOO9H
DMASRR ISA Addr: 0009H
Reset State: O00OH
7 0
— — — -]| - — SR1 SRO
Bit Bit Function
Number Mnemonic
7-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
1 SR1 Software Request 1:
When set, this bit indicates that channel 1 has a software request
pending.
0 SRO Software Request 0:
When set, this bit indicates that channel 0 has a software request
pending.

Figure 12-28. DMA Software Request Register (DMASRR — read format)

12-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

12.3.11 Channel Mask and Group Mask Registers (DMAMSK and DMAGRPMSK)

Use the DMAMSK and DMAGRPMSK registers to disable (mask) or enable channel hardware
requests. DMAMSK allows you to disable or enable hardware requests for only one channel at a
time, while DMAGRPMSK allows you to disable or enable hardware requests for both channels

at once.

NOTE

Each mask bit is set when its associated chgmoeluces an End-of-Press if
the channel is ngirogrammed foAutoinitialize. Software must then clear the
appropriate mask bit to allow further DRE@quests from initiating

transfers.

DMA Individual Channel Mask Expanded Addr: FOOAH

DMAMSK ISA Addr: 000AH

(write only) Reset State: 04H

7 0

— —_ — - || = HRM 0 cs
Bit Bit Function
Number Mnemonic

7-3 — Reserved; for compatibility with future devices, write zeros to these bits.

2 HRM Hardware Request Mask:
0 = Unmasks (enables) hardware requests for the channel specified by

bit 0.
1 = Masks (disables) hardware requests for the channel specified by
bit 0.
NOTE: When this bit is set, the channel can still receive software
requests.
0 Must be 0 for correct operation.

0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

12-44

Figure 12-29. DMA Channel Mask Register (DMAMSK)

Int9|® DMA CONTROLLER

DMA Group Channel Mask Expanded Addr: FOOFH

DMAGRPMSK ISA Addr: 000FH

(read/write) Reset State: 03H

7 0
_ — _ — ‘ ‘ — — HRM1 HRMO
Bit Bit Function

Number Mnemonic
7-2 — Reserved. These bits are undefined; for compatibility with future devices,

do not modify these bits.

1 HRM1 Hardware Request Mask 1:

0 = Channel 1's hardware requests are not masked.
1 = Masks (disables) channel 1's hardware requests. When this bit is
set, channel 1 can still receive software requests.

0 HRMO Hardware Request Mask 0:

0 = Channel 0’s hardware requests are not masked.
1 = Masks (disables) channel 0's hardware requests. When this bit is
set, channel 0 can still receive software requests.

Figure 12-30. DMA Group Channel Mask Register (DMAGRPMSK)

12-45

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.12 Bus Size Register (DMABSR)
Use DMABSR to determine the requester and target data bus widths (8 or 16 bits).

DMA Bus Size Expanded Addr: FO18H
DMABSR ISA Addr: —
(write only) Reset State: X1X10000B
7 0
I S I O N R
Bit Bit Function
Number Mnemonic
— Reserved; for compatibility with future devices, write zero to this bit.
6 RBS Requester Bus Size:
Specifies the requester’s data bus width for the channel specified by bit
0.
0 = 16-bit bus
1 = 8-bit bus
— Reserved; for compatibility with future devices, write zero to this bit.
TBS Target Bus Size:
Specifies the target’s data bus width for the channel specified by bit 0.
0 = 16-bit bus
1 = 8-bit bus
3-1 0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selections for bits 7—4 affect channel 0.
1 = The selections for bits 7—4 affect channel 1.

Figure 12-31. DMA Bus Size Register (DMABSR)

12-46

Int9|® DMA CONTROLLER

12.3.13 Chaining Register (DMACHR)

Use DMACHR to enable or disable the chaining buffer-transfer furdeselected channel. The
following steps describe how to set up a channel to perform chaining buffer transfers.

1. Set up the chaining interrupt (DMAINT) service rioet
Configure the channel for the single buffer-transfer mode.
Progranthe mode registers.

Progranthe target address, requester address, and byte count registers.

aor oW

Enable the channel for the chaining buffer-transfer mode. (This enables the DMAINT
output.)

6. Enable the DMAINT interrupt in the ICU and service it. (The service rostineld load
the transfer information for the next buffer transfer.)

7. Enable the channel by unmasking DRE&pd setting bit 2 in DMACMDL1.

From this point, the chaining interrupt indicates each time the channel requires new transfer in-
formation. The cycle continues as long as the chaining buffer-transfer mode is enabled and new
transfer information is written to the channel. New transfer information must be written to the
channel before the channel’'s current buffer transfer completes.

DMA Chaining Expanded Addr: FO19H
DMACHR ISA Addr: —
(write only) Reset State: 00H
7 0
— — — -]| - CE 0 cs
Bit Bit Function
Number Mnemonic
7-3 — Reserved; for compatibility with future devices, write zeros to these bits.
2 CE Chaining Enable:
0 = Disables the chaining buffer-transfer mode for the channel specified
by bit 0.
1 = Enables the chaining buffer-transfer mode for the channel specified
by bit 0.
0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

Figure 12-32. DMA Chaining Register (DMACHR)

12-47

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.14 Interrupt Enable Register (DMAIEN)

Use DMAIEN to individually connect channel O's and 1's transfer complete signal to the
DMAINT interrupt request output.

DMA Interrupt Enable Expanded Addr: FO1CH

DMAIEN ISA Addr: —

(read/write) Reset State: 00H

7 0
— —_ — - || = — TC1 TCO
Bit Bit)

Number Mnemonic Function
7-2 — Reserved. These bits are undefined; for compatibility with future devices,

do not modify these bits.

1 TC1 Transfer Complete 1:

0 = Disables Transfer Complete interrupts.

1 = Connects channel 1's transfer complete signal to the interrupt
control unit's DMAINT input.

Note: When channel 1 is in chaining mode (DMACHR.2=1 and
DMACHR.0=1), this bit is a don’t care.

0 TCO Transfer Complete 0:

0 = Disables Transfer Complete interrupts.
1 = Connects channel 0's transfer complete signal to the interrupt
control unit's DMAINT input.

Note: When channel 0 is in chaining mode (DMACHR.2=1 and
DMACHR.0=0), this bit is a don’t care.

Figure 12-33. DMA Interrupt Enable Register (DMAIEN)

12-48

Int9|® DMA CONTROLLER

12.3.15 Interrupt Status Register (DMAIS)

DMAIS indicates which source activated the DMA interrupt request signal (channel O transfer
complete, channel 1 transfer complete, channel 0 chaining, or channel 1 chaining).

DMA Interrupt Status Expanded Addr: FO19H

DMAIS ISA Addr: —

(read only) Reset State: 00H

7 0
‘ — ‘ — ‘ TC1 ‘ TCO ‘ ‘ — ‘ — ‘ ci ‘) ‘

Bit Bit Function

Number Mnemonic

7-6 — Reserved. These bits are undefined.

5 TC1 Transfer Complete 1:

When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 1 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don't care.

4 TCO Transfer Complete O:

When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 0 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.

Note: In chaining mode, this bit becomes a don't care.

3-2 — Reserved. These bits are undefined.

1 Ci1 Chaining Interrupt 1:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 1. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don't care.

0 CIo Chaining Interrupt O:

When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 0. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)

Note: Outside chaining mode, this bit becomes a don't care.

Figure 12-34. DMA Interrupt Status Register (DMAIS)

12-49

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

12.3.16 Software Commands

The DMA contains four software commands: clear byte pointer, clear DMA, clear ngistiere

and clear transfer complete signal. Each software command has an I/O address associated with it
(see Tabld 2-4). To issue a sofave command, write to its I/O address; the data writtegsn't

matter —writing to the location is all that is necessary.

Table 12-4. DMA Software Com mands

Name .
Command Functions
(Address)

DMACLRBP Clear byte pointer Resets the byte pointer flip-flop. Perform this

(OFOOCH or command at the beginning of any access to the

000CH) channel registers, to ensure a predictable place in
the register programming sequence.

DMACLR Clear DMA Sets all DMA functions to their default states.

(OFOODH or

000DH)

DMACLRMSK | Clear mask register Simultaneously clears the mask bits of all channels

(OFOOEH or (enabling all channels).

000EH)

DMACLRTC Clear transfer complete signal Resets the transfer complete signal (DMAINT).

(OFO01EH) Allows the source of the DMA request (hardware or
software) to acknowledge the completion of a
transfer process.

12.4 DESIGN CONSIDERATIONS

EOP# requires an external pull-up resistor. To determine the maximum value, the rise time must
be less than three bus cycles. To determine the minimum value, uge spetification from the
Intel386™ EX Embedded Microprocesstatasheet (order number 272420).

12.5 PROGRAMMING CONSIDERATIONS
Consider the following when pgramming the DMA.

* The DMA transfers data between a requester and a target. The transfer direction is
programmable and determines whether the requester or the tatgesairce or
destination of a transfer.

* The two-cycle data transfer bus cycle option uses a four-byte temporary buffer. During a
buffer transfer, the channel fills the temporary buffer from the source before writing any
data to the destination. Therefore, the number of bus cycles that it takes to transfer data
from the source to the destination depends on the amount of data to tazlsfiee source
and destination data bus widths.

* Each channel contains a 26-bit requester add?&sbit target address, and 24-bit byte
count. These values are programmed through the use of 8-bit registee of which are
multiplexed at the same addresses. A byte pointer (BP) controls the access to these
multiplexed registers. After you write or read a register that requires a byte pointer
specification, the channel toggles the byte pointer. For example, writing to DMAOTARO

12-50

Int9|® DMA CONTROLLER

with BP=0 causes the DMA to set BP. The clear byte pointer software command
(DMACLRBP) allows you to force BP to a known state (0) before writinpéoregisters.

* The target and requester addresses are incremented, decremented, or left unchanged and the
byte count is decremented after each data transfer within a buffer transfer. Reading a
register returns the current (or modified) value rather than the original programmed values.

* The chaining buffer-transfer mode requires that you write new transfer information to the
channel before the current buffer transfer completes. The channel determines whether new
transfer information was written to it by checking the most-significant byte of the target
address. Writing to this byte sets an internal flag that tells the channel that new transfer
information was written to it. Therefore, it is only necessary to change the target address
between chaining buffer transfers. If you want to change the requester address and byte
count also, you should write these values before writing the most-significant byte of the
target address.

¢ If a channel is configured to increment the requester address and the requester’s bus size is
selected as 16 bits, the channel increments the requester address by two after each data
transfer. However, if the channel is configured to decrement the requester address, the
channel only decrements the address by one. This is true for the target also. In other words,
the channels cannot decrement by words. When a channel is configured to decrement the
requester or target address and transfer words, the correct number of words is transferred;
however, the transfers are on a byte basis.

¢ Enabling both the autoinitialize and chaining buffer-transfer modes will have unpredictable
results.

* The DMA controller does not allow programming one channel while another channel is
active. If both channels are being used, the programmer must mask an active channel before
reprogramming the other channel. Failure tohlds may result in incorrect DMA transfers.

12.5.1 DMA Controller Code Examples

This section contains these software routines:

EnableDMAHWRequests Enables channel hardware requests for the given
DMA channel

DisableDMAHWRequests Disables channel hardware requests for the specified
DMA channel

SetDMAReqlOAddr Sets the requester to an I/O port address for the
specified channel

SetDMATargMemAddr Sets the target memory addréssthe specified DMA
channel

SetDMAXferCount Sets the target memory device for the specified DMA
channel

InitDMA Initializes the DMA

12-51

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

InitDMA1ForSSIXmitterToMem Initializes DMA channell for transfers between the
SIO transmitter port and memory

DMAlnterrupt Interrupt Service Routine for DMA generated
interrupts

See Appendix C for included header files.

#include “80386ex.h”
#include “ev386ex.h”
#include “dma.h”
#include <DOS.h>

#pragma warning(disable:4704) /*Disable optimization warning*/

EnableDMAHWRequests:
int EnableDMAHWRequests(int nChannel)

Description:
Enables channel hardware requests for the given DMA channel.

Parameters:
nChannel --channel to enable hardware requests

Returns:
Error Code

Assumptions:
None

Syntax:
int error_code;

error_code = EnableDMAHWRequests (DMA_Channel0);

Real/Protected Mode:
No changes required

int EnableDMAHWRequests(int nChannel)

{
BYTE regDMAMSK = 0; /*Clear re gDMAMSK[HRM]*/

[*Check input*/
if ((nChannel I= DMA_Channel0) && (nChannel |= DMA_Channell))
return ERR_BADINPUT;

regDMAMSK = nChannel; /*Set regDMAMSK|[CS] to channel*/
_SetEXRegByte(DMAMSK, regDMAMSK); /*Clear hardware request mask for*/

12-52

intel.

/* given channel*/

}
/
DisableDMAHWRequests:
Description:
Disables channel hardware requests for the given DMA channel.
The channel, however, can still receive software requests.
Parameters:
nChannel --channel to mask hardware requests
Returns:
Error Code

Assumptions:
None

Syntax:
int error_code;

error_code = DisableDMAHWRequests(DMA_Channel0);

Real/Protected Mode:
No changes required

int DisableDMAHWRequests(int nChannel)

{
WORD regDMAMSK = 0;

/ICheck input
if ((nChannel = DMA_Channel0) && (nChannel = DMA_Channell))
return ERR_BADINPUT;

regDMAMSK = nChannel; //Set regDMAMSK[CS] to channel

regDMAMSK &= 0x04; //Set regDMAMSK[HRM]

_SetEXRegByte(DMAMSK, regDMAMSK); //Set hw request mask for given
/lchannel

return ERR_NONE;

SetDMAReqlOAddr:

DMA CONTROLLER

12-53

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Description:
Sets the requester to an I/O port address, wlO, for the DMA
channel specified by nChannel.

Parameters:
nChannel --channel for which to set Requester 1/0 port address
wlO --1/0 address

Returns:

None

Assumptions:
None

Syntax:
SetDMAReqlOAddr(DMA_Channell, TBRO); //Sets Req. to Serial Receiver

Real/Protected Mode:
No changes required

int SetbDMAReglOAddr(int nChannel, WORD wIQO)
{
WORD addrDMAReq0_1;
WORD addrDMAReqg2_3;
[*Check input*/
if ((nChannel |= DMA_Channel0) && (nChannel = DMA_Channell))
return ERR_BADINPUT;

[*Set registers to correct channel*/
addrDMAReq0_1 = (nChannel == DMA_Channel0 ? DMAOREQO_1 : DMA1REQOQ_1);
addrDMAReq2_3 = (nChannel == DMA_Channel0 ? DMAOREQ2_3 : DMA1REQ2_3);

_SetEXRegByte(DMACLRBP, 0x0); /* Clear the byte pointer flip-flop */

/* Write requester I/O address, bits 0-7 */
_SetEXRegByte(addrDMAReq0_1, (BYTE) (wlO & OxFF));

[* Write requester I/O address, bits 8-15 */

_SetEXRegByte(addrDMAReq0_1, (BYTE) ((wlO >> 8) & OxFF));
_SetEXRegByte(addrDMAReq2_3, 0x00); /* Zero requester address bits 16-23 */
_SetEXRegByte(addrDMAReq2_3, 0x00); /* Zero requester address bits 24-25 */

return ERR_NONE;

SetDMATargMemAddr:

12-54

Int9|® DMA CONTROLLER

Description:
Sets the target memory address for the DMA channel specified
by nChannel.

Parameters:
nChannel --channel for which to set target address
ptMemory --pointer to target memory location

Returns:
None

Assumptions:
Processor is in real mode.

Syntax:
static char Ipsz[]="Hello World”;

SetDMATargMemAddr(DMA_Channell, Ipsz);
Real/Protected Mode:

The address calculation from ptMemory assumes the processor is in real
mode.

int SetDMATargMemAddr(int nChannel, void *ptMemory)
{

WORD addrDMATar0_1;

WORD addrDMATar2;

WORD addrDMATar3;

WORD wSegment;

WORD wOffset;

DWORD IAddress;

[*Check input*/
if ((nChannel |= DMA_Channel0) && (nChannel |= DMA_Channell))
return ERR_BADINPUT;

[*Set registers to correct channel*/

addrDMATar0_1 = (nChannel == DMA_Channel0 ? DMAOTARO_1 : DMA1TARO_1);
addrDMATar2 = (nChannel == DMA_Channel0 ? DMAOTAR2 : DMA1TAR?2);
addrDMATar3 = (nChannel == DMA_Channel0 ? DMAOTAR3 : DMA1TAR3);

[*If in tiny, small, or medium model,*/
#if defined(M_I86TM) || defined(M_I86SM) || defined(M_I86MM)

_asm
{ [*...then grab our segment from DS*/
mov ax, ds
mov wSegment, ds
}

wOffset = (WORD) ptMemory; /*...and our offset from the pointer*/

12-55

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

#else [*Else in compact, large, or huge memory model*/
wSegment = _FP_SEG(ptMemory); /*...grab the segment from the pointer*/
wOffset = _FP_OFF(ptMemory); /*...and the offset from the pointer*/
#endif /*Assuming real mode, compute our physical
address*/
|IAddress = ((DWORD) wSegment << 4) + wOffset;

_SetEXRegByte(DMACLRBP, 0x0); /*Clear the byte pointer flip-flop */

[* Write target address, bits 0-7 */
_SetEXRegByte(addrDMATar0_1, (BYTE) (IAddress & OxFF));

[* Write target address, bits 8-15 */
_SetEXRegByte(addrDMATar0_1, (BYTE) ((IAddress >> 8) & OxFF));

[* Write target address, bits 16-23 */
_SetEXRegByte(addrDMATar2, (BYTE) ((IAddress >> 16) & OxFF));

[* Write target address, bits 24-25 */
_SetEXRegByte(addrDMATar3, (BYTE) ((IAddress >> 24) & 0x03));

return ERR_NONE;

SetDMAXferCount:

Description:
Sets the target memory device for the DMA channel specified
by nChannel

PARAMETERS:
nChannel --channel for which to set target address
ptMemory --pointer to target memory location

Returns:
None

Assumptions:
Processor is in real mode.

Syntax:
static char Ipsz[]="Hello World”;

SetDMATargMemAddr(DMA_ChannelO, Ipsz);
Real/Protected Mode:

The address calculation from ptMemory assumes the processor is in real
mode.

12-56

Int9|® DMA CONTROLLER

int SetDMAXferCount(int nChannel, DWORD ICount)
{
WORD addrDMABYyc0_1;
WORD addrDMAByc2;
[*Check input*/
if ((nChannel I= DMA_Channel0) && (nChannel |= DMA_Channell))
return ERR_BADINPUT;

[*Set registers to correct channel*/
addrDMAByYc0_1 = (nChannel == DMA_Channel0 ? DMAOBYCO_1 : DMA1BYCO_1);
addrDMAByc2 = (nChannel == DMA_Channel0 ? DMAOBYC2 : DMA1BYC?2);

_SetEXRegByte(DMACLRBP, 0x0); /* Clear the byte pointer flip-flop */

/* Write count, bits 0-7 */
_SetEXRegByte(addrDMABycO_1, (BYTE) (ICount & OxFF));

[* Write count, bits 8-15 */
_SetEXRegByte(addrDMABycO_1, (BYTE) ((ICount >> 8) & OxFF));

/* Write count, bits 16-23 */
_SetEXRegByte(addrDMAByc2, (BYTE) ((ICount >> 16) & 0xFF));

return ERR_NONE;

}
/
InitDMA:
Description:
Enables the DMA and initializes settings independent of the
two channels:
bus arbitration--set to no rotation, external bus master
request(HOLD) assigned to lowest priority level
EOP# sampling--set to asynch. (no effect when DMA is used
with internal peripherals)
DRQn sampling--set to synch. (no effect when DMA is used
with internal peripherals)
Parameters:
None
Returns:
None

Assumptions:
None

12-57

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Syntax:
InitDMA(); //Initialize DMA peripheral

Real/Protected Mode:
No changes required

void InitDMA(void)
{
_SetEXRegByte(DMACLR, 0x0); /*Resets DMA peripheral*/
_SetEXRegByte(DMACMD1, 0x0); /*DMACMD1[7:5]=0: reserved*/
/*DMACMD1[4]=0: disable priority rotation*/
[* enable*/
/*DMACMD1[2]=0: enable channel’'s 0 and 1*/
/*DMACMD1[1:0]=0: reserved*/

_SetEXRegByte(DMACMD2, 0x8); /*DMACMD2[7:4]=0: reserved*/
/*DMACMD?2[3:2]=2: assign HOLD to the lowest*/
/* priority level*/
/*DMACMD2[1]=0: EOP# samples input async.*/
/*DMACMD2[0]=0: DRQn samples input async.*/

INitDMA1ForSSIXmitterToMem:

Description:
This function prepares DMA channel 1 for transfers between the async.
serial port transmitter (channel 0) and memory. After calling this
function, a DMA transfer can be initiated by setting the Target address,
setting the transfer count, and clearing the hardware request mask
for this DMA channel.

Parameters:
None

Returns:
None

Assumptions:
InitDMA() has been called to enable the peripheral.

Syntax:
static char Ipsz[]="Hello World";

INitDMA(); /lInitialize DMA peripheral
InitDMA1ForSerialXmitter(); //Initialize DMA channel 1

12-58

intel.

Int9|® DMA CONTROLLER

SetDMATargMemAddr(DMA_Channell, Ipsz); //Set target memory address
//Set transfer count

SetDMAXferCount(DMA_Channell, strlen(lpsz));

EnableDMAHWRequests(DMA_Channell); //Begin transfer at SIO request

Real/Protected Mode:
No changes required

void InitDMA1ForSerialXmitter(void)
{

BYTE regDMAC(g;

BYTE regDMAIE;

BYTE regDMAOV(E;

DisableDMAHWRequests(DMA_Channell); /*Disable channel 1 Hardware requests*/

regDMACfg = (_GetEXRegByte(DMACFG) & 0xOF) | OxAO;
_SetEXRegByte(DMACFG, regDMAC(g); *DMACFG[7]=1: mask DMA Acknowledge for*/
/* channel 1*/
/*DMACFG[6:4]=3: set channel request to*/
/* SIO’s channel 0's transmit buffer*/
/¥ empty signal*/
/*DMAMSK([3:0]=unmodified: channel 0*/
[* settings*/

_SetEXRegByte(DMAMOD1, 0x9); *DMAMOD1[7:6]=0: set to demand data-xfer*/
/* mode*/
/*DMAMOD1[5]=0: increment target*/
/*DMAMOD1[4]=0: disable autoinitialize*/
I* buffer-xfer mode*/
/*DMAMOD1[3:2]=2: data is xfer'd from targ.*/
/* toreq.*/
/*DMAMOD1[1]=0: reserved*/
/*DMAMOD1[0]=1: selections for bits 7-2*/
/* affect channel 1*/

_SetEXRegByte(DMAMOD2, 0xD1); /*'DMAMODZ2[7]=1: Select 2-cycle data xfer*/
/*DMAMODZ2[6]=1: Requester is in I/O space*/
/*DMAMODZ2[5]=0: Target is in memory space*/
/*DMAMODZ2[4]=1: Requester is held constant*/
I* thru xfer*/

DMAMODZ2[3]=x: Req. Inc/Dec...see/

/* DMAMOD2[4]*/

/*DMAMODZ2[2]=0: Target address is*/

/* modified...see DMAMOD1[5]*/
/*DMAMODZ2[1]=0: reserved*/
/*DMAMODZ2[0]=1: selections for bits 7-2*/
/* affect channel 1*/

12-59

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

_SetEXRegByte(DMABSR, 0x51); *"DMABSR[7]=0: reserved*/
/*DMABSR][6]=1: sets req.’s bus size to 8-bit*/
/*DMABSR][5]=0: reserved*/
/*DMABSRI[4]=1: sets tar.’s bus size to 8-bit*/
/*DMABSR[3:2]=0: reserved*/
/*DMABSR][0]=1: selections for bits 7-2*/
/* affect channel 1*/

_SetEXRegByte(DMACHR, 0x1); *DMACHR[7:3]=0: reserved*/
/*DMACHR[2]=0: disable chaining buffer-xfer*/
/¥ mode*/
/*DMACHR[1]=0: reserved*/
/*DMACHR[0]=1: selections for bits 7-2 affect*/
/* channel 1*/

regDMAIE = _GetEXRegByte(DMAIEN) & 0x1;
_SetEXRegByte(DMAIEN, regDMAIE); *DMAIE[7:2]=untouched: reserved*/
/*DMAIE[1]=0: masks channel 1's transfer*/
/* complete signal from interrupt*/
/* controller*/
/*DMAIE[O]=untouched: channel O setting*/

regDMAOVfE = _GetEXRegByte(DMAOVFE) | 0xC;

_SetEXRegByte(DMAOVFE, regDMAOVSE); *"DMAOVFE[7:4]=untouched: reserved*/
/*DMAOVFE[3]=1: all bits of channel 1
/* req. address are inc/dec*/
/* (see DMAMODI[4])*/
[*DMAOVFE[2]=1: all bits of channel 1*/
/* target addr. are inc/dec*/
/[*DMAOVFE[1:0]=untouched: channel 0*/

/* settings*/

SetDMAReqlOAddr(DMA_Channell, TBRO); /*Sets Req. I/0 address to Serial*/
[*Receiver*/

DMAInterrupt:

Description:
This function is called by the DMA unit when it either completes a
transfer or (in chaining xfer mode) when a new requester, target, and
byte count should be written to the device.

Parameters:
None

Returns:
None

Assumptions:

12-60

Int9|® DMA CONTROLLER

None

Syntax:
regDMAIE = _GetEXRegByte(DMAIEN) | 0x2; //Enable tc interrupt for
/I channel 0
_SetEXRegByte(DMAIEN, regDMAIE);

//Set interrupt routine

SetIRQVector(DMAInterrupt, 12, INTERRUPT_ISR);
Enable8259Interrupt(0, IR4); //Enable slave IR4, DMA interrupt
NonSpecificEOI(); //Clear all interrupts

Real/Protected Mode:
No changes required

void interrupt far DMAInterrupt(void)

{
WORD regDMAIS;

regDMAIS = _GetEXRegByte(DMAIS); /*Get interrupt status register*/

if (regDMAIS & 0x10)
{ [*Transfer Complete, channel 0*/

_SetEXRegByte(DMACLRTC, 0x00); /*Clear transfer complete signal*/
}

if (regDMAIS & 0x20)
{ [*Transfer Complete, channel 1*/
_SetEXRegByte(DMACLRTC, 0x00); /*Clear transfer complete signal*/

}

if (regDMAIS & 0x1)

{ [*Chaining Interrupt, channel 0*/
}

if (regDMAIS & 0x2)

{ [*Chaining Interrupt, channel 1*/
}

NonSpecificEOI(); /*Send End-Of-Interrupt Signal to Master/Slave*/

12-61

intel. 1 3

SYNCHRONOUS
SERIAL I/O UNIT

intel.

CHAPTER 13
SYNCHRONOUS SERIAL I/O UNIT

The synchronous serial I/0 (SSIO) unit provides 16-bit bidirectional serial communications. The

transmit and receive channels can operate independently (that is, with different clocks) to provide
full-duplex communications. Either channel can originate the clocking signal or receive an exter-

nally generated clocking signal.

This chapter is organized as follows:
* Overview (see below)
* SSIO Operation (page 13-5)
* Register Definitions (page3116)
* Design Considerations (pa@8-25)

* Programning Considerations (page 13-26)

13.1 OVERVIEW

The SSIO unit contains a baud-rate generator, transmitter, and receiver. The baud-rate generator
has two possible internal clock sources (PSCLK or SERCLK). The transmitter ainerece

double buffered. They contain 16-bit holding buffers and 16-bit shift registers. Data to be trans-
mitted is written to the transmit holding buffer. The buffer’s contents are transferred to the trans-
mit shift register and shifted out via the serial data transmit pin (SSIOTX). Data received is
shifted in via the serial data receive pin (SSIORX). Once 16 bits have been received, the contents
of the receive shift register are transferred to the receive buffer.

Both the transmitter and receiver can operate in either master or slave mode. In master mode, the
internal baud-rate generator controls the serial communications by clocking the internal transmit-
ter or receiver. If the transmitter or receiver is enabled in master mode, the baud-rate generator’s
signal appears on the transmit or receive clock pin, and is available for clocking an external slave
transmitter or receiver. In slave mode, an external master device controls the serial communica-
tions. An input on the external transmit or receive clock pin clocks the transmitter or receiver. The
transmitter and receiver need not operate in the same mode. This allows the transmitter and re-
ceiver to operate at different frequencies (an internal and an external clock source or two different
external clock sources can be used). Figures t8dlugh 13-4 iustrate the various transmit-
ter/receiver master/slave combinations.

13-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Baud-rate
Generator

SSTBE -
(to DMA controller)

SSIOINT
(to Slave interrupt
controller IR1)

Transmitter

—>={] STXCLK
[>[] ssioTx

SSRBF =&
(to DMA controller)

Clock Source ——p-1
(PSCLK or SERCLK)
aY
S l—)
y
S
SSIOCON.5 (TIE) t
e
m
B
u >
ssiocon.1 RIE) | | S
™\

Receiver

—>{"] SRXCLK
««—{] SSIORX

(pin mux)

(pin mux)

A2434-02

Figure 13-1. Transmitter and Receiver in Master Mode

SSTBE -
(to DMA controller)

SSIOINT
(to Slave interrupt
controller IR1)

SSRBF -«

(to DMA controller)

Clock Source (Ej;aud—rzite
(PSCLK or SERCLK) enerator
aY
y >0
. . STXCLK
33/ Transmitter
ssiocons (Te) | * :‘> SSIOTX
e (pin mux)
m
B
u
SSIOCON.1 (RIE) | |s Receiver
««—{] SSIORX
SRXCLK -
. Vo
(pin mux) ~N
A2435-02

Figure 13-2. Transmitter in Master Mode, Receiver in Slave Mode

13-2

SYNCHRONOUS SERIAL I/O UNIT

Clock Source —3
(PSCLK or SERCLK)

(N

Baud-rate
Generator

STXCLK D_I—

S -
SSTBE =& y i Transmitter
(to DMA controller) SSIOCON.5 (TIE) ? > SSIOTX
e (pin mux)
m
SSIOINT
(to Slave interrupt B
controller IR1) u > Receiver —)D SRXCLK
SSIOCON.L(RIE) | |s (pin mux)
SSRBF & K «—{] SSIORX
(to DMA controller)
a
A2436-02
Figure 13-3. Transmitter in Slave Mode, Receiver in Master Mode
aY
STXCLK D— S >
- y
StSEBMEA troll S Transmitter
(to controller) SSIOCON.5 (TIE) t ﬂ 3 D SSIOTX
e (pin mux)
m
SSIOINT
(to Slave interrupt B
controller IR1) u
SSIOCON.1 (RIE) S Receiver
(to DMA controller) SRXCLK >
(pin mux) ~J
A2437-02

Figure 13-4. Transmitter and Receiver in Slave Mode

13-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

13.1.1 SSIO Signals
Table 13-1 lists the SSIO signals.

Table 13-1. SSIO Signals

Device Pin or

Signal . Description
g Internal Signal P
STXCLK Device pin Serial Transmit Clock:
(input or output) | This pin functions as either an output or an input, depending on whether
the transmitter is operating in master or slave mode.
In master mode, STXCLK functions as an output. The baud-rate
generator’s output appears on this pin through the transmitter and can be
used to clock a slave receiver.
In slave mode, STXCLK functions as an input clock for the transmitter.
SRXCLK Device pin Serial Receive Clock:
(inputoroutput) | This pin functions as either an output or an input, depending on whether
the receiver is operating in master or slave mode.
In master mode, SRXCLK functions as an output. The baud-rate
generator’s output appears on this pin through the receiver and can be
used to clock a slave transmitter.
In slave mode, SRXCLK functions as an input clock for the receiver.
SSIOTX Device pin Transmit Serial Data:
(output) The transmitter uses this pin to shift serial data out of the device. Data is
transmitted most-significant bit first.
SSIORX Device pin Receive Serial Data:
(input) The receiver uses this pin to shift serial data into the device. Data is
received most-significant bit first.
SSRBF Internal signal Receive Buffer Full:
(output) This internal signal is used to indicate that received serial data has been
transferred from the receive shift register to the receive holding buffer.
SSTBE Internal signal Transmit Buffer Empty:
(output) This internal signal is used to indicate that serial data has been shifted
from the transmit holding register to the transmit shift register.
SSIOINT Internal signal SSIO Interrupt:
(output) This internal signal goes active when either the transmit holding register
is empty or the receive holding register is full.
BCLKIN Internal signal Prescaled Clock (PSCLK):

(input)

This internal signal is a prescaled value of the internal clock frequency
(CLK2/2). PSCLK is programmable for a range of divide-by values.

Serial Clock (SERCLK):
This internal signal is half the internal clock frequency (CLK2/4).

13-4

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.2 SSIO OPERATION

The following sections describe the operation of the baud-rate generator, transmitter, and receiv-
er.

13.2.1 Baud-rate Generator

Either the prescaled clock or the serial clock (PSCLK or SERCLK) can drive the baud-rate gen-
erator (Figurel3-5). The SlCand SSIO configuration register (SIOCFG) selects one of these
sources.

SIOCFG.2

Baud-rate
Generator
CLk2 [} +2 +2 SERCLK
PSCLK BCLKIN —>

0
: — SSIOBAUD
9-bit Programmable Divider BV6:0
CLKPRS [

Figure 13-5. Clock Sources for the Baud-rate Generator

A2443-02

BCLKIN = SERCLK = CLTKZ
OR
CLK2/2

BCLKIN = PSCLK = —48M8Mm ¥ ————
prescale value + 2

SERCLK provides a baud-rate input frequency (BCLKIN) of CLK2/4. The PSCLK frequency
depends on the 9-bit programmable divider. The input to the programmable divider is divided by
a 9-bit prescale value + 2.

A prescale value of 0 gives the maximum PSCLK frequency (CLK2/4) and a prescale value of
1FFH (511) giveshe minimum PSCLK frequency (CLK2/26).

I 13-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The baud-rate generator contains a seven-bit down counter. A programmable baud-rate value
(BV) is the reload value for the counter. The counter counts down from BV to zero, toggles the
baud-rate generator output, then reloads the BV and countsatyaim The baud-rate genera-

tor’s output is a function of BV and BCLKIN as follows.

BCLKIN

baud-rate output frequency =
P a Y 2BV +2

A BV of 0 gives the maximum output frequency (BCLKIN/2) and a BV of 7FH (127) gives the
minimum output frequency (BCLKIN/256).

If you know the desired baud-rate output frequency, you can determine BV as follows.

0 BCLKIN 0
BV = o1
b x baud-rate output frequency

The maximum and minimum baud-rate output frequencies with a 33MHz (CLK2 = 66MHz) de-
vice are shown in Table 13-2.

Table 13-2. Maximum and Minimum Baud-rate Output Frequ encies

Baud-rate Value

(BV) Input Frequency (BCLKIN) Output Fr equency
0 16.5 MHz 8.25 MHz
(using either SERCLK or PSCLK with a
prescale value of 0)
7FH 64.327 KHz 251.277 Hz
(using PSCLK with a prescale value of
1FFH)

13.2.2 Transmitter

The transmitter contains a 16-bit buffer and a 16-bit shift register. When the transmitter is en-
abled, the contents of the buffer are immediately transferred to the shift register. The shift register
shifts data out via SSIOTX. Either the internal baud-rate generator (master mode) or an input sig-
nal on the STXCLK pin (slave mode) drives the transmitter. The maximum transmitter input fre-
quency is 8.25 MHz with a 33MHz processor clock (CLK2 = 66MHz). In master modea tide

rate generator must be programmed and enabled prior to enabling the transmitter. In slave mode,
the transmitter must be enabled prior to the application of an external clock.

13-6

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.2.2.1 Transmit Mode using Enable Bit

The transmitter contains a transmit holding buffer empty (THBE) flag and a transmit underrun
error (TUE) flag. At reset, THBE is set, indicating that the buffer is empty. Writing data to the
buffer clears THBE. When the transmitter transfers data from the buffer to the shift register,
THBE is set. If the transmitter is enabled (TEN bit is set, AUTOTXM is clear), it transfers the
new contents of the transmit buffer to the shift register each time the shift register finishes shifting
its current contents.

If the shift register finishes shifting out its current contents before a new value is written to the
transmit buffer, it reloads the old value and shifts it out again. This condition is known as a trans-
mitter underrun error. TUE is set to indicate an underrun error. For high speed transfers this can
be a problem, since the Baud-rate generator clock may be too fast; it may not allow enough time
to control the TEN bit for each word transfer. This could cause the wandgeto be transmitted

more than once. See “Autotransmit Mode” on page 13-12 for a descriptimwao avoid this
problem.

The transmitter also has a transmit holding buffer empty signal (SSTBE). This signalocam be
nected to the interrupt control and DMA units. This allows you to use either an interrupt service
routine or a DMA transfer to load new data in the transmit holding buffer.

Figures 13-6 and3-7 are simple descriptions of the SSIO transmitter state-machine when Au-
totransmit mode is enabled or disabled.

= E s
oo L BRS¢
W

Initialize
SSIo

HOLD

Data Written Into
SSIOTBUF
Clears THBE

Data In Buffer
Moved To
Shift Register
THBE Set

A3400-01

Figure 13-6. SSIO Transmitter with Autotransmit Mode Enabled

13-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

,\?/N Y

HOLD

Initialize
SSIO

Data Written Into
SSIOTBUF
Clears THBE

Data In Buffer TUE=1

Moved To
Shift Register
THBE Set

A3399-01

Figure 13-7. SSIO Transmitter with Autotransmit Mode Disabled

The SSIO Unit can be operated either by using a polling methdulaurgh interrupts.

the SSIO.

Figure 13-8 shows a basic flowchart for using the polling method to transmit data through

Figure 13-9 shows a basic flowchart for the Interrupt Service Routine necessary when using

interrupts to transmit data through the SSIO. If interrupts are used, follow the below

sequence for initialization:

Initialize the SSIO.

NP

Initialize the interrupts - ICU initialization, Interrupe®&ice Routine, etc.
3. Unmask the interrupts on the ICU.

13-8

SYNCHRONOUS SERIAL I/O UNIT

Initialize SSIO |

Y

Enable Transmitter
TEN=1

Write Data to Buffer
———————————
(SSIOTBUF)
No Yes
|
No
Yes
Yes
No

Delay To Allow Transmitter
To Shift First Bit Out

Y

Disable Transmitter
TEN=0

Yes TUE=1 No

Error
Routine

A3394-01

Figure 13-8. Transmit Data by Polling

13-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

SSIO Transmitter
Causes Interrupt

Y

Disable Interrupts While
Transmitting Data

No Error
Routine

Yes

Write Data to Buffer
(SSIOTBUF)

Y

Enable Transmitter
TEN=1

Y

Delay To Allow Transmitter
To Shift First Bit Out

Y

Disable Transmitter
TEN=0

Y

| Enable Interrupts |

Y

| Exit Interrupt Service Routine |

A3398-01

Figure 13-9. Interrupt Service Routine for Transmitting Data Using Interrupts

13-10

Int9|® SYNCHRONOUS SERIAL I/O UNIT

If the transmitter is disabled while a data value in the shift register is being shifted out, it continues
running until the last bit is shifted out. Then the shift register stops and the data and clock pins
(SSIOTX and STXCLK) are three-stated; the contents of the buffer registeotai@aded into

the shift register.

If the transmitter is disabled then re-enabled before the current value has been shifted out, it con-
tinues as if it were never disabled.

If you enable the transmitter while the baud-rate generator clock istheghata and clock pin

states are as shown in Figur&-10. If you @able the transmitter while the baud-rate generator
clock is low, the data and clock pin states are as shown in Figure 13-11. These figures show master
mode, single word transfers. At the end of transmission, STXCLK and SSIOTX are three-stated
and require external pull-up resistors. For single word transfers, you must enable the transmitter,
which starts the shifting process, then disable the transmitter before 16 bits are shifted out. For
high baud rates use the Autotransmit mode.

\ |
Baud-rate _/,__/__/__/__ e o o _/_\I_/_\
Generator Clock , | \ | 1
) I I I I I
Transmitter Enable { | \ | 1 | | !
I I I I I
Float | 1 | | Float
STXCLK _I}_/__/__/__ ¢ _/__/—\{I—
Float — \ \ ' \ \ Fl
oat oat
ssiorx —— TtB1s X TB14 X TBI3 x e
I T 1 1 I I

A2445-01

Figure 13-10. Transmitter Master Mode, Single Word Transfer
(Enabled when Clock is High)

I |
Generator Clock
Transmitter Enable { \
I
Float | Float
I

1
1
1
1
1
I I 1
Fl I \ I I Fl
loat oat
1 1 1 1 1

A2444-01

Figure 13-11. Transmitter Master Mode, Single Word Transfer
(Enabled when Clock is Low)

13-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.2.2.2 Autotransmit Mode

Set the AUTOTXM bit (SSIOCON2.2) and the TXMM bit (SSIOCONZ2.1) to enable Autotrans-
mit mode. When the AUTOTXM bit is set, the word is automatically transferred to the shift reg-
ister and the THBE bit is set. In this mode the TEN bit is ignored. Once the data is transferred to
the shift register, the word is shifted out. If no new data has been written into the buffer, the trans-
mitter stops.

The Transmit Underrun Error (TUE) bit is not used in Autotransmit mode.

The Autotransmit mode eliminates the problem of controlling the TEN bit during high-speed data
transfers using polling or interrupts to move new data to the transmit buffer (SSIOTBUF).

13.2.2.3 Slave Mode

Operation in transmitter slave mode is similar to master mode, except the transmitter is clocked
from the STXCLK pin. When the transmitter is enabled any time during the STXCLK clock cy-
cle, TB15 appears on the SSIOTX pin and remains on the pin until the second falling edge of
STXCLK.

13.2.3 Receiver

The receiver contains a 16-bit holding buffer and a 16-bit shift register. When enabled, the shift
register shifts data in via the SSIORX pin. After the receiver shifts in 16 bits of data, the contents
of the shift register are transferred to the buffer. Either the internal baud-rate generator (master
mode) or an input signal on the SRXCLK pin (slave mode) can clock the receiver.

The receiver contains a receive holding buffer full flag (RHBF) and a receive overflow error flag
(ROE). At reset, RHBF is clear, indicating that the buffer is empty. When the receiver transfers
data from the shift register to the buffer, RHBF is set. Reading the buffer clears RHBF. When the
receiver is enabled, it transfers the contents of the shift register to the receive buffer each time the
shift register finishes shifting its current contents. If the shift register finishes shiftingcumr-ts

rent contents before the old value is read from the receive buffer, the receiver transfers the new
value into the buffer, overwriting the old value and sets the ROE flag. This conditioowis las

a receive overflow error.

The receiver also has an internal receive holding buffer full signal (SSRBF). This signal can be
connected to the DMA unit for DMA initiated transfers. The SSRBF signal is also ORed with the
SSTBE signal to generate the SSIOINT signal which is sent to the interrupt controller. Before the
SSRBF signal is ORed it is masked with the Receivertapt Bit (RIE) in the SSIOCONL1 reg-

ister. These options allow you to use either an interrupt service routine or a DMA transfer to read
data from the receive holding buffer.

13-12 I

Int9|® SYNCHRONOUS SERIAL I/O UNIT

The SSIO Unit can be operated either by using a polling methdulaurgh interrupts.

NP

Figure 13-12 shows a basic flowchart for using the polling method to receive data through
the SSIO.

Figure 13-13 shows a basic flowchart for the Interrupt Service Routine necessary when
using interrupts to receive dataough the SSIO. If interrupts are used, follow the below
sequence for initialization:

Initialize the SSIO.
Initialize the interrupts - ICU initialization, Interrupe®&ice Routine, etc.

Unmask the interrupts on the ICU.

Initialize SSIO |

Y
A

RHBF=1 No

Yes

Read Data
(SSIORBUF)

Yes No Error
Routine

A3396-01

Figure 13-12. Receive Data by Polling

13-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

SSIO Receiver
Causes Interrupt

\

Disable Interrupts While
Receiving Data

Y
Read Data From Buffer
(SSIORBUF)
No Error
Routine
Yes

| Enable Interrupts |

Y

| Exit Interrupt Service Routine |

A3397-01

Figure 13-13. Interrupt Service Routine for Receiving Data Using Interrupts

13-14

Int9|® SYNCHRONOUS SERIAL I/O UNIT

If the receiver is disabled while a data value is being shifted into the shift register, it continues
running until the last bit is shifted in. Then the shift register is loaded into the buffer register, the
shift register stops and the clock pin (SRXCLK) is three-stated if in the master mode.

If the receiver is disabled then enabled before the current word has been shifted in, it continues
as if it were never disabled.

Figure 13-14 shows the serial receive data (SSIORX) pin values for a master modayaidgle
transfer. For single word transfers, it is necessary to enable the receiver thus starting the shifting
process, then disable the receiver before 16 bits are shifted in.

Baud-rate _/__/__/__/__. . ._/__/__/_\
Generator Clock f , | f
I I I I
Receiver Enable _m:_\ | | | |
I I I I I

Float | Float

SRXCLK —N_l__[__° * '__/_U\—

I I I

SSIORX lgnored X RB15 X RB14 x) -(RB1 X RBOX Ignored

I 1 T

A2446-01

Figure 13-14. Receiver Master Mode, Single Word Transfer

Operation in receiver slave mode is similar to master mode, except the receiver is clocked from
the SRXCLK pin. When the receiver is enabled any time during the SRXCLK clock cycle, data
on the SSIORX pin is latched into the shift register at the next rising edge of SRXCLK. The SRX-
CLK and SSIORX pins are three-stated.

13-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.3 REGISTER DEFINITIONS

Table 13-3 list the gisters associated with the SSIO and the following sections contain bit de-
scriptions for each register.

Table 13-3. SSIO Registers

. Expanded .
Register Function
9 Address

PINCFG F826H Pin Configuration:

(read/write) Connects the serial receive clock signal (SRXCLK) and the transmit serial
data signal (SSIOTX) to the package pin.

SIOCFG F836H SIO and SSIO Configuration:

(read/write) Selects the baud-rate generator’s clock source, SERCLK or PSCLK.

CLKPRS F804H Clock Prescale:

(read/write) Controls the frequency of PSCLK.

SSIOBAUD FA484H SSIO Baud-rate Control:

(read/write) Enables the baud-rate generator and determines its baud rate. In master
mode, the transmitter and receiver are clocked by the baud-rate generator.

SSIOCTR FA8AH SSIO Baud-rate Count Down:

(read only) Indicates whether the baud-rate generator is enabled and reflects the current
value of the baud-rate down-counter.

SSIOCON1 FA86H SSIO Control 1:

(read/write) Enables the transmitter and receiver, indicates when the transmit buffer is
empty and the receive buffer is full. Enables or disables the transmitter or
receiver interrupts. SSIOCONL1 also indicates two error conditions: the
transmit underrun and receiver overflow.

SSIOCON2 FA88H SSIO Control 2:

(read/write) Selects whether the transmitter and receiver are in master or slave mode. In
master mode, the baud-rate generator clocks the transmitter or receiver. In
slave mode, an external master clocks the transmitter or receiver. Also
controls the enabling of the Automatic Transmit mode.

SSIOTBUF FA80H SSIO Transmit Buffer:

(read/write) Holds the 16-bit data word to transmit. Data is transmitted most-significant bit
first.

SSIORBUF FA82H SSIO Receive Buffer:

(read only) Holds the 16-bit data word received. Data is received most-significant bit first.

13-16

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.3.1 Pin Configuration Register (PINCFG)

The serial receive clock (SRXCLK) and transmit serial data (SSIOTX) pins are multiplexed with
other functions. Use PINCFG bits 0 and 1 to select the pin functions.

Pin Configuration Expanded Addr: F826H

PINCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
— PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit)

Number Mnemonic Function
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:

0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.

5 PM5 Pin Mode:

0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.

1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.

4 PM4 Pin Mode:

0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.

3 PM3 Pin Mode:

0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.

2 PM2 Pin Mode:

0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.

1 PM1 Pin Mode:

0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.

0 PMO Pin Mode:

0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

Figure 13-15. Pin Configuration Register (PINCFG)

13-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.3.2 SIO and SSIO Configuration Register (SIOCFG)

Use SIOCFG bit 2 to connect either PSCLK or SERCLK to the baud-rate generator’s input
(BCLKIN).

SIO and SSIO Configuration Expanded Addr: F836H

SIOCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
SIM SOM — - || = SSBSRC | S1BSRC | SOBSRC

Bit Bit)
Number Mnemonic Function
7 S1iM S101 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.

6 SOM S100 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SI01 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate
generator.

0 SOBSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate
generator.

Figure 13-16. SIO and SSIO Configuration Register (SIOCFG)

13-18

intel.

SYNCHRONOUS SERIAL I/O UNIT

13.3.3 Prescale Clock Register (CLKPRS)

Use CLKPRS to program the PSCLK frequency.

Clock Prescale Register Expanded Addr: F804H
CLKPRS ISA Addr: —
(read/write) Reset State: 0000H
15 8
= - [-1 = JL =717 =1 = [Ps |
7 0
| ps7 Ps6 | Pss | pPsa || pPss | ps2 | pPst | pso |
Bit Bit Function
Number Mnemonic
15-9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
8-0 PS8:0 Prescale Value:
These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).
divisor = PS8:0 + 2

Figure 13-17. Clock Prescale Register (CLKPRS)

13-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.3.4 SSIO Baud-rate Control Register (SSIOBAUD)

Use SSIOBAUD to enable the baud-rate generator and determine the baud-rate generator’s sev-
en-bit down counter’s reload value (BV).

SSIO Baud-rate Control Expanded Addr: F484H

SSIOBAUD ISA Addr: —

(read/write) Reset State: 00H

7 0
BEN BV6 BV5 Bv4 || Bv3 BV2 BV1 BVO
Bit Bit .

Number Mnemonic Function
7 BEN Baud-rate Generator Enable:

Setting this bit enables the baud-rate generator. Clearing this bit disables
the baud-rate generator, clears the baud-rate count value, and forces the
baud rate clock to zero.

6-0 BV6:0 Baud-rate Value:

The baud-rate value (BV) is the reload value for the baud-rate
generator’s seven-bit down counter. The baud-rate generator’s output is
a function of BV and the baud-rate generator’s input (BCLKIN), as
follows.

BCLKIN

baud-rate output frequency (Hz) =
P d y(Hz) 2BV +2

(Hz2)

If you know the desired output baud-rate frequency, you can determine
BV as follows.

0 BCLKIN 0
BV = 01
b x baud-rate output frequency

Figure 13-18. SSIO Baud-rate Control Register (SSIOBAUD)

13-20

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR)

Read SSIOCTR to determine the status of the baud-rate generator. The down counter is reloaded
when CV6:0 reaches zero or when a new value is written to SSIOBAUD.

Baud-rate Count Down Expanded Addr: F48AH
SSIOCTR ISA Addr: —
(read only) Reset State: 00H
7 0
BSTAT CV6 CV5 CV4 ‘ ‘ Cv3 CvV2 Cv1 CVo
Bit Bit .
Number Mnemonic Function
7 BSTAT Baud-rate Generator Status:
0 = The baud-rate generator is disabled.
1 = The baud-rate generator is enabled.
6-0 Cve6:.0 Current Value:
These bits indicate the current value of the baud-rate down counter.

Figure 13-19. SSIO Baud-rate Count Down Regi ster (SSIOCTR)

13.3.6 SSIO Control 1 Register (SSIOCON1)

SSIOCON1 contains both transmit and receive control and status bits. Use the control bits to en-
able the receiver and transmitter and to connect the transmit buffer empty and receive buffer full
signals to the interrupt control unit. The status bits indicate that the transmit buffer is empty, a
transmit underrun error occurred, the receive buffer is full, or a receive overflow error occurred.

Both the transmit buffer empty and the receive buffer full signals can be connected (ORed) to the
interrupt request source (SSIOINT). When an interrupt request from this source is detected, you
can determine which signal caused the request by reading the SSIOCON1 receive buffer full and
transmit buffer empty status bits.

13-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

SSIO Control 1 Expanded Addr: F486H
SSIOCON1 ISA Addr: —
(read/write) Reset State: COH
7 0
TUE THBE TIE TEN ‘ ‘ ROE RHBF RIE REN
Bit Bit)
Number Mnemonic Function
7 TUE Transmit Underrun Error:
The transmitter sets this bit to indicate a transmit underrun error in the
TEN transfer mode. Clear this bit to clear the error flag. If a one is written
to TUE, itis ignored and TUE retains its previous value.
6 THBE Transmit Holding Buffer Empty:

(read only bit) | The transmitter sets this bit when the transmit buffer contents have been
transferred to the transmit shift register, indicating that the buffer is now
ready to accept new data. Writing data to the transmit buffer clears
THBE. When this bit is clear, the buffer is not ready to accept any new
data.

5 TIE Transmitter Interrupt Enable:
0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the transmit buffer is empty.
1 = Setting this bit connects the transmit buffer empty internal signal to
the Interrupt Control Unit.
4 TEN Transmitter Enable:
0 = Disables the transmitter.
1 = Enables the transmitter.
3 ROE Receive Overflow Error:
The receiver sets this bit to indicate a receiver overflow error. Write zero
to this bit to clear the flag.
If a one is written to ROE, the one is ignored and ROE retains its
previous value.
2 RHBF Receive Holding Buffer Full:
(read only bit) | The receiver sets this bit when the receive shift register contents have
been transferred to the receive buffer.
Reading the buffer clears this bit.
1 RIE Receive Interrupt Enable:
0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the receive buffer is full.
1 = Setting this bit connects the receiver buffer full internal signal to the
Interrupt Control Unit.
0 REN Receiver Enable:
0 = Clearing this bit disables the receiver.
1 = Setting this bit enables the receiver.

13-22

Figure 13-20. SSIO Control 1 Register (SSIOCON1)

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.3.7 SSIO Control 2 Register (SSIOCON?2)

Use the control bits TXMM and RXMM in SSIAGAN2 to put the transmitter or receiver in mas-
ter or slave mode. The AUTOTXM bit is used to determine if the TEN bit controls the transmit-
ting of the data.

SSIO Control 2 Expanded Addr: F488H

SSIOCON2 ISA Addr: —

(read/write) Reset State: 00OH

7 0

_ _ _ — H — AUTOTXM | TXMM RXMM

Bit Bit

Number Mnemonic Function
7-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 AUTOTXM Automatic Transmit off mode for master mode

0 = Clearing this bit puts the TEN bit into normal operation

1 = Setting this bit and the TXMM bit causes TEN to be ignored. Every
time a word is loaded into the transmit shift register from the transmit
holding buffer it is transmitted out and then stops.

1 TXMM Transmit Master Mode:

0 = Clearing this bit puts the transmitter in slave mode. In slave mode, an
external device controls the transmit serial communications. An input
on the STXCLK pin clocks the transmitter.

1 = Setting this bit puts the transmitter in master mode. In master mode,
the internal baud-rate generator controls the transmit serial
communications. The baud-rate generator’s output clocks the
internal transmitter and appears on the STXCLK pin.

0 RXMM Receive Master Mode:

0 = Clearing this bit puts the receiver in slave mode. In slave mode, an
external device controls the receive serial communications. An input
on the SRXCLK pin clocks the receiver.

1 = Setting this bit puts the receiver in master mode. In master mode, the
internal baud-rate generator controls the receive serial
communications. The baud-rate generator’s output clocks the
internal receiver and appears on the SRXCLK pin.

Figure 13-21. SSIO Control 2 Register (SSIOCON2)

13-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF)

Write the datavords to be trasmitted to SSIOTBUF. Use the intept controller, DMA unit or
polling (read SSIOCON1) to determine when to write to the transmit buffer.

Transmit Holding Buffer Expanded Addr: F480H
SSIOTBUF ISA Addr: —
(read/write) Reset State: 0000H
15 8
| t815s | T84 | TB13 | TB12 || TR | TBI0 | TBO | TBS |
7 0
| 787 | Tt | T8 | B4 || 83 | TB2 | TB1 | TBO |
Bit Bit Function
Number Mnemonic
15-0 TB15:0 Transmit Buffer Bits:
These bits make up the next data word to be transmitted. The control
logic loads this word into the transmit shift register. The transmit shift
register shifts the bits out on the falling edge of the tranmitter clock pin.
The word is transmitted out starting with the most-significant bit (TB15).

Figure 13-22. SSIO Transmit Holding Buffer (SSIOTBUF)

13-24

Int9|® SYNCHRONOUS SERIAL I/O UNIT

13.3.9 SSIO Receive Holding Buffer (SSIORBUF)

Read SSIORBUF to obtain the last datard received. Use the interrupt controller, DMA unit or
polling (read SSIOCONL1) to determine when to read the receive buffer.

Receive Holding Buffer Expanded Addr: F482H
SSIORBUF ISA Addr: —
(read only) Reset State: 0000H
15 8
| rRe1s | re14 | RB13 | RB12 || RB | RBIO | RBO | RBB |
7 0
| rRe7 | rRB6 | RB5s | RB4 || RB3 | RB2 | RB1I | RBO |
Bit Bit Function
Number Mnemonic
15-0 RB15:0 Receive Buffer Bits:
This register contains the last word received. The receive shift register
shifts bits in with the rising edge of the receiver clock pin. Data is shifted
in starting with the most-significant bit. The control logic then transfers
the received word from the receive shift register to SSIORBUF.

Figure 13-23. SSIO Receive Holding Buffer (SSIORBUF)

13.4 DESIGN CONSIDERATIONS

The transmit buffer empty signal can be connected to the interrupt control and DM Adomits.
ever, at high baud-rates interrupt latency is too long to prevent a transmit underrun error. For these
cases, use the DMA to load the data to be transmitted into the transmit buffer.

To illustrate this point, assume the maximum input transmit baud-rate of 8.25 MHz. To prevent a
transmit underrun error, a new 16-bit data word must be written to the transmit buffer before the
transmit shift register shifts out 16 bits.

16 bits x ; = 16x121ns = 1939 ns
.25 MHz

At 33 MHz, one clock is 30 ns. The transmit buffer must be reloaded within 64 ¢i3%/30),
but interrupt latency is longer than 64 clocks. Therefore, the DMA unit is required to load the
transmit buffer.

13-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

13.5 PROGRAMMING CONSIDERATIONS

When operating the transmitter in Master mode, and not in Autotransmit mode, you must
ensure that the last character to be transmitted is in the process of being shifted out before
disabling the transmitter. If the transmitter is disabled before the character has begun
shifting, the character remains in the shift register and is shifted out when the transmitter is
re-enabled. At high baud rates this can be a problem and using the Autotransmit mode is
recommended.

The SSIO interrupt line is multiplexed with INT5. When configuring your system for SSIO-
generated interrupts, you must clear INTCFG.1 to connect the SSIO interrupt signal to the
ICU.

The serial receive clock (SRXCLK) and transmit serial data (SSIOTX) pins are multiplexed
with other functions. Use PINCFG bits 0 and 1 to select the pin functions.

No register programming is required for the shared signal pairs RI1#/SSIORX and
DSR1#/STXCLK. Both do not have multiplexers since one of the shared signals is a
dedicated input.

13.5.1 SSIO Example Code

This section includes these software routines:

InitSSIO Initializes the SSIO for synchronous transfers
SSerialReadWord Polled serial read function that receives a single character
SSerialWriteWord Polled serial write function that transmits a single character
SSIO_ISR Interrupt Service Routine for interrupts generated by the SSIO
Service_RHBF Service routine for interrupts generated by the RHBF signal
Service_ THBE Service routine for interrupts generated by the THBE signal

The final code example shows an SSIO transfer in which the transmitter is interrupt-driven and
the receiver is polled. See Appendix C for included header files.

#include <conio.h>
#include “80386EX.h”
#include “EV386EX.h”

WORD value = ‘1’;
BYTE Control;
BYTE poll;

InitSSI0:

Description:

13-26 I

Int9|® SYNCHRONOUS SERIAL I/O UNIT

Initialization routine for Synchronous Serial I/O Port.

Parameters:
Mode Enables receiver and transmitter; Enables TBE and RHBF
interrupts

MasterTxRx Defines whether Tx and/or Rx are in Master Mode
BaudValue Enables Baud-rate generator and sets Baud-rate Value
PreScale 9-bit Clock prescale value

Returns:

None
Assumptions:

PINCFG & SIOCFG should be configured before this is called.
Prescale is only used if SIOCFG.2 is clear.

Syntax:
#define SSIO_TX_MASTR 0x2 /I Transmit Master Mode
#define SSIO_RX_MASTR 0x1 /I Receive Master Mode
#define SSIO_TX_SLAVE 0 /I Transmit Slave Mode
#define SSIO_RX_SLAVE 0 /I Receive Slave Mode
#define SSIO_TX_IE 0x20 /I Transmit Interrupt Enable
#define SSIO_TX_ENAB 0x10 /I Transmitter Enable
#define SSIO_RX_IE 0x2 /I Receive Interrupt Enable
#define SSIO_RX_ENAB 0x1 /I Receiver Enable
#define SSIO_BAUD_ENAB 0x80 /I Enable Baud Rate Generator
#define SSIO_CLK_SERCLK 0x1 /I Baud Rate Clocking Source:
/I SERCLK = CLK2/4
#define SSIO_CLK_PSCLK 0x0 // Baud Rate Clocking Source:
/I PSCLK = (CLK2/2)/
(CLKPRS+2)

INitSSIO (SSIO_TX_IE| SSIO_TX_ENAB | SSIO_RX_ENAB,
SSIO_RX_MASTR | SSIO_TX_SLAVE,
SSIO_BAUD_ENAB,

SSIO_CLK_PSCLK);

Real/Protected Mode:
No changes required.

void InitSSIO(BYTE Mode, BYTE MasterTxRx, BYTE BaudValue, BYTE PreScale)
{
/*** Set clocking iff either TX or RX is a master ***/
if(MasterTxRx != 0)
{
/* If 0 using PSCLK, therefore set PreScale */
if((_GetEXRegByte(SIOCFG) & BIT2MSK) == 0)
_SetEXRegByte(CLKPRS, PreScale);

13-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

/* Init Baud Rate Generator */
_SetEXRegByte(SSIOBAUD,BaudValue);
}
_SetEXRegByte(SSIOCON1,Mode);
_SetEXRegByte(SSIOCON2,MasterTxRx);

}* InitSSIO */

SSerialReadWord:

Description:
Is a Polled serial port read function that will wait forever
or until a character has been received from the serial port.

Parameters:
MasterSlave Defines if receiver is in Master or Slave mode

Returns:
Word read from serial port

Assumptions:
In Slave Mode, receiver must be enabled prior to this function call.

Syntax:
#define SSIO_RX_MASTR 0ox1
#define SSIO_RX_SLAVE 0x0

WORD character;
character = SSerialReadWord(SSIO_RX_MASTR);

Real/Protected Mode:
No changes required.

WORD SSerialReadWord(BYTE MasterSlave)
{
register BYTE SSControl;
if(MasterSlave == SSIO_RX_MASTR)
{
/* Save Control Register */
SSControl = _GetEXRegByte(SSIOCONL1);
/* Get Control Register Ready to disable */
SSControl &= (~SSIO_RX_ENAB);// Clear the bit
/* Enable Receiver */
_SetEXRegByte(SSIOCON1, SSControl | SSIO_RX_ENAB);
/* Wait until Receive Holding Buffer is Full */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_RHBF));

13-28

Int9|® SYNCHRONOUS SERIAL I/O UNIT

/* Disable Receiver */
_SetEXRegByte(SSIOCONL1, SSControl);
}
else { // Slave Receiver, Receiver MUST already be Enabled
/* Wait until Receive Holding Buffer is Full */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_RHBF));

}
return (WORD)_GetEXRegWord(SSIORBUF);

}* SSerialReadWord */

SSerialWriteWord:

Description:
Is a Polled serial port write function that will wait forever
or until a character has been written to the serial port.

Parameters:
Ch Word to be written out to serial port
MasterSlave Defines whether transmitter is Master or Slave
Returns:
None

Assumptions:
If transmitter is in Slave mode, it must already be enabled.

Syntax:

#define SSIO_TX_MASTR 0x2

#define SSIO_TX_SLAVE 0x0
char Ch =‘a’;

SSerialWriteWord((WORD)Ch, SSIO_TX_MASTR);

Real/Protected Mode:
No changes required.

void SSerialWriteWord(WORD Ch,BYTE MasterSlave)

{
register BYTE SSControl;
unsigned int i;

if(MasterSlave == SSIO_TX_MASTR)
{

/* Save Control Register */
SSControl = _GetEXRegByte(SSIOCONL1);

13-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

/* Get Control Register Ready to disable */
SSControl &= (~SSIO_TX_ENAB); /I Clear the bit

/* Set Buffer to Character */
_SetEXRegWord(SSIOTBUF,Ch);

/* Enable Transmitter */
_SetEXRegByte(SSIOCON1, SSControl | SSIO_TX_ENAB);

/* Wait until Transmit Holding Buffer is empty */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_THBE));
for(i=0;i < 4000; i++) { // Delay so transmit begins before disable
_asm {
nop
}
}

/* Disable Transmitter */
_SetEXRegByte(SSIOCONL1, SSControl);
}
else /I Slave, Transmitter MUST already be Enabled
{
/* Wait until Transmit Holding Buffer is empty */
while(!(_GetEXRegByte(SSIOCON1) & SSIO_THBE));
_SetEXRegWord(SSIOTBUF,Ch);// Write to Buffer

}

}/* SSerialWriteWord */

SSIO_ISR:

Description:
Interrupt Service Routine for SSIO generated interrupts. This ISR
identifies the cause of the interrupt and calls the appropriate
routine.

Parameters:
None

Returns:
None

Assumptions:

It is assumed that the Slave 8259 is operating in Fully Nested Mode.
If the Slave were in SMM, a Specific EOl would have to be sent to the

13-30

intel.

Int9|® SYNCHRONOUS SERIAL I/O UNIT

Slave to clear the in-service bit.

It is also assumed that the Master is not operating in AEOI, SFNM, or
SMM. If the Master were in SMM or SFNM, a Specific EOl would have to
be used. On the other hand, if the Master were operating in AEOI mode,
no EOI signal would have to be sent.

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

void interrupt far SSIO_ISR (void)
{

Control = _GetEXRegByte(SSIOCONL1);

/* If THBE is set and Transmitter Interrupts are enabled */
if ((Control & SSIO_THBE) && (Control & SSIO_TX_IE)) {
Service_THBE(); // Service routine specific to THBE interrupts

}

/* Else if RHBF is set and Receiver Interrupts are enabled */
else if ((Control & SSIO_RHBF) && (Control & SSIO_RX_IE)) {
Service_RHBF(); // Service routine specific to RHBF interrupts

}

NonSpecificEOI(); // For Slave
NonSpecificEOI(); // For Master

}* SSIO_ISR */

Service_RHBF:

Description:
Service Routine for SSIO interrupts generated by the RHBF signal.

Parameters:
None

Returns:
None

Assumptions:

13-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

None

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

void Service_ RHBF(void)
{

WORD buffer;
buffer = _GetEXRegWord(SSIORBUF);

/* Display received character on the screen */
SerialWriteChar(SIO_0, (BYTE)buffer);

}* Service_RHBF */

Service_THBE:

Description:
Service routine for SSIO interrupts generated by THBE signal.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user

Real/Protected Mode:
No changes required.

void Service_ THBE(void)
{

inti;
if (value <='9") {

13-32

Int9|® SYNCHRONOUS SERIAL I/O UNIT

_SetEXRegWord(SSIOTBUF, value);
value++;

}

else {
/* Disable Transmitter and Transmitter interrupts */

for(i=0;i < 4000; i++) { // Delay so transmit begins before disable
_asm{
nop
}
}
_SetEXRegByte(SSIOCON1,_GetEXRegByte(SSIOCON1) & 0xcf); // Clear TEN, TIE

}

} I* Service_THBE */

Example Code showing SSIO transfer in which the transmitter is
interrupt-driven and the receiver is polled:

INitSSIO(SSIO_RX_ENAB | SSIO_TX_ENAB | SSIO_TX_IE,
SSIO_TX_MASTR | SSIO_RX_SLAVE, OxFO, 0);

/I Setup SSIO interrupts
_SetEXRegByte(INTCFG, _GetEXRegByte(INTCFG) & 0xfd); // Slave IR1 is
/I multiplexed
SetlRQVector(SSIO_ISR, 9, INTERRUPT_ISR); // SSIO IR will be generated
/I on Slave IR1

Disable8259Interrupt(IR1+IR3+IR4+IR5+IR6+IR7, IRO+IR2+IR3+IR4+IR5+IR6+IR7);
Enable8259Interrupt(IR2,IR1); // Enable slave interrupt to master(IR2),
/I Enable slave IR1
_enable(); // Enable Interrupts

/I Initialize SSIO Ports
_SetEXRegByte(PINCFG, _GetEXRegByte(PINCFG) & 0xfc);
_SetEXRegByte(SIOCFG, _GetEXRegByte(SIOCFG) & 0xfb);

/I Fill up transmit buffer with first character
_SetEXRegWord(SSIOTBUF, ‘a’);

/I Use Polled SSIO receiver function to receive character
while (input <‘z") {
input = SSerialReadWord(SSIO_RX_SLAVE);
SerialWriteChar(SIO_0, (BYTE)input); // Print to screen

}

13-33

intel. 14

CHIP-SELECT
UNIT

intel.

CHAPTER 14
CHIP-SELECT UNIT

The Chip-select Unit (CSU) of the processor can be used to eliminate external addiass and
cycle decoders in your system. The chip-selects generated by this unit can simplify external “glue
logic” by providing signals that can be connected directly to the chip-enable inputs of external
memory and I/O devices. If a particular device or address region does not require a chip-enable
signal, a chip-select region can be programmed only to enable termination of accesses to that
region. A chip-select region can also be programmed to generate a chip-enable signal and
terminate accesses to that region.

The chip-select unit provides eight signalscleannelsallowing direct access to up to eight de-
vices or address regions. You can individually configure the channels for compatibility with a va-
riety of devices. Each channel can operate in either 16-bit or 8-bit bus mode, generate up to 31
wait states, and either terminate a bus cycle automatically or wait for an external ready signal.

This chapter is organized as follows:
* Overview (see below)
* CSU Operation (page 14-2)
* Register Definitions (page4113)
¢ Design Considerations (pagé-21)

* Programning Considerations (page 14-22)

14.1 OVERVIEW

Each chip-select channel consists of address and mask registers and an output signal. The addres
and mask registers allow you to define memory or I/O address blocks for each channel. You also
specify whether or not the chip-select is activated when the processor is operating in system man-
agement mode. When the processor accesses a channel’s address block, the CSU activates the
channel’s output signal. Connecting a channel’s output to a memory or I/O device simplifies
memory and I/O interfacing by removing the need for and delay of decoding addresses externally.

NOTE

Chip-select channels are not activated during interrupt acknowtsatgs
and halt and shdown cycles.

I 14-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

14.2 CSU UPON RESET

Upon reset of the processor, only the UCS channel is enabled and all other chip-selects are dis-
abled. UCS is enabled for the entire memory space of thegsmce

The UCS region is initialized upon reset with the following settings:
* Mask set to 7FFFH (CM25:11 in UCSMSKH and UCSMSKL registers)
* CMSMM set
* 16-bit bus size
* Memory access
¢ External READY# ignored
¢ 15 wait states

With all the UCS mask bits set to 1, the UCS# pin is active for the entire 64 MBytespwbthe
cessor's memory address space. The UCS region can be programmed for a smaller size during
initialization. Normally, UCS# is used to select non-volatile memory devices, such as ROM and
FLASH, at the top of the memory address space so that the processor can fetch the first instruction
from address 3FFFFFOH after RESET. If the Port92 CPU-only RESET is used (described in
Chapter 5), the UCS channel must remain enabled for the top of the memory address space (a
CPU-only RESET does not affect the chip-select registers) and therefore, the UCS channel does
not re-initialize to its reset state.

14.3 CSU OPERATION

Each chip-select channel functions independently. The following sections describe chip-select
channel address blocks, system management mode support, and bus cycle length and bus size
control.

14.3.1 Defining a Channel’'s Address Block

A 15-bit channel address and mask are used to specify a channel’s active address block. When
the processor accesses an address in memory or I/O, the upper 15 bits of the address are compare
to the chip-select channel address and OR’d with the channel mask. This means that the CSU

compares the channel address and ORs the channel mask to A25:11 for memory addresses anc
A15:1 for I/O addresses. Ones in the channel's mask exclude the corresponding bits from address

comparisons. Figure 14-1 shows the logic for determining address equality.

14-2 I

Int9|® CHIP-SELECT UNIT

15-bit Channel Address
bit x

Address
bit x)
Chip-select

Channel Output

bit x
15-bit Channel Mask |

A2533-01

Figure 14-1. Channel Address Comparison Logic

The lower address bits are excluded from address comparisons (only 15 bits are compared). For
memory addresses which have 26-bit addresses, the minimum channel address block size is 2
Kbytes; for /O addresses with 16-bit addresses, the minimum channel address block size is 2
bytes.

NOTE
The starting address of any channel address block must be a multiple of the
block size. For example, a 256 Kbyte block can only start at an address that is
a multiple of 256 Kbytes (OH, 4000H, 8000H, etc.).

Because you can set ones in the channel mask to exclude certain address bits from comparisons,
you can increase the size of a channel’s address block (by powers of 2 in Kbytes for memory ad-
dresses and by powers of 2 in bytes for /O addresses). Figure 14y2ti#sisow memory ad-

dress block sizes are determined from the channel’s mask; the concept is ther $8@reddress

block sizes (replace Kbyte with byte). As shown in Figure 14-2, the bit location of the right-most
zero in the channel mask determines the channel’s active address block size.

I 14-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

15-bit Channel Mask Block Size

15 1

XXX XXX IXIXIXIXIXIXIXT0] 2" = 2 Kbyte

XXX IXIXIXIXIXIXIXTX[o 2] 2%= 4 kiyte

XXIXIXIXIXIXIXIXIXIXIXTOTL]E] 2°= 8 Kkoyte
.

OLLELLALERAAEETAET] 2™= 32768 Kbyte
16
[tfafafafafafafala]a]a]afa]a]1] 2= 65536 Kbyte

A2534-01

Figure 14-2. Determining a Channel's Address Block Size

Any ones that are to the left of the right-most zero determine the number of blocks and the loca-
tions where the blocks are repeated. This is best illustrated by the following four examples. The
examples assume the channel is configured for memory addresses; however, the concepts dis-
cussed also apply to I/O-configured channels.

14-4

Int9|® CHIP-SELECT UNIT

Example 1

This example establishes a sin@2-Kbyte addresblock starting atl340000H (a 32-Kbyte
boundary). In this example, the 15-bit channel address is the starting address of the channel’s ac-
tive address block (because there are no 1's in the channel mask where there are 1's in the channel
address)

15 1
15-bit Channel Address ‘ 010011010000000 ‘
15-bit Channel Mask ‘ 000000000001111 ‘

25 0
Channel Active Address ‘ 01001101000X XXX ‘xxxxxxxxxxx

Because the least-significant 0 in the channel’s mask is in bit position 5, this channel’s active ad-
dress block size is®2= 32 Kbytes. Because there are no 1’s to the left of the right-most 0 in the
channel's mask, the block is not repeated.

1347FFFH

Active

1340000H

14-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Example 2

This example establishes four 4-Kbyte address blocks startinddG2000H, 0002000H,
0004000H, and 0006000H (4-Kbyte boundaries).

15 1
15-bit Channel Address ‘ 000000000000000 ‘
15-bit Channel Mask ‘ 000000000001101 ‘

25 0
Channel Active Address ‘ 00000000000XX0X ‘xxxxxxxxxxx

Because the least-significant 0 in the channel’s mask is in bit position 2, this channel’s active ad-
dress block size is?2 4 Kbytes. Because there are two 1’s to the left of the right-most 0 in the
channel’'s mask, the block is repeatéd=2 times. Also, because there are no 1’s in the channel
mask where there are 1's in the channel address, the channel address is the starting address of th
lowest active address block. In this example, each active 4-Kbyte address block in memory is fol-
lowed by an inactivel-Kbyte address block and each active addoéssk starts on a 4-Kbyte
address boundary.

Maximum
Memory Address

0007000H
Active 0006FFFH
0006000H
0005FFFH
0005000H
Active 0004FFFH
0004000H
0003FFFH
0003000H
Active 0002FFFH
0002000H
0001FFFH
0001000H
Active 000OFFFH
0000000H

14-6

Int9|® CHIP-SELECT UNIT

Example 3

This example establishes four 2-Kbyte address blocks startingt1280Q0H, 2433000H,
2613000H, and 2633000H.

15 1
15-bit Channel Address ‘ 100100000100110 ‘
15-bit Channel Mask ‘ 000010001000000 ‘

25 0
Channel Active Address ‘ 1001X000X100110 ‘xxxxxxxxxxx

Because the least-significant 0 in the channel’s mask is in bit position 1, this channel’s active ad-
dress block size is'Z 2 Kbytes. Because there are two 1's to the left of the right-most 0 in the
channel's mask, the address block is repeated@times. Also, because there are no 1's in the
channel mask where there are 1's in the channel address, the channel address is the starting ad
dress of the lowest active address block. In this example, each atthwge?address block in
memory is followed by an inactive 2-Kbyte address block and each active address block starts at
a 2-Kbyte boundary.

14-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’S MANUAL Int9I®

Maximum Memory
Address

2633800H
Active 26337FFH
2633000H

2613FFFH
2613800H
Active 26137FFH
2613000H

2433FFFH
2433800H
24337FFH
2433000H
2432FFFH

2413800H
Active 24137FFH
2413000H

14-8

Int9|® CHIP-SELECT UNIT

Example 4

This example establishes two 16-Kbyte address blocks stard&)8000H and OE28000H (16-
Kbyte boundaries).

15 1
15-bit Channel Address ‘ 001110001010000 ‘
15-bit Channel Mask ‘ 000000001000111 ‘

25 0
Channel Active Address \ 00111000X010XXX ‘xxxxxxxxxxx

Because the least-significant 0 in the channel mask is in bit position 4, this channel’s active ad-
dress block size is*2 16 Kbytes. Because there is one 1 to the left of the right-most 0 in the
channel mask, the address block is repeated2times. Unlike the other examples, there is a 1

in the channel mask where there is a 1 in the channel address. For this reason, the channel addres
is not the starting address of the lowest active address block. In this example, each active 16-
Kbyte address block is followed by an inactive 16-Kbyte address block and each block starts at
a 16-Kbyte address boundary.

Maximum
Memory Address

OE2CO00H
OE2BFFFH

Active
0E28000H

OEOCO00H
OEOBFFFH

Active

OE08000H

14-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

14.3.2 System Management Mode Support

The processor supports four operating modgstem management mode (SMM), protected, real
and virtual-86 mode. In order for a system to operate correctly in SMM, it must meet several re-
quirements. The CSU provides support for some of these requirementse MM, you must

set aside a partition of memory, called SMRAM, for the SMM driver. SMRAM must meet the
following conditions:

* Located at 38000H-3FFFFH (32 Kbytes)
* Accessible only when the processor is in SMM during hormal operation
* Accessible during system initialization when the processor is not in SMM

The CSU allows you to specify an address block and control whether or not the chip-select is ac-
tivated while the processor is in SMM. While in SMM (with CASMM=1), the chip-select is ac-
tive only when the processor is the bus master, such as when the processor is not in a hold state.

Refer to Chapter 7 (“Programming Considerations” on page 7-16) for a code exampbe of
gramming chip-selects to support SMM.

14-10 I

Int9|® CHIP-SELECT UNIT

14.3.3 Bus Cycle Length Control

Each chip-select channel controls how bus cycles to its address block terminate. Each channel can
generate up to 31 wait states and then unconditionally terminate domaait external bus ready

signal to terminate. If the channepiogrammed for wait statesid to sample external READY#,

the external READY# is ignored until the programmed number of wait states has lertadins

into the cycle. If greater than 31 wait states are required, ready must be generated externally, and
the external READY# option must be selected.

NOTE
When a chip-select region overlaps on-chip peripheral addresses, the on-chip
peripheral always generates READY# and overrides the channel’s
configuration.

14.3.4 Bus Size Control

The processor assumes that the currently addressed device requires a 16-bit data bus unless the
bus size control pin (BS8#) is asserted. When asserted, BS8# tells the processor that the addressec
device requires an 8-bit data bus. You can program a chip-select channel specifically for 8-bit de-
vices. This causes the CSU to assert BS8# automatically each time it activates the channel.

14.3.5 Overlapping Regions

You can configure CSU channels to have overlapping address blocks. When channels with over-
lapping address blocks have different bus cycle length and bus size configurations, the CSU must
adjust these parameters. Figure 14-3 shows how the CSU adjusts the bus cycle length. In the case
of different bus sizes, the CSU defaults to an 8-bit bus size.

If one overlapping chip-select region has the RDY bit set and the other overlapping region does
not, the CSU defaults to the ‘RDY Bit Set’ operation; in this case an external READY# is neces-
sary to terminate accesses to the address locations in which the two chip-selects overlap.

NOTE
If a bus cycle address activates multiple overlapping CSU channels, all the
enabled chip-select signals of those channels go active. To avoid contention on
the data bus, care must be taken when using these chip-select signals
externally.

I 14-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Is any

channel
dependent on

external Yes

Wait for smallest number

of all overlapping regions'

wait state values.

ready?

14-12

Wait
State
. READY#
Wait for largest number of asserted?
all overlapping regions'
wait state values.
(Complete bus cycle.)
A2392-02
Figure 14-3. Bus Cycle Length Adjustments for Overlapping Regions

Int9|® CHIP-SELECT UNIT

14.4 REGISTER DEFINITIONS

Table 14-1and Table 14-2 list the signals and registers associated with the chip-select unit. There
are seven general-purpose chip-select channels) @& one upper chip-select channel (UCS).
Upon reset, the UCS is enabled with the entire 64 Mbyte memory address space as its address
block. The UCS can be used to select a memory device at the top of the memory address space
so that the processor can fetch the first instruction from address 3FFFFFOH after reset.

Table 14-1. CSU Signals

Device Pin or Internal

Signal . Description
9 Signal P
CS6:0# Device pins Chip-select Signals:
UCSs# (output)

Indicates that the memory or I/O address that the
processor is accessing is in channel n's active address
region.

14-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table 14-2. CSU Registers

. Expanded o
Register Description
9 Address P
PINCFG OF826H Pin Configuration:
(read/write) Connects the CS6:5# signals to package pins.
P2CFG OF822H Port 2 Configuration:
(read/write) Connects the CS4:0# signals to package pins.
CSOADH 0F402H Chip-select High Address:
CS1ADH OF40AH Defines the upper 10 bits of the chip-select channel address. The
CS2ADH OF412H processor uses a chip-select’'s channel address to determine the starting
CS3ADH OF41AH location of the channel’s active address block.
CS4ADH OF422H
CS5ADH OF42AH
CS6ADH OF432H
UCSADH OF43AH
(read/write)
CSOADL OF400H Chip-select Low Address:
CS1ADL OF408H Defines the lower 5 bits of the chip-select channel address. Configures
CS2ADL OF410H the channel for memory or I/0O addresses, determines whether or not the
CS3ADL OF418H channel is activated when the processor is operating in system
CS4ADL OF420H management mode, configures the channel’s bus size, defines the
CSS5ADL OF428H minimum number of wait states inserted into the bus cycle, and defines
CSEADL OF430H whether an external READY# is required to terminate the bus cycle.
UCSADL OF438H
(read/write)
CSOMSKH 0F406H Chip-select High Mask:
CSIMSKH OF40EH Defines the upper 10 bits of the chip-select channel mask. The processor
CS2ZMSKH OF416H uses a chip-select’s channel mask to determine the size of the channel's
CS3MSKH OF41EH active address block and if the address block is repeated.
CS4MSKH OF426H
CS5MSKH OF42EH
CS6MSKH OF436H
UCSMSKH OF43EH
(read/write)
CSOMSKL O0F404H Chip-select Low Mask:
CSIMSKL OF40CH Defines the lower 5 bits of the chip-select channel mask and enables the
CS2MSKL OF414H channel’s output pin.
CS3MSKL OF41CH
CS4MSKL OF424H
CS5MSKL OF42CH
CS6MSKL OF434H
UCSMSKL OF43CH
(read/write)

14-14

intel.

14.4.1 Pin Configuration Register (PINCFG)

Use PINCFG bits 6 and 4 to connect the CS6# and CS5# signals to package pins.

CHIP-SELECT UNIT

Pin Configuration Expanded Addr: F826H
PINCFG ISA Addr: —
(read/write) Reset State: 00H
7 0
— PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:
0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.
5 PM5 Pin Mode:
0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.
1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.
4 PM4 Pin Mode:
0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.
3 PM3 Pin Mode:
0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.
2 PM2 Pin Mode:
0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.
1 PM1 Pin Mode:
0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.
0 PMO Pin Mode:
0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

Figure 14-4. Pin Configuration Register (PINCFG)

14-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

14.4.2 Port 2 Configuration Register (P2CFG)
Use P2CFG bits 4-0 to connect the CS4:0# signals to package pins.

Port 2 Configuration Expanded Addr: F822H

P2CFG ISA Addr: —

(read/write) Reset State: 00H

7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function

Number Mnemonic
7 PM7 Pin Mode:

0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.

6 PM6 Pin Mode:

0 = Selects P2.6 at the package pin.
1 = Selects TXDO at the package pin.

5 PM5 Pin Mode:

0 = Selects P2.5 at the package pin.
1 = Selects RXDO at the package pin.

4 PM4 Pin Mode:

0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.

3 PM3 Pin Mode:

0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.

2 PM2 Pin Mode:

0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.

1 PM1 Pin Mode:

0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.

0 PMO Pin Mode:

0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.

Figure 14-5. Port 2 Configuration Register (P2CFG)

14-16

Int9|® CHIP-SELECT UNIT

14.4.3 Chip-select Address Registers

The Address Register of each chip-select channel defines the address block that the channel re-
sponds to during an access. The valuéisitegister is compared to A25:11 of the processor bus
during a memory access and to A15:1 during an I/O access. A bus cycle whose address matches
the non-masked (see “Chip-select Mask Registers” on b&d®) bits of the Address Register
causes the respective chip-select channel to have an address match. Even if there is an addres
match, whether or not the CSU activates the channel depends on the values of the channel’s SMM
address and mask bits (CASMM and CMSMM) and the chip-select channel enable bit (CSEN).
The CASMM and CMSMM bits determine whether or not the channel is activated whathe

cessor is operating in SMM.

Write a channel’s 15-bit address to the chip-select address registers. These bits are masked by the
channel’s 15-bit mask.

NOTE

When a chip-select channel is activated, it either asserts a chip-select signal,
controls wait states and READY# generation, or both.

Chip-select High Address Expanded Addr: F402H, FA0AH
CSnADH (n = 0-6), UCSADH F412H, F41AH
(read/write) F422H, FA2AH
F432H, F43AH
ISA Addr: —
Reset State: 0000H (CSnADH)
FFFFH (UCSADH)
15 8
[- = [=1 = JL = [= [oms | cau |
7 0
| caizs | caiz | can | cao || cAas | cas | car | cre |
Bit Bit Function
Number Mnemonic
15-10 — Reserved; for compatibility with future devices, write zeros to these bits.
9-0 CA15:6 Chip-select Channel Address Upper Bits:
Defines the upper 10 bits of the channel's 15-bit address. The address
bits CA15:6 and the mask bits CM15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.

Figure 14-6. Chip-select High Address Register (CS nADH, UCSADH)

14-17

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Chip-select Low Address

Expanded Addr: F400H, F408H

CSnADL (n=0-6), UCSADL F410H, F418H

(read/write)

F420H, F428H
F430H, F438H
ISA Addr: —
Reset State: 0000H (CSnADL)
FF6FH (UCSADL)

CA3 ‘ CA2 H CAl ‘CASMM‘ BS16 ‘ MEM ‘

—_ ‘ws4 H wss‘wsz‘ws1‘wso‘

Bit
Number

Bit
Mnemonic

Function

15-11

CA5:1

Chip-select Address Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit address. The address bits
CA5:1 and the mask bits CM5:1 form a masked address that is compared to
memory address bits A15:11 or I/O address bits A5:1.

10

CASMM

SMM Address Bit:

If this bit is set (and unmasked), the CSU activates the chip-select channel
only while the processor is in SMM (and not in a hold state). Otherwise, the
CSU activates the channel only when processor is operating in a mode
other than SMM.

Setting the SMM mask bit in the channel’'s mask low register masks this bit.
When this bit is masked, an address match activates the chip-select,
regardless of whether the processor is in SMM or not.

BS16

Bus Size 16-bit:

0 = All bus cycles to addresses in the channel's address block are byte-
wide.

1 = Bus cycles are 16 bits unless the bus size control pin (BS8#) is
asserted.

MEM

Bus Cycle Type:

0 = Configures the channel for an I/O addresses
1 = Configures the channel for memory addresses

RDY

Bus Ready Enable:

0 = External READY# is ignored. READY# generated by CSU to terminate
the bus cycle.

1 = Requires that external READY# be active to complete a bus cycle. This
bit must be set to extend wait states beyond the number determined by
WS4:0 (see “Bus Cycle Length Control” on page 14-11).

6-5

Reserved; for compatibility with future devices, write zeros to these bits.

4-0

WS4:0

Wait State Value:

WS4:0 defines the minimum number of wait states inserted into the bus
cycle. A zero value means no wait states.

14-18

Figure 14-7. Chip-select Low Address Register (CS nADL, UCSADL)

Int9|® CHIP-SELECT UNIT

14.4.4 Chip-select Mask Registers

The Mask Register of each chip-select region is used to prevent bits from being compared with
the starting address, thus masking them from the comparison. This masking allows you to specify
the size of the region being defined. The mask should be set such that it masks the lower address
bits being compared, up to the size that you would like the block to be.

Write a channel’'s 15-bit mask to the chip-select mask registers. Also, use the chip-select low
mask register to enable the channel and to mask the channel’'s SMM address bit. Whan-the ¢
nel's SMM address bit is masked, the CSU activates the channel even if the channel is operating
in SMM.

Chip-select High Mask Expanded Addr: F406H, FA0EH
CSnMSKH (n = 0-6), UCSMSKH F416H, F41EH
(read/write) F426H, FA2EH
F436H, F43EH
ISA Addr: —
Reset State: 0000H (CSnNMSKH)
FFFFH (UCSMSKH)
15 8
L - [- [T -1 =-JC =[] = | cws | owu |
7 0
| omi3 | om2 | cmu | cmio || om9 | oms | cm7 | cme |
Bit Bit)
Number Mnemonic Function
15-10 — Reserved; for compatibility with future devices, write zeros to these bits.
9-0 CM15:6 Mask Value Upper Bits:
Defines the upper 10 bits of the channel's 15-bit mask. The mask bits
CM15:6 and the address bits CA15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.

Figure 14-8. Chip-select High Mask Registers (CS nMSKH, UCSMSKH)

14-19

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Chip-select Low Mask Expanded Addr: F404H, F40CH
CSnMSKL (n = 0-6), UCSMSKL F414H, F41CH
(read/write) F424H, FA2CH
F434H, F43CH
ISA Addr: —
Reset State: 0000H (CSNMSKL)
FFFFH (UCSMSKL)
15 8
| oms | oma | om3 | om2 || o [omswm | — | — |
7 0
-1 -7 -1-JC =71 =1 = [csen |
Bit Bit Function
Number Mnemonic
15-11 CM5:1 Chip-select Mask Value Lower Bits:
Defines the lower 5 bits of the channel’s 15-bit mask. The mask bits
CM5:1 and the address bits CA5:1 form a masked address that is
compared to memory address bits A15:11 or I/O address bits A5:1.
10 CMSMM SMM Mask Bit:
0 = The SMM address bit is not masked.
1 = Masks the SMM address bit in the channel’s Chip-Select Low
Address register. When the SMM address bit is masked, an address
match activates the chip-select, regardless of whether the processor
is in SMM.
9-1 — Reserved; for compatibility with future devices, write zeros to these bits.
0 CSEN Chip-select Enable:
0 = Disables the chip-select channel.
1 = Enables the chip-select channel.

14-20

Figure 14-9. Chip-select Low Mask Registers (CS

nMSKL, UCSMSKL)

Int9|® CHIP-SELECT UNIT

14.5 DESIGN CONSIDERATIONS
When designing with the CSU, consider the following:

* Upon reset, UCS# is configured as a 16-bit chip-select signal. If the Boot device is only an
8-bit device, then BS8# must be asserted whenever UCS# is active (until the UCS channel
can be reprogrammed to reflect an 8-bit region). One way of doing this is by connecting the
UCS# pin directly to the BS8# pin, if there are no other devices that need to u&sthe B
pin. If UCS# is tied directly to BS8#, then the UCS channel need not be programmed to
reflect an 8-bit region.

¢ If the Port92 CPU-only RESET is used (described in Chapter 5), the UCS channel must
remain enabled for the top of the memory address space (a CPU-only RESET does not
affect the chip-select registers) and therefore, the UCS channel does not re-initialize to its
reset state.

¢ If arbitrary chip-select regions are required to access external memory and I/O devices and
a single channel can not be programmed to accommodate the address space of these
regions, multiple chip-select signals can be “ORed” to create a single chip-enable to a
device. For example a 512 Kbyte region chip-select signal starting on a 256 Kbyte boundary
can be created by “ORing” two 256 Kbyte chip-select signals.

* Refer to Chapter 6 (“Design Considerations” on page 6-38) for examples of using chip-
select signals to access external devices.

I 14-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

14.6 PROGRAMMING CONSIDERATIONS
When programming the CSU, consider the following:

* When programming a chip-select channel, always program the Low Mask Register last.
This ensures that all other bits gr@pely programmed before the region is enabled. When
reprogramming the channel, alwaysatike the channel before changing anything else.

* A chip-select channel is enabled by setting bit O of its Chip-Select Low Mask register and
its output signal is connected to the package pin by setting or clearing the appropriate
PINCFG or P2CFG register bit. The PINCFG and P2CFG registers are shown in Figures
14-4 and 14-5.

* The minimum address block for memory address-configured channels is 2 Kbytes and for
I/O address-configured channels is 2 bytes. The size of these address blocks can be
increased by powers of 2 Kbytes for memory addresses and by powers of 2 bytes for 1/0
addresses.

* A channel’'s address block of sinalways starts on amaddress boundary.

14.6.1 Chip-Select Unit Code Example

This following code example initializes the UCS and CS4 channels of the CSU. See Appendix C
for the included header files.

#include <conio.h>
#include “80386ex.h”
#include “EV386EX.h”

/~k
Description:

Initialize Chip Select Unit for:
UCS: Start address is O0H.

Region size is 512 Kbytes.
0 wait states.
Upper chip select is Enabled.
16 bit data bus size in memory space.
External bus ready is Disabled.
SMM region is accessible during SMI access and memory access.

CS4: Start address is 080000H.
Region size is 512 Kbytes.
0 wait states.
Chip select 4 is Enabled.
16 bit data bus size in memory space.
External bus ready is Disabled.
SMM region is accessible during SMI access only.

Parameters:
None

14-22

Int9|® CHIP-SELECT UNIT

Assumptions:
REMAPCFG register has Expanded I/O space access enabled (ESE bit set).

*/

void Init_CSU(void)
{

_SetEXRegWord(UCSADL, 0x700); /* Configure the upper chip select */
_SetEXRegWord(UCSADH, 0x0);

_SetEXRegWord(UCSMSKL, 0xFCO01);

_SetEXRegWord(UCSMSKH, 0x7);

_SetEXRegWord(CS4ADL, 0x300); /* Configure chip select 4 */
_SetEXRegWord(CS4ADH, 0x8);

_SetEXRegWord(CS4MSKL, 0xF801);
_SetEXRegWord(CS4MSKH, 0x7);

14-23

intel. 1 5

REFRESH
CONTROL UNIT

intel.

CHAPTER 15
REFRESH CONTROL UNIT

The Refresh Control Unit (RCU) simplifies the interface between the processordgnédraic

random access memory (DRAM) device by providing a way to generate periodic refresh requests
and refresh addresses. These refresh requests and addresses can then be used by an extern
DRAM controller to generate the appropriate DRAM signals and addresses needgdrta pe
refresh operations. The RCU can be used in conjunction with the Chip-select Unit to generate
chip select signals for DRAM regions; these signals can be ugbd byternal DRAM controller

to initiate refresh cycles.

The RCU can also be used when interfacing to pseudo-static random access memory (PSRAM).
This type of memory has an interface similar to a static random access memory (SRAM), but re-
quires a periodic refresh similar to DRAM.

This chapter is organized as follows:
¢ Dynamic Memory Control (see below)
* Refresh Control Unit Overview (page 15-2)
¢ RCU Operation (page515)
* Register Definitions (page516)
¢ Design Considerations (pa@&-11)

* Programning Considerations (page 15-14)

15.1 DYNAMIC MEMORY CONTROL

Typical DRAM devices require control logic to enable read, write, and refresh operations. The
RCU simplifies control logic design requirements by providing the necessary cell access require-
ments for refresh operations.

DRAM devices are built as matrices of memory cells. Therefore, each memory cell has a row and
column address associated with it. A typical controller design strobes addresses into a DRAM de-
vice through the use of two caoat lines: a row address strobe (RAS#) and a column address
strobe (CAS#). The controller prede lower (or row) address bits during RAS# and upper (or
column) address bits during CAS#. Activating RAS# accesses all cells within the specified row.
Accessing a cell refreshes it; therefore, cycling through the row addressehesfacDRAM de-

vice.

15.1.1 Refresh Methods

There are two common methods for refreshing a DRAM device: RAS#-only ABd-Before-
RAS#. The DRAM controller design requirements are simpler for RAS#-only thai\# ®e-
fore-RAS#.

I 15-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The RAS#-only method requires that the DRAM controller activate its RAS# signal when the
RCU activates its REFRESH# signal. This causes the controller to drive the refresh address gen-
erated by the RCU onto the DRAM address inputs, refreshing the specified DRAM row. With this
method, the controller need not assert the CAS# signal whenever the REFRESH# signal is active.

The CAS#-before-RAS# method requires that the DRAM device contain an internal counter to
determine the DRAM row addresses. To perform a refresh cycle using the CAS#-before-RAS#
method, the controller must generate a CAS# signal followed by a RAS# signal when the RCU
activates its REFRESH# signal. With this method, the DRAM device generates its own refresh
addresses and the RCU provides the REFRESH# signal.

If the CS6#/REFRESH# pin is being used for its CS6# function, another way of identifying a re-
fresh cycle is to look at the states of the bus status signals, M/IO#, D/C# and W/R#, (shown in
Table 6-2 on page 6-5) and the byte-enable signals (BHE# and BLE#). M/IO# andrB/Adgh,

W/R# is low, and both BHE# and BLE# are inactive during a refresh cycle. These signals can be
used by the DRAM controller to initiate a DRAM refresh cycle.

15.2 REFRESH CONTROL UNIT OVERVIEW

The RCU includes an interval timer unit, a control unit, and an address generation unit (Figure
15-1). The interval timer unit uses a refresh clock interval register and a 10-bit interval counter
to create a periodic signadlrieout). The control unit uses this signal to initiate periodic refresh
requests. The address generation unit uses a refresh base address register and a 13-bit addres
counter to generate DRAM refresh addresses. The DRAM device can use these addresses as row
addresses during RAS-only refresh cycles. Each time thevaittimer unit times out, a new re-

fresh address is generated.

15-2 I

REFRESH CONTROL UNIT

Processor Clock —
(CLK2/2)

SO0 ~0n< W

c

Interval Timer Unit

>| Refresh Clock Interval Register |

A\

| 10-bit Interval Counter |

——>
Timeout
REFRESH#
Control Unit (pin mux)
L3 Refresh
Refresh Control Register | Request
l«<—@—— Refresh
Acknowledge
Address Generation Unit
A25:14
< >| Refresh Base Address Register|
| 13-bit Address Counter |
A13:1 {)
< >| Refresh Address Register |
[
A2341-01

Figure 15-1. Refresh Control Unit Connections

15-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

15.2.1 RCU Signals
Table 15-1 describes the signals associated with the RCU.

Table 15-1. RCU Signals

Device Pin or Internal

Signal . Description
9 Signal P
CLKOUT Device Pin Processor Clock:
(from Clock and Power Provides the clocking signal for the interval counter. The
Management Unit) interval timer unit loads and decrements the counter on
the falling edges of the processor clock.
Timeout Internal signal Timeout:

(from the interval counter to

: Indicates that the interval counter has reached one. The
the control unit)

control unit initiates a refresh request when it detects
this signal, unless a refresh request is pending, in which
case itignores this signal.

REFRESH# Device pin External Refresh:

(output) Indicates that a refresh bus cycle is in progress and that
the refresh address is on the bus.
Refresh Internal signal Refresh Request:
Request Indicates that the control unit is requesting bus
ownership.
Refresh Internal signal Refresh Acknowledge:
Acknowledge

Indicates that the refresh control unit is being granted
bus ownership.

A25:1 Device pins Address Bus:
(output)

Contains the refresh address during refresh cycles. This
address can be used by the DRAM device to refresh a
single row.

15.2.2 Refresh Intervals

The interval timer unit controls the rate at which the control unit generates refresh requests. Re-
fresh intervals are progranmable through the use of a refresh control interval register (RFSCIR)
and a 10-bit down counter. The counter is loaded from RFSCIR, then decremented on each CLK-
OUT falling edge. When the counter reaches one, the interval timer unit reloads the counter from
the RFSCIR and asserts its timeout signal. The timeout signal causes the control unit to initiate a
refresh request, provided there is not one already pending. (The RCU must complete the present
refresh cycle before the control logic can generate a new refresh request). The control unitignores
the timeout signal if it already has a refresh request pending.

15.2.3 Refresh Addresses
The physical address generated during a refresh bus cycle has two components: address bits

A25:14 (from the refresh base address register) and address bits A13:1 (from the 13-bit address
counter).

15-4

Int9|® REFRESH CONTROL UNIT

The 13-bit address counter is a combination of a binary counter and a 7-bit linear-feedback shift
register. The binary count@roduces address bits A13:8 and the lineadback shift register
produces address bits A7:1. The shift register nonsequentially produces afl)f2&6&ble com-
binations. Each time the lower seven bits cyctedbgh all128 combinations, the binary counter
increments the upper 6 bits. This continues until the 13-bit address counter ayalgé 8192

(213) address combinations. The counter then rolls over to its original value and the process re-
peats.

15.2.4 Bus Arbitration

Because the two DMA channels, an external device (via the HOLD pin), and the refresh control
unit can all request bus control, bus control priority must be arbitrated. Refresh requests always
have the highest priority. “Bus Control Arbitration” on page 12-9 discusses the priority structure
of the other bus control requests.)

When a refresh occurs while a DMA channel is performing a transfer, the RCU “steals” a bus cy-
cle to perform a refresh. An external device can gain bus control through either the HOLD signal
or the DMA cascade mode. In this case, a refresh request causes the HLDA or DMACKn# signal
to be deasserted. When this happens, the external device should deassert its request line (HOLD
or DRQn) to allow the RCU to perform a refresh cycle. The refresh cycle is not executed until the
external device deasserts its request. If the external device reasserts its request signal before the
RCU completes the refresh cycle, bus control is given back to the external device after the refresh
cycle completes, without further arbitration.

15.3 RCU OPERATION

The following steps describe the basic refresh cycle, which is initiated every time the interval
counter reaches one.

1. The interval timer unit asserts the timeout signal and reloads the interval counter with the
refresh clock interval register value. The interval counter decrements on each succeeding
processor clock falling edge.

The RCU requests bus ownership.
Bus ownership is given to the control unit.

The control unit asserts the REFRESH# signal and a bus memory read cycle (with neither
Byte-enable signal active) is executed with the addsapplied by the RCU.

5. The DRAM controller asserts RAS#, latching the row address inside the DRAM device.
This refreshes the row.

6. The control unit deasserts REFRESH#, and the process repeats from step 1 when the
interval counter reaches one again.

Once enabled, the DRAM refresh process continues until you reprogram the RCU, a reset occurs,
or the processor enters powerdown mode.

I 15-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

15.4 REGISTER DEFINITIONS

Table 15-2 prodes an overview of the registers associated with the RCU. The following sections
provide specific programmingformafon for each register.

Table 15-2. RCU Registers

. Expanded _
Register Description
9 Address P

RFSCIR OF4A2H Refresh Clock Interval:

(read/write) Determines the processor clock (CLK2/2) count between refresh requests.

RFSCON OF4A4H Refresh Control:

(read/write) Enables the refresh control unit. Reading this register also provides the
current value of the interval counter.

RFSBAD OF4A0H Refresh Base Address:

(read/write) Contains the A25:14 address bits of the refresh address. This establishes
a memory region for refreshing.

RFSADD OF4A6H Refresh Address:

(read/write) Contains the A13:1 address bits of the refresh address. The 13-bit address
counter generates these values.

15-6

Int9|® REFRESH CONTROL UNIT

15.4.1 Refresh Clock Interval Register (RFSCIR)

Use RFSCIR to program the interval timer unit’s 10-bit down counter. The refresh counter value
is a function of DRAM specifications and processor frequency as follows:

DRAM refresh period (us) x processor clock (MHz)
e)

counter value =

where X = 128 or the # of DRAM rows, whichever is greater.

The DRAM refresh period is the time required to refresh all rows in the DRAM device.

NOTE
Because the lower seven address bits come from a linear-feedback shift
register, which generates all address bit combinations in a nonsequential order,
X in the equation above must never be less than 128 to ensure proper refresh of
all the rows in a DRAM device that has less than 128 rows.

Refresh Clock Interval Expanded Addr: F4A2H
RFSCIR ISA Addr: —
(read/write) Reset State: 0000H
15 8
([- [-1 -1 -0 =1 = | ree | res |
7 0
| rRez | Re6 | Res | Rea || rRes | Rc2 | RC1 | Roo |
Bit Bit Function
Number Mnemonic
15-10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
9-0 RC9:0 Refresh Counter Value:
Write the counter value to these ten bits. The interval counter counts
down from this value. When the interval counter reaches one, the control
unit initiates a refresh request (provided it does not have a request
pending). The counter value is a function of DRAM specifications and
processor frequency (see the equation above).

Figure 15-2. Refresh Clock Interval Register (RFSCIR)

15-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

15.4.2 Refresh Control Register (RFSCON)

Use RFSCON to enable and disable the refresh control unit and to check the current interval
counter value.

Refresh Control Expanded Addr: F4A4H

RFSCON ISA Addr: —

(read/write) Reset State: 0000H

15 8
Lren [- [- | — [= [— [cw [cw |
7 0
| cvz | cwe | cvs | cva || cva | cv2 | o1 | cwo |
Nulriitaer Mne?ritonic Function

15 REN Refresh Control Unit Enable:

This bit enables or disables the refresh control unit.

0 = Disables refresh control unit
1 = Enables refresh control unit

14-10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
9-0 CV9:0 Counter Value:

These read-only bits represent the current value of the interval counter.
Write operations to these bits have no effect.

Figure 15-3. Refresh Control Register (RFSCON)

15-8

Int9|® REFRESH CONTROL UNIT

15.4.3 Refresh Base Address Register (RFS BAD)

Use RFSBAD to set up the memory region that needs refreshing. The value written to this register
forms the upper bits (A25:14) of the refresh address. The RFSBgiBter can be used in con-
junction with the Chip Select Unit (CSU) to generate a chip-select for the DRAM reégiorgy

refresh cycles. If the address in the RFSBAD matches the region programmed in the CSU for
DRAM, then the DRAM chip-select is generated for both access and refresh cycles.

By programning two separate regions in the CSU, one for DRAM access cycles and the other for
DRAM refresh cycles, separate chip-selects can be generated for the two types of cycles. In this
case, the RFSBAD needs to be programmed with an address that matches the CSU region that is
programmed for the refresh cycle chip-select.

Refresh Base Address Expanded Addr: F4AOH
RFSBAD ISA Addr: —
(read/write) Reset State: 0000H
15 8
| — | — | = | = || razs | raa | RAzs | RA22 |
7 0
| Ra21 | Ra2o | RA9 | Ras8 || RA17 | Ra6 | RA15 | RA14 |
Bit Bit Function
Number Mnemonic
15-12 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
11-0 RA25:14 Refresh Base:
These bits make up the A25:14 address bits of the refresh address. This
establishes a memory region for refreshing.

Figure 15-4. Refresh Base Address Register (RFSBAD)

15-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

15.4.4 Refresh Address Register (RFS ADD)

RFSADD contains the bits A13:1 of the refresh address. The lowest address bit is not used be-
cause most DRAM devices contaiord-wide memory arrays; for attfresh operations, thew-
est address bit remains set.

Refresh Address Expanded Addr: F4A6H
RFSADD ISA Addr: —
(read/write) Reset State: OOFFH
15 8
| — | — | raz | ra2 || Rau | RAIO | RA9 | RAB |
7 0
| Ra7 | Ra6 | RAs | RA4 || RA3 | RA2 | R [1 |
Bit Bit Function
Number Mnemonic
15-14 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
13-1 RA13:1 Refresh Address Bits:
These bits comprise A13:1 of the refresh address.
0 — Refresh Bit 0:
AO of the refresh address. This bit is always 1 and is read-only.

Figure 15-5. Refresh Address Register (RFSADD)

15-10

Int9|® REFRESH CONTROL UNIT

15.5 DESIGN CONSIDERATIONS

Consider the following when pgramming the RCU.

* The system address bus does not contain an address AO signal; instead, it uses the BLE#
and the BHE# pins to generate the lowest address bit. During all refresh operations, BLE#
and BHE# are driven high.

This needs to be noted especially when interfacing to an 8-bit wide Pseudo Static RAM
(PSRAM) device. The lowest address bit generated by the refresh address counter is Al. A
circuit like the one shown in Figure 15-6 can be used to ensure the refresh of aHeosvs.
BLE# is connected to an address line of the PSRAM that is not used during refresh. Address
A1l of the processor is connected to A0 of the PSRAM and so forth. For example, when
using a 128Kx8-bit PSRAM device (refresh cycles only use the address present on inputs
A8:0), connect Al of the processor to AO of the PSRAM, A2 to Al and so on, until A9 to
A8. Then connect BLE# of the processor to any one of the A16:9 address lines of the
PSRAM. Since PSRAM is random accesamoey, this scheme works. During access

cycles, sequential accesses by the processor go to non-contiguous addresses in the PSRAM,
but since the processor does both the read and write cycles, this does not pose a problem.

Intel386™ EX BLE# can be PSRAM
Embedded connected to An
Processor any of these
address lines
BLE#
Am+1
Am+1 Am
Used
during
refresh
cycles
A2 Al
A3352-02

Figure 15-6. Connections to Ensure Refresh of All Rows in an 8-Bit Wide PSRAM Device

* An external device can gain bus control through either the HOLD signal or the DMA
cascade mode. In this case, a refresh request causes the HLDA or DACKn# signal to be
deasserted. When this happens, the external devicednopsits request line (HOLD or
DRQn) to allow the RCU to pform arefresh cycle. The refresh request remains pending
until the RCU gets control of the bus.

I 15-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

¢ If the counter value stored in the Refresh Clock Interval Register (RFSCIR) is <8 and the
RCU is enabled, the RCU always has bus control and other devices will never gain access
to the bus. This is because refresh requests have the highest priority in the bus arbitration
scheme and you are requesting the bus too often.

* There are two common methods of refreshing DRAM: RAS#-only and CAS#-before-
RASH#.

— RAS#-only refresh fees advantage of the Intel386 EX Embedded Processor’s built in
refresh address counter (RFSADD).

— In a CAS#-before-RAS# refresh, the DRAM prdes the row address for the refresh
cycle. The RCU counter still generates the row addresses, but they are disregarded by
the DRAM. The only external logic required is a PLD to recognize a refresh cycle and
provide the CAS# and RAS# signals to the DRAM.

Page Mode A paged DRAM access uses the upper address lines for the row
addresses and the lower lines for the column addresses. On the
Intel386 EX embedded processor, the lower address lines are
connected to the Refresh Address Counter Register (RFSADD). The
RFSADD incrementsirough a sesequence at each refresh request.
Because the lower address bits (wired to the Column Address Buffer)
change with each refresh request, the PLD must enable this buffer
when RAS# is asserted during a refresh cycle. Figure 15-7 shows the
external logic needed for paged&#-only refresh cycleshe PLD
can determine a refresh cycle by monitoring BHE# and BLE# (they
are both inactive during a refresh cycle), or by an active signal on the
REFRESH# pin. The buffer and lines that are active during this type
of refresh have a shaded bgodund inFigure 15-7.

15-12 I

Int9|® REFRESH CONTROL UNIT

R Row
ow Address
Upper Address Address
Buffer
OE_ROW#
Address
REFRESH# | R paged
"""""" age
Intel386™ EX BHE# DR?A\M
PLD
Embedded Processor CSm# CAS#
BLE#
OE_COL#
Column
Address
Lower Address Buffer Column
Address
Note:
A single mux can be used in place of the row and column address buffers.
A3264-02
Figure 15-7. RAS# Only Refresh Logic: Paged Mode

Non-page Mode In non-paged mode, the row address buffer can be connected to the

lower address lines and the column address buffer to the upper lines.
Figure 15-8 illustrates the hardware configuration for non-paged
DRAM accesses. The lines and buffer that are enabled in this type of
refresh are highlighted in the figure. The lower address bits are
connected to the Row Address Buffer and the upper address bits are
connected to the Column Address Buffer. As ay® Mode, the PLD
recognizes a refresh request by sampling both BHE# and BLE# (they
are both inactive during a refresh cycle), or by detecting an active
signal on the REFRESH# pin. The buffer and lines that are active
during this type of refresh have a shaded bemind inFigure 15-8.

15-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

- Row
ow Address
Lower Address Address
Buffer
OE_ROW#
Address
_REFRESH# _ w—
Intel386™ EX BHE#
Embedded Processor CSn# PLD CAS#
BLE#
OE_COL#
Column
Address
Upper Address Buffer Column
Address

Note:

A single mux can be used in place of the row and column address buffers.

Non-paged
DRAM

A3265-02

Figure 15-8. RAS# Only Refresh Logic: Non-Paged Mode

15.6 PROGRAMMING CONSIDERATIONS
REFRESH# and CS6# share a package pin. To select the REFRESH# signal at this pin, set bit 6

in the PINCFG register:

_SetEXRegByte(PINCFG, (_GetEXRegByte(PINCFG) | 0x40));

15.6.1 Refresh Control Unit Example Code

The following code example contains software routines that initialize the refresh control unit and
retrieve the current value of the refresh interval timer. See Appendix C for the included header

files.

#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

InitRCU:

Description:
Initializes the Refresh Control Unit

15-14

Int9|® REFRESH CONTROL UNIT

Parameters:
Counter_Value Value of the refresh interval

Returns:
Error Codes:
E_BADVECTOR User input an invalid parameter
E_OK Executed correctly

Assumptions:
None

Syntax:
#define REFRESH_INTERVAL 0x186 /ICounter value for DRAM with
/1 1024 rows and a refresh period
/I of 16 msec (25 MHz Processor Clock)
int error_code;

error_code = INnitRCU(REFRESH_INTERVAL);

Real/Protected Mode:
No changes required

extern int InitRCU(WORD Counter_Value)
{

/* Check that Counter_Value is 10 bits in length */
if (Counter_Value != (Counter_Value & 0x03ff))
return(E_BADVECTOR);

/* Clear lower 10 bits of RFSCIR */
_SetEXRegWord(RFSCIR, 0xfc00);

/* Set lower 10 bits of RFSCIR to Counter_Value */
_SetEXRegWord(RFSCIR, _GetEXRegWord(RFSCIR) | Counter_Value);

/* Enable Refresh Unit */
_SetEXRegWord(RFSCON, _GetEXRegWord(RFSCON) | 0x8000);

return(E_OK);

¥+ InitRCU */

Get_RCUCounterValue:

Description:
This function returns the current value of the refresh interval timer.

15-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Parameters:
None

Returns:
Refresh Interval Counter Value

Assumptions:
NONE

Syntax:
WORD CounterValue;
CounterValue = Get_RCUCounterValue();

Real/Protected Mode:
No changes required

extern WORD Get_RCUCounterValue(void)
{
WORD Counter_Value;

Counter_Value = _GetEXRegWord(RFSCON) & 0x3ff; // Counter value contained
/1'in bits RFSCON9:0

return(Counter_Value);

}/* Get_RCUCounterValue */

15-16

intel. 1 6

INPUT/OUTPUT
PORTS

intel.

CHAPTER 16
INPUT/OUTPUT PORTS

Input/Output (I/O) ports allow you to transfer information between the processor and the sur-
rounding system circuitry. /O ports are typically used to read system status, monitor system op-
eration, output device status, configure system options, and generate control signals.

The Intel386™ EX processor’s I/O port pins araltiplexed with peripheral pin functions. With

this multiplexed arrangement, you can use just those peripheral functions required for your design
and use any remaining pins for general-purpose /0. For example, this device offers eight chip-
select lines, five of which (80#—CS4#) are multiplexed withD port pins. If your design does

not need all eight chip-selects, you can use up to five pins (P2.0—P2.4) for I/O.

This chapter describes the 1/0 ports and explains how to configure them. The information is ar-
ranged as follows:

* Overview (see below)
* Register Definitions (page616)
* Design Considerations (pa@é-10)

* Programning Considerations (page 16-11)

16.1 OVERVIEW

The Intel386 EX processor has three 8-bit bidirectional 1/O ports, all of which are functionally
identical (Figure 16-1). Each port has three control registers and a status register.

All three ports share pins with internal peripherals (see Table 16-1). If your design does not re-
quire a pin’s peripheral function, you can configure that pin for use as an I/O port. For example,
if you don’t need erial channel Oyou can use P1.4-P1.0 and P2.7-P2.5 as I/O ports and still
allow the bus interface unit to use P1.7-P1.5 and the chip-select unit to use P2.4-P2.0.

Each pin can operate either in I/O mode or in peripheral mode. In /O mode, a pin has three pos-
sible configurations:

* high-impedance input
* open-drain output (requires an external pull-up resistor)
* complementary output

In 1/0O mode, register bits control the direction (input or output) of each pin and the value of each
output pin. In peripheral mode, the internal peripheral controls the operation (input or output) of
the pin. Table 16-1 lists the port pins with their reset status, multiplexed peripheral functions, di-
rection (input or output), and associated internal peripheral.

I 16-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

> PnCFG.x

Internal Peripherals 1

— 9 5 = ® ~+ 3 —

Pn.x

PnDIR.x

c

T AHE

PnLTC.x

PnPIN.x |-

A2393-01

Figure 16-1. 1/0 Port Block Diagram

16.1.1 Port Functionality

The function of a bi-directional port pin is controlled by the state of the Port Control Lateh (P
LTC). This is shown in Figure 16-2.

16-2

intel.

INPUT/OUTPUT PORTS

From Internal
Peripheral

Read Port
Data latch

Write Port
Data Latch

Read Port
Pin State

To Internal
Peripheral

Internal Data

Bus (F-Bus) C>+ D

Write Port
Direction

Read Port
Direction

From Internal
Peripheral
Direction
Control

Write Port
Control

Read Port
Control

[

CK

PnLTC
Q

Q#

Pin

o

PnPIN

-

CK

PnDIR

Q#

D——
ey —"

SYNC

Vee
or

Vsst

<]
[

o

D—ﬂ

T Depends on peripheral's inactive state

A3266-01

Figure 16-2. Logic Diagram of a Bi-directional Port

16-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The output of the Pin Configuration latchn@G) selects whether the I/O port or peripheral is
connected to the pin. When the porpiegrammed to act as a gareral pin, both the data for

the pin and the directional control signal for the pin come from the associated integraled pe
eral. When a bi-directional port pin is programmed as an I/O port, all port parameters are under
software control.

The output of the Port Direction latchnfPIR) enables or disables the three-state output driver
when the pin is programmed asl&D port. The three-state output driver is enabled by clearing
the Port Direction latch. The data driven to an output port pin is held in the Port Data latch. Setting
the Port Direction latch disables the three-state output driver making the pin an input.

The signal present on the pin is routed through a synchronizer tesstate buffer that connects

the 1/0O port path to the internal data bus. Not all peripheral input functions are synchronous. For
example, the interrupt pins (INT9-INTO) are asynchronous so that they can wake up the chip from
Powerdown mode when the clocks are stopped.

The state of the pin can be read at any time regardless of whether the pin is used as an 1/O port or
for a peripheral function.

16-4

Int9|® INPUT/OUTPUT PORTS

Table 16-1. Pin Multiplexing

Port Pin Peripheral Function

Pin Reset Status @ Signal Direction @ Pg]rtig:]n;;l
P1.0 wk 1 DCDO# | SIO0
P1.1 wk 1 RTSO# O SI00
P1.2 wk 1 DTRO# O SI00
P1.3 wk 1 DSRO# | SI00
P1.4 wk 1 RI0# | SI00
P1.5 wk 1 LOCK# O BIU
P1.6 wk 0 HOLD | BIU
P1.7 wk 0 HLDA O BIU
P2.0 wk 1 CSo# O CSsuU
P2.1 wk 1 CS1# O CSsu
pP2.2 wk 1 CS2# O CSsuU
P2.3 wk 1 CS3# O CSsuU
P2.4 wk 1 CSa# O CSu
P2.5 wk 0 RXDO | SI00
P2.6 wk 0 TXDO O SIO0
pP2.7 wk 1 CTSO# | SIO0
P3.0 wk O TMROUTO O Timer 0
P3.1 wk 0 TMROUT1 O Timer 1
P3.2 wk 0 INTO | ICU
P3.3 wk 0 INT1 | ICU
P3.4 wk 0 INT2 | ICU
P3.5 wk 0 INT3 | ICU
P3.6 wk 0 PWRDOWN O CLK & PM
P3.7 wk 0 COMCLK I SI0o, SIo1

NOTES:

1. wk 0 = weakly pulled down; wk 1 = weakly pulled up.

2. | =input; O = output.

16-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

16.2 REGISTER DEFINITIONS

Each port has three control registers and a status register associated with it (Table 16-2). The con-
trol registers (RCFG, MDIR, and PLTC) can be both read and written. The status register (P
PIN) can only be read. All four registers reside in /O address space.

Table 16-2. /0O Port Registers

Register Address Description
P1CFG OF820H Port n Mode Configuration:
P2CFG OF822H Each bit controls the mode of the associated pin.
P3CFG 0F824H
. 0= Selects I/O mode.
(read/write))
1= Selects peripheral mode.
P1DIR 0F864H Port n Direction:
P2DIR OF86CH Each bit controls the direction of a pin that is in /O mode.
P3DIR OF874H 0 = Configures a pin as a complementary output. If a pin is in peripheral
(read/write) mode, this value is ignored.
1= Configures a pin as either an input or an open-drain output.
P1LTC OF862H Port n Data Latch:
P2LTC OF86AH Each bit contains data to be driven onto an output pin that is in /O mode. Write
P3LTC OF872H the desired pin state value to this register. If a pin is in peripheral mode, this
(read/write) value is ignored.
Reading this register returns the value in the register—not the actual pin state.
P1PIN OF860H Port nPin State:
P2PIN OF868H Each bit of this read-only register reflects the state of the associated pin.
P3PIN OF870H Reading this register returns the current pin state value, regardless of the pin’s
(read only) mode and direction.

16-6

Int9|® INPUT/OUTPUT PORTS

16.2.1 Pin Configuration

You select the operating mode of each pin by writing to the associated bit InGR&SPegisters
(Figure 16-3 gives an abbreviated version of these registers; for the complete register descrip-
tions, see Appendix D). Setting a bit selects peripheral mode; clearing a bit selects 1/0O mode. In-
ternal peripherals control pins configured for peripheral mode, while nB¢éRP(Figure 16-4)

and RLTC (Figure16-5) registergontrol pins configured for I/O mode. Tallé-3 shows the

PnDIR and RLTC register values that determine the pin direction and state.

NOTE
You must program both registers to correctly configure the pins.

Table 16-3. Control Register Values for 1/0 Port Pin Configurations

Desired Pin Configuration Desired Pin State P nDIR | PnLTC

High-impedance input high impedance 1 1
) high impedance 1 1
Open-drain output
0 1 0
c | 1 0 1
omplementary output
p y outp o o o

Regardless of the pin’s configuration, you can read tiéNPregisters (Figur&6-6) to determine
the current pin state.

Port n Configuration Expanded Addr: F820H, F822H, F824H
PnCFG (n=1-3) ISA Addr: —
(read/write) Reset State: 00H
7 0
PM7 PM6 PM5 P4 || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7-0 PM7:0 Pin Mode:
0 = Places pin in I/O mode, controlled by PnDIR and PnLTC registers.
1 = Places pin in peripheral mode, controlled by the internal peripheral

Figure 16-3. Port n Configuration Register (P nCFG)

16-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Port Direction

Expanded Addr: F864H, F86CH, F874H

PnDIR (n=1-3) ISA Addr: —
(read/write) Reset State: FFH
7 0
PD7 PD6 PD5 P4 || PD3 PD2 PD1 PDO
Bit Bit Function
Number Mnemonic
7-0 PD7:0 Pin Direction:
0 = Configures the pin as a complementary output.
1 = Configures the pin as an open-drain output or high-impedance input.
Figure 16-4. Port Direction Register (P nDIR)
Port Data Latch Expanded Addr: F862H, F86AH, F872H
PnLTC (n=1-3) ISA Addr: —
(read/write) Reset State: FFH
7 0
PL7 PL6 PL5 PLa || PL3 PL2 PL1 PLO
Bit Bit Function
Number Mnemonic
7-0 PL7:0 Port Data Latch:

Writing a value to a PL bit causes that value to be driven onto the
corresponding pin.

For a complementary output, write the desired pin value to its PL bit.
This value is strongly driven onto the pin.

For an open-drain output, a one results in a high-impedance (input) state
at the pin.

For a high-impedance input, write a one to the corresponding PL bit. A
one results in a high-impedance state at the pin, allowing external
hardware to drive it.

16-8

Figure 16-5. Port Data Latch Register (P nLTC)

Int9|® INPUT/OUTPUT PORTS

Port Pin State Expanded Addr: F860H, F868H, F870H
PnPIN (n=1-3) ISA Addr: —
(read only) Reset State: XXH
7 0
PS7 PS6 PS5 Psa || Ps3 PS2 Ps1 PSO
Bit Bit Function
Number Mnemonic
7-0 PS7:0 Pin State:
Reading a PS bit returns the logic state present on the associated port
pin.

Figure 16-6. Port Pin State Register (P nPIN)

16-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

16.2.2 Initialization Sequence

After a device reset, a weak pull-up or pdtiwn resstor holds each pin high or low until user
software writes to the®CFG register. The pins are configured as inputs in I/O port mode. To en-
sure that the pins are initialized correctly and that the weak resistors are turned off, follow this
suggested initializain sequence.

NOTE

Even if you want to use the entire port as I/O (its default configuration after
reset), you must write tonf2FG to turn off the weak pull-up and pull-down
resistors.

1. Write to MLTC to specify the pin value. Writing tanBTC before PDIR ensures that
output pins initialize to known values.
* For an output pin, write the data that is to be driven by the pin tolifECPbit.
* For an input pin, set itsfPTC bit.
2. Write to MDIR to specify the pin direction.
* To configure a pin as a complementary output, cleamBiR bit.
* To configure a pin as an input or open-drain output, senii8MR bit.
3. Wirite to MCFG to turn off the weak resistors and select either 1/O or peripheral mode.
* To configure a pin for I/O mode, clear ite@®FG bit.
* To configure a pin for peripheral mode, set itCPG bit.

16.3 DESIGN CONSIDERATIONS
This section outlines design considerations for the 1/0 ports.

¢ Source andisk current are different between the three ports. Consult the latel86™
EX Embedded Microprocessdatasheet (order number 272420) for exact specifications.

¢ Use read/modify/write operations to set and clear bits.

16.3.1 Pin Status During and After Reset

A device reset applies an asynchronous reset signal to the port pins. To avoid contention with ex-
ternal drivers, the pins are configured as inputs in I/O port mode. To prevent pins from floating,
a weak pull-up or pull-down resistor holds each pin high or low (Table 16-1). Writing to the
PnCFG register (regardless of the value written) turns off these resistors. For example, writing
any value to P1CFG after a reset turns off the weak pull-down resistors on P1.7-P1.6 and the
weak pull-up resistors on P1.5-P1.0. The resistors remain off until the next reset.

16-10 I

Int9|® INPUT/OUTPUT PORTS

16.4 PROGRAMMING CONSIDERATIONS

16.4.1 1/O Ports Code Example

The following code example contains a software routine that initializes the I/O port pins. See Ap-
pendix C for the included header files.
#include <conio.h>

#include “80386ex.h”
#include “ev386ex.h”

Init_IOPorts:

Description:
This function initializes the direction and mode of the 1/O port pins.
Although the pins are default configured to the peripheral state after
RESET, they must still be initialized to turn off the weak resistors.

Parameters:
Portl Portl Mode Configuration
Port2 Port2 Mode Configuration
Port3 Port3 Mode Configuration
PortDirl Portl Direction
PortDir2 Port2 Direction
PortDir3 Port3 Direction
PortLtcl Portl Data Latch Value
PortLtc2 Port2 Data Latch Value
PortLtc3 Port3 Data Latch Value
Returns:
None

Assumptions:
None

Syntax:

/I Port 1 configuration defines

#define DCDO 0x1
#define RTSO 0x2
#define DTRO 0x4
#define DSRO 0x8
#define RIO 0X10
#define LOCK 0x20
#define HOLD 0X40
#define HOLDACK 0X80

/I Port 2 configuration defines
#define CSO 0x1
#define CS1 0x2

16-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

#define CS2 0x4
#define CS3 0x8
#define CS4 0X10
#define RXDO 0x20
#define TXDO 0X40
#define CTSO 0X80

/I Port 3 configuration defines

#define TMROUTO 0x1
#define TMROUT1 0x2
#define INTO 0x4
#define INT1 0x8
#define INT2 0x10
#define INT3 0x20
#define PWRDWN 0x40
#define COMCLK 0x80

[/l Port Direction defines

#define PO_IN 0x1
#define P1_IN 0x2
#define P2_IN 0x4
#define P3_IN 0x8
#define P4_IN 0x10
#define P5_IN 0x20
#define P6_IN 0x40
#define P7_IN 0x80
#define Px_OUT 0

/lInitialize SIOO0 pins, DRAM and SRAM Chip Selects, Interrupt Signals,
/land TimerOut Signals to be in peripheral mode

Init_IOPorts(DCDO|RTSO|DTRO|DSRO|RIO,
CS2|CS4|RXDO|TXDO|CTSO,
TMROUTO|TMROUTZ|INTO|INT1[INT2|INT3|PWRDWN|COMCLK,
Px_OUT,
Px_OUT,
Px_OUT,
0xff, // This example shows all output pins being
/I initially 1
Oxff, /l Note: Input pins must be given an initial
0xff); // value of 1 whereas peripheral pins initially
// can be set or cleared

Real/Protected Mode:
No changes required.

extern void Init_IOPorts(BYTE Portl, BYTE Port2, BYTE Port3, BYTE PortDirl,
BYTE PortDir2, BYTE PortDir3, BYTE PortLtcl,
BYTE PortLtc2, BYTE PortLtc3)

16-12

intel.

/* Select pin values */

_SetEXRegByte(P1LTC, PortlLtcl);
_SetEXRegByte(P2LTC, PortlLtc2);
_SetEXRegByte(P3LTC, PortLtc3);

INPUT/OUTPUT PORTS

/* Select pin directions */

_SetEXRegByte(P1DIR, PortDirl);
_SetEXRegByte(P2DIR, PortDir2);
_SetEXRegByte(P3DIR, PortDir3);

/* Turn off weak resistors and select either I/O or peripheral mode */
_SetEXRegByte(P1CFG, Portl);

_SetEXRegByte(P2CFG, Port2);
_SetEXRegByte(P3CFG, Port3);

} /* Init_IOPorts */

16-13

intgl. 1 7

WATCHDOG
TIMER UNIT

intel.

CHAPTER 17
WATCHDOG TIMER UNIT

The watchdog timer (WDT) unit can function as a general-purpose timer, a softwahelogt
timer, or a bus monitor, or it can be disabled.

This chapter is organized as follows:
* Overview (see below)
¢ Watchdog Timer Unit Operation (page 17-3)
¢ Disabling the WDT (page7t6)
* Register Definitions (pageri7)
¢ Design Considerations (pad&-12)

* Programning Considerations (page 17-12)

17.1 OVERVIEW

The wathdog tmer unit (Figure 17-1) includes32-bit reload register, a 32-bit down-counter,
an 8-state binary counter, a readable counter value register, and a status register.

The watchdog timer can operate in three modes:
* General-purpose 32-bit timer/counter mode (default mode)
¢ Watchdog mode
* Bus-monitor mode

Only a single mode can be active at one time. If you have no need for any of its functions, you
can disable the unit entirely.

Watchdog mode protects systems from software upsets. In watchdog mode, system software must
reload the down-counter at regular intervals. If it fails to do so, the timer expires and asserts
WDTOUT. For example, the watchdog times out if the software goes into an endless loop.

Some possible uses of this feature include:
¢ Connecting WDTOUT to the NMI pin to generate a non-maskablerigie

* Connecting the WDTOUT signal to the RESET pin to reset the processor (and possibly the
entire system)

In watchdog modenly, idle mode stops the down-counter. Since no software can execute while
the CPU is idle, a software watchdog is unnecessary. (Chapter 8, “CLOCK AND POWER MAN-
AGEMENT UNIT,” discusses idle mode.)

Bus monitor mode protect®rmally not-readgystems from ready-hang conditions n@rmally
not-ready system is one in which a bus cycle continues until the accessed device asserts

I 17-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

READY#). In bus monitor mode, theDS# signal from the bus interface unit (BIU) reloads the
down-counter and the READY# signal stopStie READY# signal can be generated either ex-
ternally or internally, using the WDTRDY bit in the PWRCON register (Figure 17-5). If this bit

is deasserted, then an external READY# is required to terminatgdleewhen the WDT times

out (WDTOUT is asserted) in Bus Monitor mode. In this case, if a READY# is never generated
by external logic, the processor hangs (since the bus cycle never terminates). If the WDTRDY bit
is set, the processor generates an internal READY# to terminate the cycle upon time-out
(WDTOUT is asserted) in Bus Monitor mode.

The WDT circuitry correctly matches each READY# with a cgpanding ADS# (een in pipe-
lined mode when two ADS# pulses occur before the first READY# pulse).

aY
Reload
Registers
32-Bit
[WDTRLDH | Down Counter
E WDTRLDL
|
Z\ WDTCNTH
B
0 WDTCNTL
8-State
s —> Binary |\yprout
Counter Connect
WDTCLR fo N
or RESET
<:> WDTSTATUS D W?RT70 UfT#

to o}
Slave 8259A

™~

A2330-02

Figure 17-1. Watchdog Timer Unit Connections

17-2 I

Int9|® WATCHDOG TIMER UNIT

17.1.1 WODT Signals
Table 17-1 describes the signals associated with the WDT.

Table 17-1. WDT Signals

Device Pin or

Signal Internal Signal

Description

ADS# Device pin Address Status (from the bus interface unit):

Indicates that the processor is driving a valid bus-cycle definition
and address onto its pins. Bus monitor mode reloads and starts the
down-counter each time ADS# is asserted.

IDLE Internal signal Idle (from the clock and power management unit):

Indicates that the device is in idle mode (core clocks stopped and
peripheral clocks running). In watchdog mode, the down-counter
stops when the core is idle. In bus monitor or general-purpose
timer mode, the WDT continues to run while the core is idle.

READY# Device pin Ready (from the bus interface unit):

Indicates that the current bus cycle has completed. Bus monitor
mode stops the down-counter when READY# is asserted.

WDTOUT Device pin Watchdog Timer Output:

Indicates that the down-counter has timed out. If you want a WDT
timeout to reset the device, connect WDTOUT to the RESET input.
If you want a WDT timeout to generate a nonmaskable interrupt,
connect WDTOUT to the NMI input.

An internal signal carries the inverted value of WDTOUT to the
interrupt control unit (the slave’s IR7 line). If you wanta WDT
timeout to cause a maskable interrupt, enable the interrupt.
(Chapter 8, “Interrupt Control Unit,” explains how to do this.)

17.2 WATCHDOG TIMER UNIT OPERATION

After a device reset, the WDT begins counting down in general-purpose timer mode. Unless you
change the mode, change the reload value, or disable it, the WDT times out and asserts WDTOUT
after 4 million (222) processor clock cycles (PH1 or CLKOUT cycles).

The 32-bit down-counter decrements on every processor clock cycle. When the down-counter
reaches zero, the 8-state binary counter drives the WDTOUT pin high for eight processor clock
cycles (16 CLK2 cycles) to signal the timeout. An internal signal carries the inverted value of the
WDTOUT pin to the interrupt control unit (the slave’s IR7 line). A WDT timeout can reset the
system or generate an interrupt request, depending on how WDTOUT is used in your system.

17-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

The reload registers hold a user-defined value that reloadswecounter when one of the fol-
lowing reload event®ccurs:

* In watchdog mode, when system software executes a spastfiaction sequence (called a
lockoutsequence) to the WDTCLR location

* In bus monitor mode, when the bus interface unit asa&s#
¢ In all modes, when the down-counter reaches zero

Software can read the status register to determine the mode of the WDT, and can read the count
registers to determine the current value of the down-counter.

17.2.1 Idle and Powerdown modes

In CPU-idle mode, the WDT is disabled only if it is in watchdog mode. Since no software can
execute while the CPU is in idle mode, the software watchdog is unnecessary. The WDT operates
normally in general-purpose timer and bus-monitor modes if the CPU is in idle mode.

In CPU-powerdown mode, the WDT unit is alided, like all other peripherals.

17.2.2 General-purpose Timer Mode

The WDT defaults to general-purpose timer mode after reset. If your system has no requirement
for a software watchdog or a bus monitor, you can use the WDT in this mode. At redetyithe
counter begins decrementing once every clock cycle, beginning at 3FFFFFH (the initial values of
the reload and count registers). Unlgss intervene, the WDT times out after 4 miIIior?r%)’Zpro-

cessor clock cycles.

Software can read the count registers (WDTCNTH and WDTCNTL) at any time to determine the
current value of the down-counter. You might, for example, read the count when one event occurs,
read it again when a second event occurs, then calculate the elapsed time between the two events.

When the down-counter reaches zero, the 8-state binary counter drives the WDTOUT pin high
for eight processor clock cycles (16 CLK2 cycles). During the clock cycle immediately after the
down-counter reaches zero, the down-counter is reloaded with the contents of the reload registers.

If you want fewer than 4 million &) processor clock cycles between WDT timeouts, write a 32-
bit reload value to the reload registers (Figure 17-4):

1. Write the upper 16 bits of the reload value to WDTRLDH.
2. Write the lower 16 bits of the reload value to WDTRLDL.

In the general-purpose timer mode, you cannot reload the counter except on a WDT timeout.
However, you can force a reload by entering bus monitor mode, allowing an ADS# to reload the
counter, then switching back to general-purpose timer mode.

17-4

Int9|® WATCHDOG TIMER UNIT

17.2.3 Software Watchdog Mode

In software watctiog mode, system softwareust periodically reload the down-counter with a
reload value or the timer expires and asserts WDTOUT. The reload value depends on the design
of the system software. In general, determining the proper reload value requires software analysis
and some experimentation.

After reset, the WDT defaults to general-purpose timer mode. Unless you intervene, the WDT
times out after 4 million &) processor clock cycles. If you want to use the WDT as a system
watchdog, use this sequence to enable watchdog mode:

1. Write the upper 16 bits of the reload value to WDTRLDH (Figure 17-4).
2. Write the lower 16 bits of the reload value to WDTRLDL (Figure 17-4).

3. Write two sequential words, OFO1EH lfaked by OFE1H, to the WDTCLR location
(OF4C8H). This sequence (calletbakoutsequencesets the WDTEN bit in the
watchdog status register and loads the contents of the reload value registerdotarthe
counter.

Regardless of the values of the two control bits (BUSMON and CLKDIS) in the WDTSTATUS
register (Figurel 7-3), the lockousequence sets the WDTEN bit and clears the remaining bits.
The lockout sequengerohibits writes to the \WTSTATUS and reload registers; only a system
reset can change them. This reduces the possibility for errant software to duplicate the instruc-
tions and illegally reload the timer.

The same lockout sequence that enables the watchdog reloads the down-counter. Write two se-
guential words, OFO1EH followed immediately by OFE1H, to the WDTCLR location (OF4C8H).

17.2.4 Bus Monitor Mode
In bus monitor mode, ADS# reloads and starts the down-counter and READY# stops it. The ini-
tial values of the reload register atown-counteare3FFFFFH.

CAUTION
For correct operation in Bus Monitor mode (see “Overview” on page 17-1),

you must have a minimum reload value = (Maximum number of wait-states in
your system + 12). For example, if the slowest device in your system requires
8 wait-states during an access, the reload value must be greater than or equal to
20.
Use this sequence to enable bus monitor mode:

1. Write the upper word of the reload value to WDTRLDH (Figure 17-4).

2. Write the lower word of the reload value to WDTRLDL (Figure 17-4).

3. Set the bus monitor bit (BUSMON) in WDTSTATUS (Figure 17-3).

Because you never execute the lockout sequence in bus monitor mode, you can change the reload
value and enable or disable the mode at any time.

I 17-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

¢ To change the reload value, write the new values to the WDTRLDH and WDTRLDL
registers, as described in steps 1 and 2 above.

¢ To disable or enable bus monitor mode, write to the bus monitor bit (BUSMON):
— 0 =disabled

— 1 =-enabled

17.3 DISABLING THE WDT

If your system has no need for the WDT, when the unit is in bus monitor or general-purpose timer
mode, you can disabtee unit by setting the CLKDIS bit in the WDTSTATUS register (Figure
17-3), which stops the clock to the WDT. In this configuration, the WDT consumes mpomal

er, but you can re-enable the unit at any time.

If the WDT is in watchdog mode, you cannot writehie WDTSTATUS register to stop the clock
and therefore cannot disable the unit.

17-6 I

Int9|® WATCHDOG TIMER UNIT

17.4 REGISTER DEFINITIONS

This section describes the registers associated with the WDT, and exXylairikese registers
can be used to enable and use each WDT mode.

Table 17-2 describes the registers associated with the WDT.

Table 17-2. WDT Registers

Register |Address Descr iption

WDTCLR OF4C8H | Watchdog Timer Clear:

Write the lockout sequence to this location. Circuitry at this address decodes
the lockout sequence to enable watchdog mode, reload the counter, or both.
This location is used only for watchdog mode.

WDTCNTH OF4C4H | WDT Counter:

WDTCNTL OF4C6H These registers hold the current value of the WDT down-counter. Software
(read only) can read them to determine the current count value. Any reload event
reloads these registers with the contents of WDTRLDH and WDTRLDL.

WDTRLDH OF4COH |WDT Reload Value:

WDTRLDL OF4C2H | \write the reload value to these registers, using two word writes. After a
(read/write) lockout sequence is issued, these registers cannot be written again until after
a device reset. A reload event (each WDT mode has its own; refer to
Sections 17.2.2 through 17.2.4) reloads WDTCNTH and WDTCNTL with the
contents of these registers.

WDTSTATUS |OF4CAH |WDT Status:

(read/write) This register contains one read-only bit (WDTEN) that indicates whether
watchdog mode is enabled and two read/write bits that control bus monitor
mode and the WDT clock. A lockout sequence sets the WDTEN bit and
clears the two read/write bits, disabling bus monitor mode and enabling the
WDT clock. After a lockout sequence is issued, a write to this register has no
effect unless the device is reset.

Software can read this register to determine the current status of the WDT
and (unless a lockout sequence has been issued) can set the BUSMON bit to
enable bus monitor mode or set the CLKDIS bit to disable the WDT.

PWRCON OF800H Power Control register:

(read/write) This register holds the WDTRDY bit that is used to enable/disable internal
READY?# generation for the WDT Bus Monitor mode.

17-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

WDT Counter Value (High) Expanded Addr: FAC4H
WDTCNTH ISA Addr: —
(read only) Reset State: 003FH
15 8
‘ wc3l ‘ WC30 ‘ wcC29 ‘ wc28 ‘ ‘ wcC27 ‘ WC26 ‘ WcC25 ‘ wc24 ‘
7 0
‘ wc23 ‘ WwcC22 ‘ wc21 ‘ WC20 ‘ ‘ WC19 ‘ WwC18 ‘ wc17 ‘ WC16 ‘
WDT Counter Value (Low) Expanded Addr: F4C6H
WDTCNTL ISA Addr: —
(read only) Reset State: FFFFH
15 8
‘ WC15 ‘ WC14 ‘ wcC13 ‘ WwC12 ‘ ‘ wci1l ‘ WC10 ‘ WC9 ‘ wcs ‘
7 0
‘ wc7 ‘ wce ‘ wcs ‘ WcC4 ‘ ‘ wc3 ‘ wc2 ‘ wci ‘ WCo ‘
. Bit 4
Bit Number Mnemonic Function
High 15-0 WC31:16 WDT Counter Value High Word and Low Word:
Low 15-0 WC15:0 Read the high word of the counter value from WDTCNTH and the low
word from WDTCNTL.

Figure 17-2. WDT Counter Value Registers (WDTCNTH and WDTCNTL)

17-8

intel.

WATCHDOG TIMER UNIT

WDT Status Expanded Addr: FACAH

WDTSTATUS ISA Addr: —

(read/write) Reset State: O00H

7 0

WDTEN — — - || = — BUSMON | CLKDIS
Bit Bit Function
Number Mnemonic

7 WDTEN Watchdog Mode Enabled:
This read-only bit indicates whether watchdog mode is enabled. Only a
lockout sequence can set this bit and only a device reset can clear it.
0 = Watchdog mode disabled
1 = Watchdog mode enabled

6-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 BUSMON Bus Monitor Enable:
0 = Disables bus monitor mode
1 = Enables bus monitor mode
Read this bit to determine the current status. A lockout sequence clears
BUSMON and prevents writes to the WDTSTATUS register.

0 CLKDIS Clock Disable:
Write to this bit to stop or restart the clock to the WDT; read it to
determine the current clock status. A lockout sequence clears CLKDIS
and prevents writing to this register.
0 = Clock enabled
1 = Processor clock (frequency=CLK2/2) disabled (stopped)

Figure 17-3. WDT Status Register (WDTSTATUS)

17-9

Intel386™

EX EMBEDDED MICROPROCESSOR USER’S MANUAL

WDT Reload Value (High) Expanded Addr: FACOH
WDTRLDH ISA Addr: —
(read/write) Reset State: 003FH
15 8
‘ WR31 ‘ WR30 ‘ WR29 ‘ WR28 ‘ ‘ WR27 ‘ WR26 ‘ WR25 ‘ WR24 ‘
7 0
‘ WR23 ‘ WR22 ‘ WR21 ‘ WR20 ‘ ‘ WR19 ‘ WR18 ‘ WR17 ‘ WR16 ‘
WDT Reload Value (Low) Expanded Addr: FAC2H
WDTRLDL ISA Addr: —
(read/write) Reset State: FFFFH
15 8
‘ WR15 ‘ WR14 ‘ WR13 ‘ WR12 ‘ ‘ WR11 ‘ WR10 ‘ WR9 ‘ WRS ‘
7 0
‘ WR7 ‘ WR6 ‘ WR5 ‘ WR4 ‘ ‘ WR3 ‘ WR2 ‘ WR1 ‘ WRO ‘
Bit Bit Function
Number Mnemonic
High 15-0 | WR31:16 WDT Reload Value (High Word and Low Word):
Low 15-0 | WR15:0 Write the high word of the reload value to WDTRLDH and the low word
to the WDTRLDL.

17-10

Figure 17-4. WDT Reload Value Registers (WDTRLDH and WDTRLDL)

Int9|® WATCHDOG TIMER UNIT

Power Control Register Expanded Addr: F800H

PWRCON ISA Addr: —

(read/write) Reset State: 00H

7 0
— — — — | [woTroY | HsrReaDY | Pci PCO
Bit Bit Function

Number Mnemonic
7-4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:
0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.
1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.
1-0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT

instruction causes a normal halt and the device remains in active mode.

PC1 PCO

0 0 active mode

1 0 idle mode

0 1 powerdown mode
1 1 active mode

Figure 17-5. Power Control Register (PWRCON)

17-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

17.5 DESIGN CONSIDERATIONS
This section outlines design considerations for the watchdog timer unit.

Depending on the system configuration, a WDT timeout can cause a maskable interoupt, a
maskable interrupt, or a system reset.

Maskable interrupt The WDT timeout signal is internally inverted and connected to the
interrupt control unit’s slave IR7 line. If you want a WDT timeout to
generate a slave IR7 interrupt (maskable interrupt), you need only
enable (unmask) the interrupt (Refer to Chapter 9, for details).
Ensure that the slave 8259A is configured for edge-triggered
interrupts (refer to Chapter 9, Interrupt Control Unit) if IR7 is
unmasked. Otherwise, the WDT generates continuous interrupts.

Nonmaskable interrupt If you want a WDT timeout to cause a nhonmaskable interrupt,
connect the WDTOUT pin to the NMI input pin.

Reset If you want a WDT timeout to reset the system, connect the
WDTOUT pin to the RESET input pin.

17.6 PROGRAMMING CONSIDERATIONS

This section outlines programming considerations for the watchdog timer unit.

17.6.1 Writing to the WDT Reload Registers (WDTRLDH and WDTRLDL)

WDTRLDH and WDTRLDL are 16 bit registers at addresses OF4COH and OF4C2H respectively.
Therefore, when using 22-bit write to bad the two registers, the lower 16 bits should contain
the data for WDTRLDH and the higher 16 bits should contain the data for WDTRLDL.

For example, 4321H can be written to WDTRLDH and OCCCCH to WDTRLDL using a 32-bit
write of the number 0CCCC4321H to I/O address OF4COH.

17.6.2 Minimum Counter Reload Value

To ensure correct operation of the Watchdog Timer, the WDT’s cosimbetdnever be reloaded
with a value less than 8.

17.6.3 Watchdog Timer Unit Code Examples

This section includes these software routines:

ReLoadDownCounter Initiates a lockout sequence

GetWDT_Count Reads the value of the counter

WDT_BusMonitor Places the WDT in Bus Monitor Mode

EnableWDTlInterrupt Enables WDT interrupts

17-12 I

intel.

See Appendix C for included header files.

#include <dos.h>
#include <conio.h>
#include “80386ex.h”
#include “ev386ex.h”

RelLoadDownCounter:

Description:
This function initiates a lockout sequence which results in the
setting of the WDTEN bit in the status register. By setting
WDTEN, the software watchdog mode is enabled.

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
ReloadDownCounter();

Real/Protected Mode:
No changes required

void ReLoadDownCounter(void)
{

_disable(); /* Disable interrupts */

_SetEXRegWord(WDTCLR,0xf01e);
_SetEXRegWord(WDTCLR,0xfel);

_enable(); /* Enable interrupts */

}* ReLoadDownCounter */

GetWDT_Count:

Description:
Returns current value of watch dog counter.

WATCHDOG TIMER UNIT

17-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Parameters:
None

Returns:
16-bit down-counter value

Assumptions:
None

Syntax:
WORD counter_value;
counter_value = GetWDT_Count();

Real/Protected Mode:
No changes required.

DWORD GetWDT_Count(void)

{
WORD LowWord, HiWord,;
LowWord = _GetEXRegWord(WDTCNTL);
HiWord = _GetEXRegWord(WDTCNTH);
return (((DWORD)HiWord << 16) + LowWord);

}* GetWDT_Count */

WDT_BusMonitor:

Description:
Enables the bus monitor mode of the Watch Dog Timer.

Parameters:
EnableDisable Nonzero if bus monitor mode is to be enabled,
Zero if it is to be disabled

Returns:
None

Assumptions:
None

Syntax:

#define Enable 0x01
#define Disable 0x00

17-14

intel.

Int9|® WATCHDOG TIMER UNIT

WDT_BusMonitor(Enable);

Real/Protected Mode:
No changes required.

void WDT_BusMonitor(BYTE EnableDisable)
{
BYTE Status;
Status = _GetEXRegByte(WDTSTATUS);

if(EnableDisable) /* If true, Enable */
_SetEXRegByte(WDTSTATUS, Status | BITIMSK); /* Set Bit */

else /* else, Disable */
_SetEXRegByte(WDTSTATUS, Status & ~BITIMSK); /* Clear Bit */

}* WDT_BusMonitor */

EnableWDTInterrupt:

Description:
Enables a maskable interrupt on the assertion of WDTOUT

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
EnableWDTInterrupt();

Real/Protected Mode:
No changes required

extern void EnableWDTInterrupt(void)

{
InitiCUSlave(ICU_TRIGGER_EDGE, 0x30, 0); /* Initialize Slave ICU */
SetIRQVector(wdtISR, 15, INTERRUPT_ISR); /* Puts address of interrupt
service

17-15

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

routine in Interrupt Vector Table */

Enable8259Interrupt(IR2,IR7); /* Enable slave interrupt to master(IR2),
Enable slave IR2 */

_enable(); /* Enable Interrupts */

} I* EnableWDTInterrupt */

wdtISR:

Description:
Interrupt Service Routine for Watchdog Timer

Parameters:
None

Returns:
None

Assumptions:
None

Syntax:
Not called by user; Interrupt Control Unit executes this
routine upon acknowledgment of a WDT interrupt

Real/Protected Mode:
No changes required

void interrupt far wdtISR(void)

{
SerialWriteStr(SIO_PORT,"Executing in WDT_ISR”); /* Prints out to Serial

Port as a demonstration */

NonSpecificEOI();

} /¥ wdtiSR */

17-16

intel. 1 8

JTAG TEST-LOGIC
UNIT

intel.

CHAPTER 18
JTAG TEST-LOGIC UNIT

The JTAG test-logic unit enables you to test both the device logic and the interconnections be-
tween the device and the board (system) it is plugged into. ThelTé&@refers to the Joint Test
Action Group, the IEEE technical subcommittee that developed the testability standard published
as Standard 1149.1-1998EE Standard Test Access Port and Boundary-Scan Architéetnde

its supplement, Standard 1149.1a-198Be Intel386M EX Embedded Processor JTAG test-log-

ic unit is fully compliant with this standard.

You can use the JTAG unit for other purpo$es. example you can perform in-system program-
ming of flash memory; refer to AP-72Brogramming Flash Memory through the Intel386™ EX
Embedded Processor JTAG Péotder number 272753).

This chapter is organized as follows:
* Overview (see below)
¢ Test-Logic Unit Operation (page 18-3)
¢ Testing (page 180)
¢ Timing Information (page 18-12)
¢ Design Considerations (pa@8-14)

18.1 OVERVIEW

As the title of the IEEE standard suggest® major components of the test-logic unit are tisé te
access porand theboundary-scamegisterThe termtest access po(fTAP) refers to the dedicat-

ed input and output pins through which a tester communicates with the test-logic unit. The term
boundary-scamefers to the ability tecan(observe) the signals at tbeundary(the pins) of a

device. A boundary-scan cell resides at each pin. These cells are connected serially to form the
boundary-scan register, which allows you to control or observe every device pin except the clock
pin, the power and ground pins, and the test access port pins.

The test-logic unit allows a tester to perform these tasks:
¢ Identify a component on a board (manufacturer, part number, and version)
* Bypass one or more components on a board while testing others
* Preload a pin state for a test or read the current pin state
¢ Perform static (slow-speed) testing of this device

¢ Test off-chip circuitry and board-level interconnections

T Some of the figures and tables in this chapter wenedeicedrom Standard 1149.1-1990EEE Standard Test
Access Port and Boundary-Scan Architect@epyright 1993 by thimstitute of Electrical and Electronics @ineers,
Inc., with the permission of tHEEE.

I 18-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

¢ Place all device output pins into their inactive drive (high-impedance) state, allowing
external hardware to drive connections that the processor normally drives

The test-logic unit (Figure 18-1) is fully compliant with IEEE Standard 1149.1. It consists of the
test access port (TAP), the test access port controller, the instruction register (IR), and three data

registers (IDCODE, BYPASS, and BOUND). It also includes logic for generating necessary
clock and control signals.

I [}—meo—> IR Register

i

Tk [>
™s[(}—F> TAP —
Controller
TRST# [}—1—>

1 Y

®—>| IDCODE Register

Output

>
*—. > Stage D TDO

®—>| BYPASS Register

Y

>»-| BOUND Register

A2340-01

Figure 18-1. Test Logic Unit Co nnections

18-2

Int9|® JTAG TEST-LOGIC UNIT

18.2 TEST-LOGIC UNIT OPERATION

18.2.1 Test Access Port (TAP)

The test access port consists of five dedicated pins (four inputs and one outpihioitgh hese

pins that all communication with the test-logic unit takes place. This unit has its own clock (TCK)
and reset (TRST#) pins, so it is independent of the rest of the device. The test-logic unit can read
or write its registers even if the rest of the device is in reset or powerdown.

CAUTION
The JTAG Test-Logic Unit must be resgton power-up using the TRST# pin.
(To do this, invert the RESET signal and send this inverted RESET to the
TRST# pin). If this is not done, the processor may power-up with the JTAG
test-logic unit in control of the device pins, and the system does not initialize

properly.

The test-logic unit allows you to shift test instructions and test data into the device and to read the
results of the test. A tester (that is, an external bus master such as automatic test equipment or a
component that interfaces to a higher-level test bus) controls the TAP controller’'s operation by
applying signals to the clock (TCK) and test-mode-select (TMS) inputs. Instructions and data are
shifted serially from the test-data input (TDI) to the test-data output (TDO). TaHlelescribes

the test access port pins.

Table 18-1. Test Access Port Dedicated Pins

Pin

Name Description

TCK Test Clock Input:

Provides the clock input for the test-logic unit. An external signal must provide a maximum
input frequency of one-half the CLK2 input frequency. TCK is driven by the test-logic unit's
control circuitry.

TDI Test Data Input:

Serial input for test instructions and data. Sampled on the rising edge of TCK; valid only when
either the instruction register or a data register is being serially loaded (SHIFT-IR, SHIFT-DR).

TDO Test Data Output:

Serial output for test instructions and data. TDO shifts out the contents of the instruction
register or the selected data register (LSB first) on the falling edge of TCK. If serial shifting is
not taking place, TDO floats.

T™MS Test Mode Select Input:
Controls the sequence of the TAP controller’s states. Sampled on the rising edge of TCK.

TRST# | Test Reset Input:

Resets the TAP controller. Asynchronously clears the data registers and initializes the
instruction register to 0010 (the IDCODE instruction opcode).

NOTE: The JTAG Test-Logic Unit must be reset upon power-up using the TRST# pin. If this is not done
the processor may power-up with the JTAG test-logic unit in control of the device pins, and the
system does not initialize properly.

18-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

18.2.2 Test Access Port (TAP) Controller

The TAP controller is a finite-state machine that is capable of 16 states (E&y@jeThree of its
states provide the basic actions required for testing:

¢ Applying stimulus (update-data-register)
¢ Executing a test (run-test/idle)
* Capturing the response (capture-data-register)

Its remaining states support loading instructions, shifting information toward TD@nisga
pins, and pausing to allow time for the tester to perform other operations.

The TAP controller changes state only in response to tleetiassof the test-reset input (TRST#)

or the state of the mode-select pin (TMS) on the rising edge of TCK. TRST# causes the TAP con-
troller to enter its test-logic-reset state, and the state of TMS on the rising edge of TCK controls
the subsequent states.Table 18-2 describes the states and Figure 18-2 illustrates how the TAP state
machine moves from one state to another.

Table 18-2. TAP Controller State Descriptions (Sheet 1 of 2)

Next State

State Description (on TCK Rising Edge)

TMS =0 T™MS=1

Resets the test-logic unit and forces the IDCODE
instruction into the instruction register. (In
Test-Logic-Reset | components that have no IDCODE instruction, the | Run-Test/Idle | Test-Logic-Reset
BYPASS instruction is loaded instead.) Test logic is
disabled; the device is in normal operating mode.

Run-Test/Idle Executes a test or disables the test logic. Run-Test/Idle | Select-DR-Scan

Selects the data register to be placed in the serial

Select-DR-Scan path between TDI and TDO.

Capture-DR Select-IR-Scan

Parallel loads data into the active data register, if
Capture-DR necessary. Otherwise, the active register retains its Shift-DR Exit1-DR
previous state.

The active register shifts data one stage toward

Shift-DR TDO on each TCK rising edge. Shift-DR Bxitl-DR
Exitl-DR The active register retains its previous state. Pause-DR Update-DR
Exit2-DR The active register retains its previous state. Shift-DR Update-DR
Applies stimulus to the device. Data is latched onto
Update-DR the active register’s parallel output on the falling Run-Test/Idle | Select-DR-Scan

edge of TCK. If the register has no parallel output, it
retains its previous state.

NOTE: By convention, the abbreviation DR stands for data register, and IR stands for instruction register.
The active register is the register that the current instruction has placed in the serial path between
TDI and TDO.

18-4

intel.

JTAG TEST-LOGIC UNIT

Table 18-2. TAP Controller State Descriptions (Sheet 2 of 2)

Next State
State Description (on TCKRising Edge)
TMS =0 TMS=1
Select-IR-Scan _Test-log_lc is idle and the instruction register retains Capture-IR | Test-Logic-Reset
its previous state.
Loads the SAMPLE/PRELOAD instruction . .
Capture-IR instruction (0001) into the instruction register. Shift-IR Bxitl-IR
Shifts the SAMPLE/PRELOAD instruction one
Shift-IR stage toward TDO while shifting the new instruction Shift-IR Exitl-IR
in from TDI on each rising edge of TCK.
Exitl1-IR The instruction register retains its previous state. Pause-IR Update-IR
The instruction register temporarily stops shifting .
Pause-IR and retains its previous state. Pause-IR Exit2-1R
Exit2-IR The instruction register retains its previous state. Shift-IR Update-IR
Latches the current instruction onto the instruction
Update-IR register’s parallel output on the falling edge of TCK. Run-Test/ldle | - Select-DR-Scan
NOTE: By convention, the abbreviation DR stands for data register, and IR stands for instruction register.

The active register is the register that the current instruction has placed in the serial path between
TDI and TDO.

For example, assuntkat the TAP controller is in its test-logic-reset state and you want it to start
shifting the contents of the instruction register from TDI toward TDO (Shift-IR state). This state
change requires a zero, two ones, then two zeros on TMS at the next five rising edges of TCK
(see Table 18-3). By supplying the proper values in the correct sequence, you can move the TAP

controller from any state to any other state.

Table 18-3. Example TAP Controller State Selections

Initial State [TMS Value at TCK Rising Edge Resulting State
Test-Logic- 0 Run-Test/Idle
Reset
Run-Test/Idle 1 Select-DR-Scan
Select-DR- ! Select-IR-Scan
Scan
Select-IR- 0
Scan Capture-IR
Capture-IR 0 Shift-IR

18-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

C

Test - Logic
- Reset <
0

Y

Run-Test/| 1 Select - Select -
Idle : DR - Scan IR - Scan
A ¢ 0 Y 0

i Capture - Capture -
DR IR

A2356-01

18-6

Figure 18-2. TAP Controller (Finite-State Machine)

intel.

JTAG TEST-LOGIC UNIT

18.2.3 Instruction Register (IR)

An instruction opcode is clocked serially through the TDI pin into the four-bit instruction register
(Figure18-3). The instruction determines which data register is affected. Table 18-4 lists the in-
structions with their binary opcodes, descriptions, and associated registers.

Instruction Register

Reset State

IR (Using TRST#): 02H
3 0
INST3 INST2 INST1 INSTO
Bit Bit Function
Number Mnemonic
3-0 INST3:0 Instruction opcode. At reset (using TRST#, or after 5 TCK cycles with
TMS held low), this field is loaded with 0010, the opcode for the IDCODE
instruction. Instructions are shifted into this field serially through the TDI
pin. (Table 18-4 lists the valid instruction opcodes.)
Figure 18-3. Instruction Register (IR)
Table 18-4. Test-logic Unit Instructions
. - Affected
Mnemonic | Opcodet Description Register
1111 Bypass on-chip system logic (mandatory instruction).
BYPASS yP P system logic (v) BYPASS
Used for those components that are not being tested.
0000 Off-chip circuitry test (mandatory instruction).
EXTEST p irouttry test (mandatory Instruction) BOUND
Used for testing device interconnections on a board.
0001 Sample pins/preload data (mandatory instruction).
SAMPRE Used for controlling (preload) or observing (sample) the signals at | BOUND
device pins. This test has no effect on system operation.
0010 ID code test (optional instruction).
IDCODE) (. P)) IDCODE
Used to identify devices on a board.
1000 High-impedance/On-Circuit Emulation (ONCE) mode test
(optional instruction).
HIGHZ Used to place device pins into their inactive drive states. Allows BYPASS
external components to drive signals onto connections that the
processor normally drives.

T The opcode is the sequence of data bits shifted serially into the instruction register (IR) from the TDI input.
The opcodes for EXTEST and BYPASS are mandated by IEEE 1149.1, so they should be the same for all
JTAG-compliant devices. The remaining opcodes are designer-defined, so they may vary among devices.

All unlisted opcodes are reserved. Use of reserved opcodes could cause the device to enter reserved
factory-test modes.

18-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

18.2.4 Data Registers

The test-logic unit uses three data registers: bypass, identification code, and boundary-scan. The

intel.

instruction determines which data register is used.

The single-bit bypass register (BYPASS) provides a minimal-length serial path between TDI and
TDO. During board-level testing, you can use this path for any devices thedtangrrently un-

der test. This speeds access to the data registers for the deviees Heang tested.

The 32-bit identification code register (IDCODE) identifies a device by manufacturer, part num-
ber, and version number. Figut8-4 describes the register and shows the values for thi886e

EX processor.

Identification Code Register

2027 0013H (3V)

IDCODE Reset State: 2827 0013H (5V)

31 24
0 0 1 0 0 (3V) 0 0 0

1(5V)

23 16

(o [o [« [o J[o [= [+ 1
15 8

(o [o [o [o J[o [o [o] o
7 0

(o [o [o [= J[o [o [x [s
Bit Bit)

Number Mnemonic Function

31-28 V3:0 Device version number.

27-12 PN15:0 Device part number.

11-1 MFR10:0 Manufacturer identification (compressed JEDEC106-A code).

0 IDP Identification Present. Always true for this device.

This is the first data bit shifted out of the device during a data scan
immediately following an exit from the test-logic-reset state. A one
indicates that an IDCODE register is present. (A zero originates from the
BYPASS register and indicates that the device being interrogated has no
IDCODE register.)

18-8

Figure 18-4. Identification Code Register (IDCODE)

Int9|® JTAG TEST-LOGIC UNIT

The boundary-scan register (BOUND) holds data to be applied to the pins or data observed at the
pins. Each bit corresponds to a specific pin (Table 18-5).

Table 18-5. Boundary-scan Register Bit Assignments

Bit Pin Bit Pin Bit Pin Bit Pin
0 M/I1O# 25 Al5 50 TMROUT2 75 P2.2
1 D/C# 26 A16/CASO 51 TMRGATE2 76 P2.3
2 W/R# 27 Al17/CAS1 52 INT4/TMRCLKO 77 P2.4
3 READY# 28 A18/CAS2 53 | INT5/TMRGATEO | 78 DACKO#
4 BS8# 29 Al19 54 INT6/TMRCLK1 79 P2.5/RXD0
5 RD# 30 A20 55 | INT7/TMRGATE1 | 80 P2.6/TXD0
6 WR# 31 A21 56 STXCLK 81 P2.7
7 BLE# 32 A22 57 FLT# 82 UCS#
8 BHE# 33 A23 58 P1.0 83 | CS6#/REFRESH#
9 ADS# 34 A24 59 P1.1 84 LBA#
10 NA# 35 A25 60 P1.2 85 DO
11 Al 36 SMI# 61 P1.3 86 D1
12 A2 37 P3.0/TMROUTO/ | 62 P14 87 D2
INT9
13 A3 38 P3.1/TMROUT1/ | 63 P15 88 D3
INT8
14 A4 39 SRXCLK 64 P1.6/HOLD 89 D4
15 A5 40 SSIORX 65 RESET 90 D5
16 A6 41 SSIOTX 66 P1.7/HLDA 91 D6
17 A7 42 P3.2/INTO 67 DACK1#/TXD1 92 D7
18 A8 43 P3.3/INT1 68 EOP# 93 D8
19 A9 44 P3.4/INT2 69 WDTOUT 94 D9
20 Al10 45 P3.5/INT3 70 DRQO 95 D10
21 All 46 | P3.6/PWRDOWN | 71 DRQ1/RXD1 96 D11
22 Al2 47 P3.7/SERCLK 72 SMIACT# 97 D12
23 Al13 48 | PEREQ/TMRCLK2 | 73 P2.0 98 D13
24 Al4d 49 NMI 74 P2.1 99 D14
100 D15
NOTES:

1. BitOis closest to TDI; bit 100 is closest to TDO.
2. The boundary-scan chain consists of 101 bits; however, each bit has both a control cell and a data cell,
so an EXTEST instruction requires 202 shifts (101 bits X 2 cells).

18-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

18.3 TESTING

This section explains how to use the test-logic unit to test the device and the board interconnec-
tions. For any test, you must load an instruction and perform an instruction-scan cycle, then sup-
ply the correct sequence of ones and zeros to move the TAP controller tireughuired states

to perform the test.

18.3.1 Identifying the Device

The IDCODE instruction allows you to dgimine the contents of a device’s IDCODE register.
When TRST# is asserted, the test-logic-reset state forces the IDCODE instruction into the in-
struction register’s parallel output latches. You can also load this instruction like any other, by ma-
nipulating the TDI input to supply the binary opcode (0010). The Capture-DR state loads the
identification code into the IDCODE register, and the Shift-DR state shifts the value out.

18.3.2 Bypassing Devices on a Board

The BYPASS instruction allows you to bypass one or more devices on a board while testing oth-
ers. This significantly reduces the time required for a test. For example, assume that a board has
100 devices, each of which has 101 bits in its boundary-scan register. If the boundary-scan cells
are all connected in series, the boundary-scan path is 10dad¥#sdong. Bypassing devices al-

lows you to shorten the path considerably. If you set 99 of the devices to shift through their bypass
registers and only a single chip to shiftdugh its boundary-scangister (101 bits in this case),

the serial path is only 200 stages long.

You load the BYPASS instruction by manipulating TDI to supply the binary opcode (1111). The
Capture-DR state loads a logic O into the bypass register and the Shift-DR state shifts the value
out.

18.3.3 Sampling Device Operation and Preloading Data

The SAMPLE/PRELOAD instruction has two functions: SAMPLE takes a snapshot ofalata f

ing from (or to) the system pins to (or from) on-chip system logic, while PRELOAD places an
initial data pattern at the latched parallel outputs of the boundary-scan register cells in preparation
for another boundary-scan test operation.

You load the SAMPLE/PRELOAD instruction by manipulating TDI to supply the binary opcode
(0001). The Shift-DR state places the boundary-scan register in the serial path between TDI and
TDO, the Capture-DR state loads the pin states into the boundary-scan register, and the Update-
DR state loads the shift-register contents intobthiendary-scan register’s parallel outputs.

18.3.4 Testing the Interconnections (EXTEST)

The EXTEST instruction allows testing of off-chip circuitry and board-level interconnections.
Boundary-scan cells at the system outputs are used to apply test stimuli, while cells at system in-
puts capture the results. The Capture-DR state captures input pins into the chain; the Update-DR
state drives the new values of the parallel output onto the output pins.

18-10 I

Int9|® JTAG TEST-LOGIC UNIT

Typically, you would use the SAMPLE/PRELOAD instruction to load data onto the boundary-
scan register’s latched parallel outputs before loading the EXTEST instruction. You load the EX-
TEST instruction by manipulating TDI to supply the binary opcode (0000). The Update-DR state
drives the preloaded data onto the pins for the first test. Stimuli for the remaining tests are shifted
in while the results for the completed tests are shifted out.

18.3.5 Disabling the Output Drivers

The HIGHZ instruction places all system logic outputs into an inactive drive (high impedance)
state. This state allows an in-circuit emulator to drive signals onto connections that processor out-
puts normally drive, without risk of damaging the processor. It also allows you to connect a data
source (such as a test chip) to board-leigrials (such as an array of memory devices) that the
processor outputs normally drive. During normal operation, the processor outputs would be ac-
tive, while the test chip outputs would be inactive. During testing, you would use the HIGHZ in-
struction to place the processor outputs into an inactive drive state, then enable the test chip to
drive the connections.

You load the HIGHZ instruction by manipulating the TDI input to sughky binary opcode
(1000). The Capture-DR state loads a logic 0 into the bypass register, and the Shift-DR state shifts
the value out.

I 18-11

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

18.4 TIMING INFORMATION

The test-logic unit’s input/output timing is as specified in IEEE 1149.1. Fitgs® shows the
pin timing associated with loading the instruction register and Fitfgs@ shows the tiimg for
loading a given data register.

e LT

|

_—VY"TY VY TVYTTY N N "o
o 17
2 |2|=|g|, 2
a2
S 2818 w o 3 m I mlS S
"N R ROl Bl = i - c x. = g 4
Q ol=1¢5 = [=S @ N = =9 =%
Controller State 5 2|%81|=]s b @) o @ 3
clz=lo ol B O|® 5 T T T|= =
2 lz|¢lg]= ® o a
a @ % 5 o
et N\t Nt Nt Nt e e Nt Nt
Data Input to IR | X:X |
Parallel Output of IR IDCode X New Instruction

Data Input to TDR

TDR Shift-Register

Parallel Output of TDR X Old Data

><

Register Selected Instruction Register X

TDO Enable Inactive X ActiveX Inactive X Active X Inactive

: = Don't care or undefined.

A2361-01

Figure 18-5. Internal and External Timing for Loading the Instruction Register

18-12

JTAG TEST-LOGIC UNIT

TCK

T™MS

Controller State

TDI

Data Input to IR

IR Shift-Register

Parallel Output of IR

Data Input to TDR

TDR Shift-Register

Parallel Output of TDR

Instruction Register

TDO Enable

TDO

]
]

VYT Y Y VYT VY Ty
%) 7 o
o |o o o |9] 2
s|g |8 m 3 m S 5 2|z | -
I K= =] Q2 x. o x Q@ x 12) ~ 12 -
4151 € E = @ N E =9 B H S g
o |9 |3 B .] A T K T @] 3 Q
2 v ' ' %2} X o
=1 18 Y B 1 T =1 BT -1) I i P
287 & 3 =z |21¢] 3
ol o 2 18| ¢
=1 S @
et Nt Nt S Nt S Nt I Nt et o e

%

IDCode %

Instruction
Old Data New Data
| X Test Data Register
Inactive X Active X Inactive Active X Inactive

: = Don't care or undefined.

OO0

A2362-01

Figure 18-6. Internal and External Timing for Loading a Data Register

18-13

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

18.5 DESIGN CONSIDERATIONS
This section outlines considerations for the test-logic unit.

* The JTAG Test-Logic Unit must be reset upon power-up using the TRST# pin. (To do this,
invert the RESET signal and send this inverted RESET to the TRST# pin). If this is not
done, the processor may power-up with the JTAG test-logic unit in control of the device
pins, and the system does not initialize properly.

* For system-level in-circuit emulation, use the HIGHZ instruction to enter ONCE mode. For
device-level in-circuit emulation, you assert the FLT# pin to enter ONCE mode. This
method can interfere with the test-logic unit’s parallel functions, although it does not affect
the shifting functions or the TDO output.

18-14 I

intel.

SIGNAL
DESCRIPTIONS

APPENDIX A
SIGNAL DESCRIPTIONS

This appendix provides reference information for the pins and signals of the device, including the
states of certain pins during reset, idle, powerdown, and hold. The information is presémied in
tables:

* Table A-1 defines the abbreviations used in Table A-2 to describe the signals.
* Table A-2 describes each signal.
* Table A-3 defines the abbreviations used in Table A-4 to describe the pin states.

* Table A-4 lists the states of output and bidirectional pins after reset and during idle mode,
powerdown, and hold.

Table A-1. Signal Description Abbreviations

Abbreviation Definition

signal is active low

— not applicable or none

| standard TTL input

O standard CMOS output
oD open-drain output
1/0 bidirectional (input and output)
ST Schmitt-trigger input
P power pin
ground pin

A-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table A-2 is an alphabetical list of the signals available at the device pinsultiglexed With
column lists other signals that share a pin with the signal listed ®igimalcolumn.

Table A-2. Description of Signals Available at the Device Pins (Sheet 1 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)
A25:19 (0] Address Bus: —
A18516 Outputs physical memory or port /O addresses. These CAS2:0
Al5:1 signals are valid when ADS# is active and remain valid until | —
the next T1, T2P, or Ti.
ADSH# (0] Address Status: —
Indicates that the processor is driving a valid bus-cycle
definition and address (W/R#, D/C#, M/IO#, A25:1, BHE#,
BLE#) onto its pins.
BHE# O Byte High Enable: —
Indicates that the processor is transferring a high data byte.
BLE# O Byte Low Enable: —
Indicates that the processor is transferring a low data byte.
BS8# | Bus Size: —
Indicates that an 8-bit device is currently being addressed.
BUSY# | Busy: TMRGATE2
Indicates that the math coprocessor is busy. If BUSY# is
sampled low at the falling edge of RESET, the processor
performs an internal self test.
CAS2:0 (0] Cascade Address: A18:16
Carries the slave address information from the master
8259A interrupt module during interrupt acknowledge bus
cycles.
CLK2 ST | Input Clock: —
Is connected to an external clock that provides the
fundamental timing for the microprocessor. The internal
processor clock frequency is half the CLK2 frequency.
CLKOUT) Clock Output: —
Use this output to synchronize external devices with the
processor.
COMCLK | SIO Baud Clock: P3.7
An external source connected to this pin can clock the SIOn
baud-rate generator.
CS6# O Chip-selects: REFRESH#
CS5# Activated when the address of a memory or I/0 bus cycle is DACKO#
Csa# within the address region programmed by the user. P2.4
CS3# P2.3
CS2# P2.2
CS1# P2.1
CSo# P2.0

A-2

intel.

SIGNAL DESCRIPTIONS

Table A-2. Description of Signals Available at the Device Pins (Sheet 2 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)

CTS1# | Clear to Send: EOP#

CTS0# Indicates that the modem or data set is ready to exchange p2.7
data with the SIO channel.

D15:0 /O | Data Bus: —
Inputs data during memory read, 1/O read, and interrupt
acknowledge cycles; outputs data during memory write and
I/O write cycles. During reads, data is latched during the
falling edge of phase 2 of T2, T2P, or T2i. During writes, this
bus is driven during phase 2 of T1 and remains active until
phase 2 of the next T1, T1P, or Ti.

DACK1# O DMA Channel Acknowledge: TXD1

DACKO# Indicates that the DMA channel is ready to service the CS5#
requesting device. An external device uses the DRQn pin to
request DMA service; the DMA uses the DACKn pin to
indicate that the request is being serviced.

D/C# (@) Data/Control: —
Indicates whether the current bus cycle is a data cycle
(memory or 1/O read or write) or a control cycle (interrupt
acknowledge, halt/shutdown, or code fetch).

DCD1# | Data Carrier Detect: DRQO

DCDo# Indicates that the modem or data set has detected the Sl0 | P1.0
channel’s data carrier.

DRQ1 | DMA External Request: RXD1

DRQO Indicates that an external device requires DMA service. DCD1#

DSR1# | Data Set Ready: STXCLK

DSRO# Indicates that the modem or data set is ready to establish P1.3
the communications link with the SIO channel.

DTR1# O Data Terminal Ready: SRXCLK

DTRO# Indicates that the SIO channel is ready to establish a P1.2
communications link with the modem or data set.

EOP# 1/0OD | End-of-process: CTS1#
As an input, this signal terminates a DMA transfer. As an
ouput, it indicates that a DMA transfer has completed.

ERROR# | Error: TMROUT2
Indicates the the math coprocessor has an error condition.

FLT# | Float: —
Forces all bidirectional and output signals except TDO to a
high-impedance state.

HLDA (@) Hold Acknowledge: P1.7
Indicates that the processor has relinquished local bus
control to another bus master in response to a HOLD
request.

A-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table A-2. Description of Signals Available at the Device Pins (Sheet 3 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)
HOLD | Hold Request: P1.6
An external bus master asserts HOLD to request control of
the local bus. The processor finishes the current nonlocked
bus transfer, releases the bus signals, and asserts HLDA.
INT9 | Interrupt Requests: P3.0/TMROUTO
INT8 These maskable inputs cause the processor to suspend P3.1/TMROUT1
INT7 execution of the current program and execute an interrupt TMRGATE1
INT6 acknowledge cycle. TMRCLK1
INT5 TMRGATEO
INT4 TMRCLKO
INT3 P3.5
INT2 P3.4
INT1 P3.3
INTO P3.2
LBA# O Local Bus Access: —
Indicates that the processor provides the READY# signal
internally to terminate a bus transaction. This signal is
active when the processor accesses an internal peripheral
or when the chip-select unit provides the READY# signal for
an external peripheral.
LOCK# (0] Bus Lock: P1.5
Prevents other bus masters from gaining control of the bus.
M/IO# (@) Memory/IO: —
Indicates whether the current bus cycle is a memory cycle
or an I/O cycle.
NA# | Next Address: —
Requests address pipelining.
NMI ST | Nonmaskable Interrupt Request: —
Causes the processor to suspend execution of the current
program and execute an interrupt acknowledge cycle.
PEREQ | Processor Extension Request: TMRCLK2
Indicates that the math coprocessor has data to transfer to
the processor.
P1.7 /O | Port1: HLDA
P16 General-purpose, bidirectional I/O port. HOLD
P15 LOCK#
P14 RIO#
P13 DSRO#
P1.2 DTRO#
P11 RTSO#
P1.0 DCDO#

A4

intel.

SIGNAL DESCRIPTIONS

Table A-2. Description of Signals Available at the Device Pins (Sheet 4 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)
P2.7 /O | Port 2: CTSO#
P2.6 General-purpose, bidirectional /O port. TXDO
P2.5 RXDO
P2.4 CS4a#
P2.3 CS3#
P2.2 CS2#
P2.1 CS1#
P2.0 CSO0#
P3.7 /O | Port 3: COMCLK
P3.6 General-purpose, bidirectional /O port. PWRDOWN
P3.5 INT3
P3.4 INT2
P3.3 INT1
P3.2 INTO
P3.1 TMROUTL1/INT8
P3.0 TMROUTO/INT9
PWRDOWN (0] Powerdown Output: P3.6
Indicates that the device is in powerdown mode.
RD# O Read Enable:
Indicates that the current bus cycle is a read cycle and the
data bus is able to accept data.
READY# /0 | Ready: —
Terminates the current bus cycle. The processor drives
READY# when LBA# is active; otherwise, the processor
samples READY# on the falling edge of phase 2 of T2, T2P
or T2i.
REFRESH# (0] Refresh: CS6#
Indicates that a refresh bus cycle is in progress and that the
refresh address is on the bus for the DRAM controller.
RESET ST | System Reset Input: —
Suspends any operation in progress and places the
processor into a known reset state.
RI1# | Ring Indicator: SSIORX
RI0# Indicates that the modem or data set has received a P1.4
telephone ringing signal.
RTS1# O Request to Send: SSIOTX
RTSO# Indicates that the SIO channel is ready to exchange data P11
with the modem or data set.
RXD1 | Receive Data: DRQ1
RXDO Accepts data from the modem or data set to the SIO p2.5
channel.

A-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table A-2. Description of Signals Available at the Device Pins (Sheet 5 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)

SMI# ST | System Management Interrupt: —

Causes the device to enter System Management Mode.

SMI# is the highest priority external interrupt.
SMIACT# O System Management Interrupt Active: —

Indicates that the processor is in System Management

Mode.
SRXCLK /0 | SSIO Receive Clock: DTR1#

In master mode, the baud-rate generator’s output appears

on SRXCLK and can be used to clock a slave transmitter. In

slave mode, SRXCLK functions as an input clock for the

receiver.
SSIORX | SSIO Receive Serial Data: RI1#

Accepts serial data (most-significant bit first) into the SSIO.
SSIOTX o SSIO Transmit Serial Data: RTS1#

Sends serial data (most-significant bit first) from the SSIO.
STXCLK I/0 | SSIO Transmit Clock: DSR1

In master mode, the baud-rate generator’s output appears

on STXCLK and can be used to clock a slave receiver. In

slave mode, STXCLK functions as an input clock for the

transmitter.
TCK | Test Clock Input: —

Provides the clock input for the test-logic unit.
TDI | Test Data Input: —

Serial input for test instructions and data. Sampled on the

rising edge of TCK; valid only when either the instruction

register or a data register is being serially loaded.
TDO O Test Data Output: —

Serial output for test instructions and data. TDO shifts out

the contents of the instruction register or the selected data

register (LSB first) on the falling edge of TCK. If serial

shifting is not taking place, TDO floats.
TMRCLK2 | Timer/Counter Clock Input: PEREQ
TMRCLK1 An external clock source connected to the TMRCLKn pin INT6
TMRCLKO can drive the corresponding timer/counter. INT4
TMRGATE2 | Timer/Counter Gate Input: BUSY#
TMRGATEL Can control the counter’s operation (enable, disable, or INT7
TMRGATEO trigger, depending on the programmed mode). INTS
TMROUT2 O Timer/Counter Output: ERROR#
TMROUT1 Can provide the timer/counter’s output. The form of the P3.1/INT8
TMROUTO output depends on the programmed mode. P3.0/INT9

A-6

intel.

SIGNAL DESCRIPTIONS

Table A-2. Description of Signals Available at the Device Pins (Sheet 6 of 6)

Multiplexed With
Signal Type Name and Description (Alternate
Function)
T™MS | Test Mode Select: —
Controls the sequence of the test-logic unit's TAP controller
states. Sampled on the rising edge of TCK.
TRST# ST | Test Reset: —
Resets the test-logic unit’s TAP controller. Asynchronously
clears the data registers and initializes the instruction
register to 0010 (the IDCODE instruction opcode).
TXD1 O Transmit Data: DACK1#
TXDO Transmits serial data from the corresponding SIO channel. p2.6
UCS# (@) Upper Chip-select: —
Activated when the address of a memory or I/0 bus cycle is
within the address region programmed by the user.
Ve P System Power: —
Provides the nominal DC supply input. Connected
externally to a V. board plane.
Vgg G System Ground: —
Provides the 0 volt connection from which all inputs and
outputs are measured. Connected externally to a ground
board plane.
WDTOUT o Watchdog Timer Output: —
Indicates that the watchdog timer has expired.
WI/R# (0] Write/Read: —
Indicates whether the current bus cycle is a write cycle or a
read cycle.
WR# (0] Write Enable: —
Indicates that the current bus cycle is a write cycle.

A-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Table A-3 defines the abbreviations used in Table A-4 to describe the pin states.
Table A-3. Pin State Abbreviations

A-8

Abbreviation Description

1 Output driven to V¢
0 Output driven to Vgg
4 Output floats
Q Output remains active
X Output retains current state

WH Pin floats and has a temporary weak

pull-up
WL Pin floats and has a temporary weak

pull-down

Int9|® SIGNAL DESCRIPTIONS

Table A-4 lists the states of output and bidirectional pins after reset and during idlepmwele,
erdown, and hold.

Table A-4. Pin States After Reset and During Idle, Powerdown, and Hold (Sheet 1 of 2)

Pin State
Symbol Type

Reset Idle Powerdown Hold
A25:1 (0] 1 1 1 z
ADS# (0] 1 1 1 z
BHE# (0] 0 X 0 z
BLE# (0] 0 X 1 z
CAS2:0 (0] 1 1 1 z
CLKOUT (0] Q Q 0 Q
CS4:.0# (0] WH Q X 1
CS6:5# (0] 1 Q X 1
D15:0 110 z z z z
DACKZ1:0# (0] 1 Q X 1
D/C# (0] 1 0 0 z
DTR1:0 (0] WH X X X
EOP# I/OD WH z z z
HLDA (0] WL Q X 1
LBA# (0] 1 Q X 1
LOCK# (0] WH X X z
M/1O# (0] 0 1 1 z
P1.5:0 110 WH X X X
P1.7:6 110 WL X X X
P2.4:0 110 WH X X X
P2.6:5 110 WL X X X
pP2.7 Ife] WH X X X
P3.7:0 110 WL X X X
PWRDWN (0] WL X 1 Q
RD# (0] 1 1 1 1
READY# 110 z z z
REFRESH# (0] 1 Q X 1
RTS1# (0] WL X X X
RTSO# o WH X X X
SMIACT# (0] 1 X X 1
SRXCLK 110 WH Q X or Q1) Q
SSIOTX (0] WL Q X or Q1) Q
NOTES:

1. Xifclock source is internal; Q if clock source is external.
2. Q when shifting data out through the JTAG port, otherwise Z.

A-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table A-4. Pin States After Reset and During Idle, Powerdown, and Hold (Sheet 2 of 2)

STXCLK I/0 WH Q X or Q) 0
TDO (o] Z or Q) Z or Q) Z or Q) Z or Q)
TMROUT?2 0 WH Q X or Q) Q
TMROUT1:0 0 wL Q X or Q) Q
TXD1 0 1 Q X or Q) Q
TXDO 0 wL Q X or Q@) Q
UCS# (e} 0 Q X 1
WDTOUT 0 0 Q X Q
W/R# (e} 0 1 1 Z
WR# (e} 1 1 1 1
NOTES:

1. Xifclock source is internal; Q if clock source is external.
2. Q when shifting data out through the JTAG port, otherwise Z.

The following input pins have permanent weak pull-up resistors: TCK, TDI, TMS, TRST#,
SMI#, PEREQ/TMRCLK2, and FLT#.

intel.

COMPATIBILITY
WITH THE PC/AT*
ARCHITECTURE

APPENDIX B
COMPATIBILITY WITH THE PC/AT*
ARCHITECTURE

The Intel386™ EX embedded processdd@T 100% PC/AT* compatible. Due to compatibility
issues, not all PC software executes on the Intel386 EX processor. In addition, not all ISA/PC-
104 cards operate in an Intel386 EX processor system.

It is the responsibility of the designer to determine if a specific PC/AT software or hardware pack-
age operates on an Intel386 EX processor system. Typically an embedded PC can be very differ-
ent from a traditional desktop PC's system. The embedded PC may have more or less
functionality than a desktop PC. It is important for the designer to evaluate the requirements of
the PC software or hardware that is expected to operate on the Intel386 EX processor system.

This appendix is organized as follows:
¢ Hardware Departures from PC/AT System Architecture (see below)

¢ Software Considerations for a PC/AT System Architecture (page B-5)

B.1 HARDWARE DEPARTURES FROM P C/AT SYSTEM ARCHITECTURE

This appendix describes the areas in which the Intel386 EX processor departs frodaedsta
PC/AT system architecture and explains how to work around those departures if necessary. Chap-
ter 5, “DEVICE CONFIGURATION”, shows an example configuration for a PC/AT-compatible
system

B.1.1 DMA Unit

The PC/AT architecture uses two 8237A DMA controllers, connected in cascade, for a total of
seven channels. One DMA controller allows byte transfers and the other allows word transfers.
However, the 8237A has two major restrictions:

¢ It has only 16-bit addressing capability. This requires a page register to allow address
extension for a system based on a processor like the Intel386 EX processor, with 26-bit (64
Mbyte) physical memory addressing capability. A page register implementation is
cumbersome and degrades the system performance.

* The 8237A has no natural two-cycle data transfer mode to allow memory-to-memory
transfers. Instead, two DMA channels have to be used in a very specific manner.
Transferring data between memory and memory-mapped I/O devices, common in
embedded applications, would not be easy.

I B-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

To eliminate these problems with an 8237A DMA controller, the Intel386 EX processor inte-
grates a DMA controller unit that differs from the 8237A DMA in these ways:

* It provides two channels, each capable of either byte or word transfers.

¢ Each channel can transfer data between any combination of memory and I/O. The Bus
Interface Unit supports both external fly-by and two-cycle operation.

* For programming compatibility, the inteal DMA unit preserves all of the 8-bit registers of
the 8237A. The 837A's comnand register bits that affect two-channel memory-to-memory
transfers, compressed timing, and DREQ/DACK signal polarity selection are not supported
by the internal DMA.

* The internal DMA uses 26-bit address registersuggport the 26-bit address bus and uses
24-bit byte count registers to support larger data blocks than are possible with the 8237A.
However, each channel can be configured to look like an 8237A with page registers (i.e.,
16-bit address and byte count registers).

Chapter 12, “DMA CONTROLLER,” describes the DMA unit's features in detail.

While the internal DMA offers a comprehensive set of features to meet the needs of et em

ded applications, strict DOS compatibility may be critical to some. A PC/AT compatible system’s
Basic Input Output System (BIOS) only uses the DMA for floppy disk access. Since both MS-
DOS* and Microsoft* Windows* make calls to the BIOS for disk access, it is possible to modify
the BIOS. The floppy disk controller allows data transfers to occur using DMA, Polling, or Inter-
rupt based. A few BIOS vendors have implemented the transfers using polling for disk transfers.
Some programs bypass the BIOS and go directly to the hardware; typically, these are disk inten-
sive programsike hard disk backup software or disk management software.

If more DMA channels are required for compatibility, external controllers could be added. The
Intel386 EX processor’s flexible address remapping scheme enables you themiapernal

DMA out of the DOS 1I/O space and then connect an external 8237A to achieve PC/AT compati-
bility. The internal DMA can still be used for other non-DOS related functions.

B.1.2 Industry Standard Bus (ISA) Signals

The address, data, and control signals, along with the interrupt and DMA control sigmads,

directly conform to the PC/AT ISA bus. (They more closely match the Intel386™ SX processor
local bus signals.) However, you can easily construct a subset PC/AT ISA bus from these signals
or a combination of these signals. For example, the AEN signal is typically generateshas

in Figure B-1 in a PC/AT-compatible system.

B-2 I

Int9|® COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

HLDA

Processor _\ AEN
|/

MASTER#
(From PC/AT* Bus)

A2504-01

Figure B-1. Derivation of AEN Signal in a Typical PC/AT System

For systems based on Intel386 EX processor, the AEN signal could be derived as shown in Figure
B-2. Notice that since the DMA acknowledge signals are used instead of a generic HLDA, there
is no need to incorporate the REFRESH# signal in the logic.

DACKO#

j : DACK
Processor DACK1# N\ AEN
MASTER# (From PC/AT* Bus) j

Figure B-2. Derivation of AEN Signal for Intel386™ EX processor-based Systems

A2503-01

In a PC/AT system using the 8237A DMA controller in fly-by mode 3P87A geerates appro-

priate control signals for memory (MEMR# or MEMW#) and for I/O (IOW# and IOR#). The
Intel386 EX processor’s internal DMA, during fly-by transfers, generates control sign&B#M

and W/R#) that apply to the memory device. There needs to be some external logic that can detect
the DMA operation (througthe AEN signal) and generate a complementary I/O cycle. For ex-
ample, if the DMA is generating a memory read cycle and AEN is active, then the logic should
drive the IOW# signal on the PC/AT bus. Actually, the internal DMA could be programmed in a
two-cycle mode eliminating the need for external logic. This will not have a significant impact
on the performance — of the two cycles required to complete the transfer, the I/O cyclerig the

one (meeting PC/AT timings) while the memory cycle is relatively very quick.

The drive capability and the operating frequency of the Intel386 EX processor signals are differ-
ent from the standard PC/AT bus, which requires 24 mA drive capacity at 200 pF capacitive load.

Most PC/AT systems presently operate in a “quiet bus” mode sadhalSA cyclesare not re-

flected on the ISA bus. In a typical implementation, the address/data buses may change states, but
the control signals are not strobed if a non-ISA cycle is detected. External three-state buffers and
some decoding logic are needed to implement this scheme. The EV386EX (evaluation board for

I B-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

the Intel386 EX embedded processor) demonstratedetfign of a Synchronous Expansion Bus
that is very similar to the ISA bus. The Intel386 EX processor is not capghieviding a 100%
compatible ISA bus due to its lack of DMA channels and interrupt inputs.

B.1.3 Interrupt Control Unit

Interrupt signals IRQ10, IRQ11, and IRQ15 found on an ISA bus are not directly available for
external interrupt connections in systems based on an Intel386 EX processor. If an application
intends to use these IR@ignals, then they can be rerouted to other IRQ signals available in an
Intel386 EX processor architecture, and the respective interrupt handler routines assigned accord-

ingly.

B.1.4 SIO Units

In the modem control register (MCR), the OUT1 register bit is used only in loopback tests. The
OUT?2 bitin the MCR is used as an SIO interrupt enable control signal. This allows two additional
UARTSs to be added externally as COM3 and COM4.

The SIO units (COM1 and COM2) are connected to the equivalent of a PC’s local bus, not the
ISA bus. However, this does not affect the compatibility with DOS application software in any
form.

B.1.5 CPU-only Reset

The RESET pin on the Intel386 EX processor can be considered to function as a system reset
function because all of the on-chip peripheral units, as well as the CPU core, are initialized to a
known start-up state. There is no separate reset pin that goes only to the CPU.Pibom\C

reset modes, such as a keyboard controller generated CPU-only reset, will not function as expect-
ed.

A CPU-only reset can be implemented by routing the reset signal to either the NMI or SMI# sig-
nal, and the appropriate handler code could then generate a corresponding CPU-Only-Reset func-
tion by setting bit 0 of the PORT92H register.

B.1.6 HOLD, HLDA Pins

These pins do not connect directly to the CPU. Instead they go to the Bus Arbiter which controls
the internal HOLD and HLDA signals connected to the CPU core. However the presence of the
bus arbiter is transparent as far as functionality of the external HOLD and HLDA pins of Intel386
EX processor are concerned.

In a PC/AT system, if an external bus master gains the bus by raising HOLD to the CPU or raising
DREQ in DMA cascade mode, the corresponding HLDA or DACK signal stays active until the
bus master drops HOLD or DREQ. In the Intel386 EX processor, when the refresh control unit
requests the bus, the bus arbiter deactivates the signals on the HLDA or DACK# pins while the
external bus master still has the bus (HOLD or DREQ is high). At this point, the external bus mas-
ter or DMA must deassert its HOLD or DREQ signal for a minimum of one CPU clock cycle and
it can then assert the signal again.

B-4 I

Int9|® COMPATIBILITY WITH THE PC/AT* ARCHITECTURE

B.1.7 PortB

The Port B register found on the PC/AT is not supported on the Intel386 EX processor. It can be
implemented externally with a PLD. The EXPLR1 (Explorer Evaluation board) supports this
Port B.

B.2 SOFTWARE CONSIDERATIONS FOR A PC/AT SYSTEM ARCHI TECTURE

B.2.1 Embedded Basic Input Output System (BIOS)

The BIOS provides low-level drivers to interface to the hardware. The BIOS is hardweare de
dent and typically requires changes for the embedded design. There are several third party BIOS
vendors that support the Intel386 EX processor.

Embedded PC features supported include PCMCIA, Flash, Advanced Power Management
(APM), Source, Remote Floppy, OEM Configurable, and Video/Keyboard rerouted through the
serial port. For a complete list of vendors ahelir features, call the Intel BBS as described in
“Electronic Support Systems” on page 1-6. A good evaluation vehicle is the EV386EX Evalua-
tion Board which comes with five different third party BIOS demonstrations. New and updated
demonstrations are also available on the Intel BBS.

B.2.2 Embedded Disk Operating System (DOS)

The DOS operating system offers functions for I/O communication, floppy/hard disk, video, key-
board, program handling, memory management, andanktsupport. All these are available to
the Intel386 EX embedded processor user.

Embedded PC DOS features include Advanced Power Management (APM) support, ROMable,
Source, Disk Compreis, and XIP. A variety of third party DOS vendors support the Intel386
EX processor. For a complete list of vendors thedr features, call the Intel BBS. The EV386EX
Evaluation Board also provides a variety of DOS demonstrations. New and updated DOS dem-
onstrations are also available on the Intel BBS.

B.2.3 Microsoft* Windows*

The Intel386 EX processor can run both Microsoft Windows 3.1 and Microsoft ROM Windows.
Both require RAM and disk space to execute. Other hardware such as a keyboard controller, real
time clock and video controller may be required. For more information on implementing ROM
Windows, refer taviobile Intel486™ SX CPU PC Designs Using FlashFile™ Compon@nts

der Number 292149).

I B-5

intel.
C

EXAMPLE CODE
HEADER FILES

APPENDIX C
EXAMPLE CODE HEADER FILES

This appendix contains the header files called by the code examples that are included in several
chapters of this manual. Section C.1 contains the register definitions for each code routine. Sec-
tion C.2 contains the variable definitions.

C.1 REGISTER DEFINITIONS FOR CODE EXAMPLES

/* 80386EX REGISTER DEFINITIONS */

#define _SetEXRegWord(reg,val) (outpw(reg,val))
#define _SetEXRegByte(reg,val) (outp(reg,val))
#define _ReadEXRegWord(val,reg) (val=inpw(reg))
#define _GetEXRegByte(reg) inp(reg)
#define _GetEXRegWord(reg) inpw(reg)

/* REMAP ADDRESSING Registers */
#define REMAPCFGH 0x0023
#define REMAPCFGL 0x0022
#define REMAPCFG 0x0022
/* INTERRUPT CONTROL REGISTERS -- SLOT 15 ADDRESSES */
#define ICW1M 0xF020
#define ICW1S O0xFOAO
#define ICW2M 0xF021
#define ICW2S OxFOA1
#define ICW3M O0xF021
#define ICW3S OxFOA1
#define ICW4M O0xF021
#define ICW4S OxFOA1
#define OCW1M 0xF021
#define OCW1S OxFOA1
#define OCW2M 0xF020
#define OCW2S O0xFOAO
#define OCW3M 0xF020
#define OCW3S O0xFOAO

/* INTERRUPT CONTROL REGISTERS -- SLOT 0 ADDRESSES */
#define ICW1MDOS 0x0020
#define ICW1SDOS 0x00A0
#define ICW2MDOS 0x0021
#define ICW2SDOS 0x00Al
#define ICW3MDOS 0x0021
#define ICW3SDOS O0x00Al
#define ICW4AMDOS 0x0021
#define ICW4ASDOS O0x00Al
#define OCW1MDOS 0x0021
#define OCW1SDOS 0x00Al
#define OCW2MDOS 0x0020

C-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

#define OCW2SDOS 0x00A0
#define OCW3MDOS 0x0020
#define OCW3SDOS 0x00A0

/* CONFIGURATION Registers */
#define DMACFG 0xF830
#define INTCFG OxF832
#define TMRCFG 0xF834
#define SIOCFG 0xF836
#define P1CFG 0xF820
#define P2CFG O0xF822
#define P3CFG 0xF824
#define PINCFG OxF826

* WATCHDOG TIMER Registers */
#define WDTRLDH 0xF4CO
#define WDTRLDL OxF4C2
#define WDTCNTH OxF4C4
#define WDTCNTL OxF4C6
#define WDTCLR OxF4C8
#define WDTSTATUS OxF4CA

/* TIMER CONTROL REGISTERS -- SLOT 15 ADDRESSES */
#define TMRO 0xF040

#define TMR1 0xF041

#define TMR2 0xF042

#define TMRCON 0xF043

/* TIMER CONTROL REGISTERS -- SLOT 0 ADDRESSES */
#define TMRODOS 0x0040

#define TMR1DOS 0x0041

#define TMR2DOS 0x0042

#define TMRCONDOS 0x0043

/* INPUT/OUTPUT PORT UNIT Registers */
#define P1PIN 0xF860
#define P1LTC 0xF862
#define P1DIR OxF864
#define P2PIN OxF868
#define P2LTC OxF86A
#define P2DIR 0xF86C
#define P3PIN O0xF870
#define P3LTC OxF872
#define P3DIR OxF874

/* ASYNCHRONOUS SERIAL CHANNEL O -- SLOT 15 ADDRESSES */
#define RBRO OxF4F8

#define THRO OxF4F8

#define TBRO OxF4F8

#define DLLO OxF4F8

#define IERO OxF4F9

#define DLHO OxF4F9

C-2

intel.

Int9|® EXAMPLE CODE HEADER FILES

#define IIRO OxF4FA
#define LCRO OxF4FB
#define MCRO OxF4FC
#define LSRO OxF4FD
#define MSRO OxFAFE
#define SCRO OxF4FF

/* ASYNCHRONOUS SERIAL CHANNEL 0 -- SLOT 0 ADDRESSES */
#define RBRODOS 0x03F8
#define THRODOS 0Ox03F8
#define TBRODOS 0x03F8
#define DLLODOS 0x03F8
#define IERODOS 0x03F9
#define DLHODOS 0x03F9
#define IRODOS 0Ox03FA
#define LCRODOS 0x03FB
#define MCRODOS 0x03FC
#define LSRODOS 0x03FD
#define MSRODOS OxO3FE
#define SCRODOS Ox03FF

/* ASYNCHRONOUS SERIAL CHANNEL 1 -- SLOT 15 ADDRESSES */
#define RBR1 OxF8F8
#define THR1 OxF8F8
#define TBR1 OXF8F8
#define DLL1 OxF8F8
#define IER1 OxF8F9
#define DLH1 OxF8F9
#define IIR1 OxF8FA
#define LCR1 OxF8FB
#define MCR1 OxF8FC
#define LSR1 OxF8FD
#define MSR1 OxF8FE
#define SCR1 OxF8FF

/* ASYNCHRONOUS SERIAL CHANNEL 1 -- SLOT 0 ADDRESSES */
#define RBR1DOS Ox02F8
#define THR1IDOS 0x02F8
#define TBR1DOS 0x02F8
#define DLL1IDOS 0x02F8
#define IER1IDOS 0x02F9
#define DLHIDOS 0x02F9
#define IRIDOS 0x02FA
#define LCR1DOS O0x02FB
#define MCR1DOS 0x02FC
#define LSR1IDOS 0x02FD
#define MSR1DOS Ox02FE
#define SCR1DOS Ox02FF

/* SYNCHRONOUS SERIAL CHANNEL REGISTERS */
#define SSIOTBUF 0xF480
#define SSIORBUF OxF482
#define SSIOBAUD 0xF484
#define SSIOCON1 0xF486

C-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

#define SSIOCON2 0xF488
#define SSIOCTR OxF48A

/* CHIP SELECT UNIT Registers */
#define CSOADL 0xF400
#define CSOADH OxF402
#define CSOMSKL OxF404
#define CSOMSKH OxF406
#define CSIADL 0xF408
#define CSIADH OxF40A
#define CSIMSKL 0xF40C
#define CSIMSKH OxF40E
#define CS2ADL ~ 0xF410
#define CS2ADH OxF412
#define CS2MSKL OxF414
#define CS2MSKH OxF416
#define CS3ADL 0xF418
#define CS3ADH OxF41A
#define CS3MSKL 0xF41C
#define CS3MSKH OxF41E
#define CS4ADL 0xF420
#define CS4ADH OxF422
#define CS4MSKL OxF424
#define CS4MSKH OxF426
#define CSS5ADL 0xF428
#define CS5ADH OxF42A
#define CSS5MSKL 0xF42C
#define CSSMSKH OxF42E
#define CS6ADL 0xF430
#define CS6ADH OxF432
#define CS6MSKL OxF434
#define CS6MSKH OxF436
#define UCSADL OxF438
#define UCSADH O0xF43A
#define UCSMSKL OxF43C
#define UCSMSKH OxF43E

/* REFRESH CONTROL UNIT Registers */
#define RFSBAD OxF4A0

#define RFSCIR OxF4A2

#define RFSCON O0xF4A4

#define RFSADD OxF4A6

/* POWER MANAGEMENT CONTROL Registers */
#define PWRCON OxF800
#define CLKPRS 0xF804

/* DMA UNIT REGISTERS -- SLOT 15 ADDRESSES */
#define DMAOTAR 0xFO00
#define DMAOBYC OxF0O1
#define DMA1TAR 0xF002
#define DMA1BYC OxF003

c4

intel.

#define DMACMD1 OxF008
#define DMASTS OxF008
#define DMASRR 0xF009
#define DMAMSK OxFOOA
#define DMAMOD1 0xFOO0B
#define DMACLRBP 0xFOOC
#define DMACLR 0xFOOD
#define DMACLRMSK OxFOOE
#define DMAGRPMSK 0xFOOF
#define DMAOREQL 0xF010
#define DMAOREQH 0xFO11
#define DMA1REQL 0xF012
#define DMA1IREQH 0xFO013
#define DMABSR 0xF018
#define DMACHR OxF019
#define DMAIS 0xF019
#define DMACMD2 OxFO1A
#define DMAMOD2 0xFO1B
#define DMAIEN OxFO1C
#define DMAOVFE OxFO1D
#define DMACLRTC OxFOlE
#define DMAL1TARPL OxF083
#define DMA1TARPH 0xF085
#define DMAOTARPH 0xF086
#define DMAOTARPL OxF087
#define DMAOBYCH 0xF098
#define DMA1BYCH 0xF099

/* DMA UNIT REGISTERS -- SLOT 0 ADDRESSES */
#define DMAOTARDOS 0x0000
#define DMAOBYCDOS 0x0001
#define DMA1TARDOS 0x0002
#define DMA1BYCDOS 0x0003
#define DMACMD1DOS 0x0008
#define DMASTSDOS 0x0008
#define DMASRRDOS 0x0009
#define DMAMSKDOS 0x000A
#define DMAMOD1DOS 0x000B
#define DMACLRBPDOS 0x000C
#define DMACLRDOS 0x000D
#define DMACLRMSKDOS 0x000E
#define DMAGRPMSKDOS 0x000F
#define DMA1TARPLDOS 0x0083
#define DMAOTARPLDOS 0x0087

/* A20GATE AND FAST CPU RESET -- SLOT 15 ADDRESS */
#define PORT92 0xF092

/* A20GATE AND FAST CPU RESET -- SLOT 0 ADDRESS */
#define PORT92DOS 0x0092

EXAMPLE CODE HEADER FILES

C-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

C.2 EXAMPLE CODE DEFINES

/ Global typedef **********************/
typedef unsigned char BYTE; [* 8-bit value */
typedef unsigned short WORD; [* 16-bit value */
typedef unsigned long DWORD; /* 32-bit value */

/******************** Global Used deflnes ********************/

[* Error Flags */

#define E_OK 0
#define E_INVALID_DEVICE 1
#define E_INVALID_VECTOR 2

#define E_BADVECTOR 3
#define INTERRUPT_ISR 1
#define TRAP_ISR 2
#define IDT_ALIAS 2 /* Only valid for protected mode */
#define TRAP_TYPE 0x8f00 /* Only valid for protected mode */
#define INTR_TYPE 0x8e00 /* Only valid for protected mode */
#define LOBYTE(w) ((BYTE)(w))
#define HIBYTE(w) ((BYTE)(((WORD)(w) >> 8) & OxFF))
#define LOWORD(l) ((WORD)(DWORD)(1))
#define HIWORD(l) ((WORD)((((DWORD)(l)) >> 16) & OxFFFF))
[*** Bit Masks ***/
#define BITOMSK 0x1
#define BITIMSK 0x2
#define BIT2MSK 0x4
#define BIT3MSK 0x8
#define BITAMSK 0x10
#define BITSMSK 0x20
#define BITBMSK 0x40
#define BIT7TMSK 0x80

/*** Global Function ***/
extern void _EnableExtiOMem(void);

[xxxxxxx Interrupt Control Unit configuration defings ***xxxxx/
/* 1ICU Modes */

#define ICU_SFNM 0x10
#define ICU_AUTOEOI 0x2
#define ICU_TRIGGER_LEVEL 0x8
#define ICU_TRIGGER_EDGE 0x0

/* ICU Master Pins */

C-6

Int9|® EXAMPLE CODE HEADER FILES

#define MPIN_INTO 0x4
#define MPIN_INT1 0x8
#define MPIN_INT2 0x10
#define MPIN_INT3 0x20
/* ICU Master External Cascade IRs */
#define MCAS_IR1 0x2
#define MCAS_IR2 0x4
#define MCAS_IR5 0x20
#define MCAS_IR6 0x40
#define MCAS_IR7 0x80
/* ICU Slave Pins */
#define SPIN_INT4 0x1
#define SPIN_INTS 0x2
#define SPIN_INT6 0x4
#define SPIN_INT7 0x8
/* 1ICU IRQ Mask Values*/
#define IR0 0Ox1
#define IR1 0x2
#define IR2 0x4
#define IR3 0x8
#define IR4 0x10
#define IR5 0x20
#define IR6 0x40
#define IR7 0x80
/*1CU EOI Types */
#define NONSPECIFIC_EOI 0x20
#define SPECIFIC_EOI 0x60
#define NonSpecificEOI() _SetEXRegByte(OCW2S,NONSPECIFIC_EOI);

_SetEXRegByte(OCW2M,NONSPECIFIC_EOI)
#define MstrSpecificEOI(irq) _SetEXRegByte(OCW2M, 0x60 | (BYTE)((irq) & 0x7))
)
#define SlaveSpecificEOI(irg) _SetEXRegByte(OCW?2S, 0x60 | (BYTE)((irq) & 0x7))

)

#define Master 1
#define Slave 0

/* 1ICU Function Definitions */
extern int InitICU (BYTE MstrMode, BYTE MstrBase, BYTE MstrCascade,
BYTE SlaveMode, BYTE SlaveBase,BYTE MstrPins,
BYTE SlavePins);
extern int InitICUSIlave(BYTE SlaveMode, BYTE SlaveBase, BYTE SlavePins);
extern void SetlInterruptVector(void (far interrupt *IntrProc)(void),
int Vector, int IntrType);
extern int SetIRQVector(void (far interrupt *IntrProc)(void), int IRQ,
int IntrType);
extern void Enable8259Interrupt(BYTE MstrMask, BYTE SlaveMask);
extern void Disable8259Interrupt(BYTE MstrMask, BYTE SlaveMask);
extern int Poll_Command(int Master_or_Slave);

C-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

[rrxxxxxxxxxx Agynchronous Serial I/O Port defines *rxxxxrkkrx]

#define SIO_0
#define SIO_1

#define SIO0_IRQ
#define SIO1_IRQ

#define SIO_S5DATA
#define SIO_6DATA
#define SIO_7DATA
#define SIO_8DATA

#define SIO_1STOPBIT
#define SIO_2STOPBIT

#define SIO_NOPARITY
#define SIO_ODDPARITY
#define SIO_EVNPARITY
#define SIO_FRCOPARITY
#define SIO_FRC1PARITY

#define SIO_SETBREAK

#define SIO_INTERNAL_SRC
#define SIO_EXTERNAL_SRC

#define SIO_CLKSRC_CLK2

0
1

4 *IRQ # Master IRQ4 */
3 /*IRQ # Master IRQ3 */

0x0
Ox1
0x2
0x3

0x0
Ox4

0x0
0x8
0x18
0x28
0x38

0x40
Ox1

0x0
Ox1

#define SIO_CLKSRC_COMCLK 0x0

#define SIO_INTR_NONE
#define SIO_INTR_RBF
#define SIO_INTR_TBE
#define SIO_INTR_RLS
#define SIO_INTR_MS

#define SIO_MCR_LOOP_BACK 0x10

#define SIO_MCR_OUT2
#define SIO_MCR_OUT1
#define SIO_MCR_RTS
#define SIO_MCR_DTR

#define SIO_8N1
#define SIO_7N1

/* Status Bits */
#define SIO_ERROR_BITS
#define SIO_RX_BUF_FULL
#define SIO_OVERRUN
#define SIO_PARITY_ERR
#define SIO_FRAMING_ERR
#define SIO_BREAK_INTR

#define SIO_TX_BUF_EMPTY

C-8

0
Ox1
0x2
Ox4
0x8

0x8
Ox4
0x2
0Ox1

(SIO_8DATA | SIO_1STOPBIT | SIO_NOPARITY)
(SIO_7DATA | SIO_1STOPBIT | SIO_NOPARITY)

Oxle
Ox1
0x2
Ox4
0x8
0x10
0x20

Int9|® EXAMPLE CODE HEADER FILES

#define SIO_TX_EMPTY 0x40

[* Offsets from beginning of SIO port addresses */

#define RBR 0
#define TBR 0
#define DLL 0
#define IER 1
#define DLH 1
#define IR 2
#define LCR 3
#define MCR 4
#define LSR 5
#define MSR 6
#define SCR 7
#define SIO0_BASE OxF4F8
#define SIO1_BASE OxF8F8

/* Define Function Macros */
#define GetSIO0Status() _GetEXRegByte(LSRO)
#define GetSIO1Status() _GetEXRegByte(LSR1)
#define GetSIOOInterruptID() _GetEXRegByte(IIR0)
#define GetSIO1lInterruptlD() _GetEXRegByte(IIR1)
#define GetSIOOModemStatus() _GetEXRegByte(MSRO0)
#define GetSIO1ModemStatus() _GetEXRegByte(MSR1)
#define GetSIOOChar() _GetEXRegByte(RBRO)
#define GetSIO1Char() _GetEXRegByte(RBR1)
#define ChangeSIOO0IntrSrc(src) _SetEXRegByte(IERO,src)
#define ChangeSIO1lIntrSrc(src) _SetEXRegByte(IER1,src)
#define ChangeSIOOMode(Mode) _SetEXRegByte(LCR0O,Mode)
#define ChangeSIO1Mode(Mode) _SetEXRegByte(LCR1,Mode)

#define DisableSIOOInterrupt(src) _SetEXRegByte(IERO, GetEXRegByte(IERO) &
I(src))
#define DisableSIO1Interrupt(src) _SetEXRegByte(IER1, GetEXRegByte(IER1) &
I(src))

/* SIO Function Definitions */

extern int InitSIO (int Unit, BYTE Mode, BYTE ModemCntrl, DWORD BaudRate,
DWORD BaudClIkIn);

extern BYTE SerialReadChar(int Unit);

extern int SerialReadStr(int Unit, char far *str, int count);

extern void SerialWriteChar(int Unit, BYTE ch);

extern void SerialWriteStr(int Unit, const char far *str);

extern void SerialWriteMem(int Unit, const char far *mem, int count);

void interrupt far Serial0_ISR(void);

extern void Service_RBF (void);

extern void SerialWriteStr_Int(int Unit, const char far *str);

extern void Service_TBE(void);

/***************** DMA COangUI’atIOn deflnes *****************/

C-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

typedef enum
{
DMA_Channel0 = 0,
DMA_Channell =1
} DMAChannelEnum;

typedef enum
{
ERR_NONE =0,
ERR_BADINPUT =-1
} ERREnum;

/* DMA Function Definitions */
int SetDMAReqlOAddr(int nChannel, WORD wlO);
int SetDMATargMemAddr(int nChannel, void *ptMemory);
int SetDMAXferCount(int nChannel, DWORD ICount);
int EnableDMAHWRequests(int nChannel);
int DisableDMAHWRequests(int nChannel);
void InitDMA(void);
void InitDMA1ForSerialXmitter(void);

/*************** Port I/O COI’lfIguI’atlon deflnes **************/
/* Port 1 configuration defines */

#define DCDO 0x1
#define RTSO 0x2
#define DTRO 0x4
#define DSRO 0x8
#define RIO 0X10
#define LOCK 0x20
#define HOLD 0X40
#define HOLDACK 0X80

/* Port 2 configuration defines */
#define CS0O Ox1
#define CS1 0x2
#define CS2 0x4
#define CS3 0x8
#define CS4 0X10
#define RXDO 0x20
#define TXDO 0X40
#define CTSO 0X80

/* Port 3 configuration defines */
#define TMROUTO 0x1
#define TMROUT1 0x2
#define INTO 0x4
#define INT1 0x8
#define INT2 0x10
#define INT3 0x20
#define PWRDWN 0x40
#define COMCLK 0x80

/* Port Direction defines */
#define PO_IN 0x1

C-10

intel.

#define P1_IN
#define P2_IN
#define P3_IN
#define P4_IN
#define P5_IN
#define P6_IN
#define P7_IN
#define Px_OUT

/* Pin configuration defines */

#define RTS1
#define SSIOTX
#define DTR1
#define SRXCLK
#define TXD1
#define DACK1
#define CTS1
#define EOP
#define CS5
#define DACKO
#define TIMER2
#define COPROC
#define REFRESH
#define CS6

0x2
Ox4
0x8
0x10
0x20
0x40
0x80

Ox1

0x2

0x4

0x8

0x10

0x20

0x40
0

/* Port 1/0 Function Definitions */

extern void Init_lOPorts

EXAMPLE CODE HEADER FILES

(BYTE Portl, BYTE Port2, BYTE Port3, BYTE PortDirl,

BYTE PortDir2, BYTE PortDir3, BYTE PortLtc1,
BYTE PortLtc2, BYTE PortLtc3);

/**************** Tlmel' COangUra’[IOn deflnes ******‘k‘k‘k*******/

#define TMR_O
#define TMR_1
#define TMR_2
#define TMRO_IRQ
#define TMR1_IRQ
#define TMR2_IRQ
/* Timer Modes */
#define TMR_TERMCNT
#define TMR_1SHOT
#define TMR_RATEGEN
#define TMR_SQWAVE
#define TMR_SW_TRIGGER
#define TMR_HW_TRIGGER
/* Count Type */
#define TMR_CLK_BCD
#define TMR_CLK_BIN

/* Timer Pin Configuration */

#define TMR_CLK_INTRN
#define TMR_CLK_EXTRN
#define TMR_GATE_VCC

0
1

2
0 /*IRQ # Master IRQO */
10 /*IRQ # Slave IRQ2 */
11 /*IRQ # Slave IRQ3 */

0
(1<<1)
(2<<1)
(3<<1)
(4<<1)
(5<<1)

1
0

0
Ox1
0

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

#define TMR_GATE_EXTRN 0x2
#define TMR_OUT_ENABLE 0x1
#define TMR_OUT_DISABLE 0

#define TMR_ENABLE 1
#define TMR_DISABLE 0

/* Timer Macros Definitions */
#define DisableTimer() \
_SetEXRegByte(TMRCFG, (_GetEXRegByte(TMRCFG) | 0x80))

#define EnableTimer() \
_SetEXRegByte(TMRCFG, (_GetEXRegByte(TMRCFG) & 0x7f))

/* Timer Function Definitions */
extern int InitTimer (int Unit, WORD Mode, BYTE Inputs, BYTE Output,
WORD InitCount, int Enable);

extern void SetUp_ReadBack (BYTE Timer0O, BYTE Timerl, BYTE Timer2,
BYTE GetStatus, BYTE GetCount);

extern WORD CounterLatch(BYTE Timer);
extern WORD ReadCounter(BYTE Timer);

void interrupt far TimerISR(void);

/**************** SSIO Conflguratlon deflneS *****************/

#define SSIO_TUE 0x80 /* Transmit Underflow Error */

#define SSIO_THBE 0x40 /* Transmit Holding Buffer Empty */

#define SSIO_TX_IE 0x20 [* Transmit Interrupt Enable */

#define SSIO_TX_ENAB 0x10 [* Transmitter Enable */

#define SSIO_ROE 0x08 /* Receive Overflow Error */

#define SSIO_RHBF 0x04 /* Receive Holding Buffer Full */

#define SSIO_RX_IE 0x02 /* Receive Interrupt Enable */

#define SSIO_RX_ENAB 0x01 /* Receiver Enable */

#define SSIO_TX_MASTR 0x02 /* Transmit Master Mode */

#define SSIO_RX_MASTR 0x01 /* Receive Master Mode */

#define SSIO_TX_SLAVE 0

#define SSIO_RX_SLAVE 0

#define SSIO_CLK_SERCLK 0x01 /* Baud Rate Clocking Source:
SERCLK = CLK2/4 */

#define SSIO_CLK_PSCLK 0x00 /* Baud Rate Clocking Source:
PSCLK = (CLK2/2) / (CLKPRS+2) */

#define SSIO_BAUD_ENAB 0x80 /* Enable Baud Rate Generator */

/* SSIO Function Definitions */
extern void InitSSIO ~ (BYTE Mode, BYTE MasterTxRx, BYTE BaudValue,

C-12

Int9|® EXAMPLE CODE HEADER FILES

BYTE PreScale);
extern WORD SSerialReadWord(BYTE MasterSlave);
extern void SSerialWriteWord(WORD Ch,BYTE MasterSlave);
void interrupt far SSIO_ISR(void);
extern void Service_ RHBF(void);
extern void Service_ THBE(void);

/********************* Watch Dog Tlmer ***********************/

#define SetWatchDogReload(ReloadHi,ReloadLow) \
_SetEXRegWord(WDTRLDL,ReloadLow);_SetEXRegWord(WDTRLDH,ReloadHi);

#define WatchDogClockDisable()\
_SetEXRegByte(WDTSTATUS, _GetEXRegByte(WDTSTATUS) | BITOMSK)

#define WatchDogClockEnable()\
_SetEXRegByte(WDTSTATUS, _GetEXRegByte(WDTSTATUS) & ~BITOMSK)

/* Watch Dog Timer Function Definitions */
extern void ReLoadDownCounter(void);
extern DWORD GetWDT_Count(void);
extern void WDT_BusMonitor(BYTE EnableDisable);
extern void EnableWDTInterrupt(void);
void interrupt far wdtISR(void);

/******************** Refresh CO ntrol U n it*********************/

#define EnableRCU() \
_SetEXRegWord(RDFSCON, _GetEXRegWord(RDFSCON) | 0x8000)

#define DisableRCU() \
_SetEXRegWord(RDFSCON, _GetEXRegWord(RDFSCON) & 0x7fff)

/*Refresh Control Unit Function Definitions */
extern int InitRCU(WORD counter_value);

extern WORD Get_RCUCounterValue(void);

/****************Clock and POWGF Management Unit**************/

#define IDLE 0x02
#define PWDWN 0x01
#define ACTIVE 0x00

/* Clock and Power Management Function Definitions */
extern int Set_Prescale_Value(WORD prescale);
extern void Enter_ldle_Mode(void);
extern void Enter_Powerdown_Mode(void);
extern void Mode_Setting_To_Active(void);

intel.

SYSTEM
REGISTER QUICK
REFERENCE

D.1 PERIPHERAL REGISTER ADDRESSES

Table D-1. Peripheral Register Addresses

APPENDIX D
SYSTEM REGISTER QUICK REFERENCE

(Sheet 1 of 6)

EAxg(?Pedsid Azgr/grs ?;;f eS/:\SN-Ic-Jyrgi Register Name Reset Value
DMA Controller and Bus Arbiter
FOOOH 0000H Byte DMAOTARO/1 (Note 1) XX
FOO1H 0001H Byte DMAOBYCO0/1 (Note 1) XX
FOO2H 0002H Byte DMAI1TARO/1 (Note 1) XX
FOO3H 0003H Byte DMA1BYCO0/1 (Note 1) XX
F004H 0004H Reserved
FOO5H 0005H Reserved
FOO6H 0006H Reserved
FOO7H 0007H Reserved
FOO8H 0008H Byte DMACMD1/DMASTS 00H
FOO9H 0009H Byte DMASRR 00H
FOOAH 000AH Byte DMAMSK 04H
FOOBH 000BH Byte DMAMOD1 00H
FOOCH 000CH Byte DMACLRBP Not a register
FOODH 000DH Byte DMACLR Not a register
FOOEH 000EH Byte DMACLRMSK Not a register
FOOFH 000FH Byte DMAGRPMSK 03H
FO10H Byte DMAOREQO/1 XX
FO11H Byte DMAOREQ?2/3 XX
FO12H Byte DMA1REQO/1 XX
FO13H Byte DMA1REQ2/3 XX
FO14H Reserved
FO15H Reserved
FO16H Reserved
FO17H Reserved
FO18H Byte DMABSR X1X10000B
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table D-1. Peripheral Register Addresses (Sheet 2 of 6)

intel.

EAxgsgdsid Az(?:grs ?;)Cf;:\slvzzi Register Name Reset Value
FO19H Byte DMACHR/DMAIS 00H
FO1AH Byte DMACMD2 08H
FO1BH Byte DMAMOD2 00H
FO1CH Byte DMAIEN 00H
FO1DH Byte DMAOVFE OAH
FO1EH Byte DMACLRTC Not a register

Master Interrupt Controller
FO20H 0020H Byte ICW1m/IRRm/ISRm/ XX
OCW2m/OCW3m
FO21H 0021H Byte ICW2m/ICW3m/ICW4m/ XX
OCW1m/POLLmM
Address Configuration Register
0022H 0022H Word REMAPCFG 0000H
Timer/counter Unit
FO40H 0040H Byte TMRO XX
FO41H 0041H Byte TMR1 XX
FO42H 0042H Byte TMR2 XX
FO043H 0043H Byte TMRCON XX
DMA Page Registers
FO80H Reserved
FO81H 0081H Reserved
FO82H 0082H Reserved
FO83H 0083H Byte DMAI1TAR2 XX
FO084H Reserved
FO85H Byte DMA1TAR3 XX
FO86H Byte DMAOTAR3 XX
FO87H 0087H Byte DMAOTAR2 XX
FO88H Reserved
FO89H 0089H Reserved
FO8AH 008AH Reserved
FO8BH 008BH Reserved
FO8CH Reserved
FO8DH Reserved
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-2

intel.

SYSTEM REGISTER QUICK REFERENCE

Table D-1. Peripheral Register Addresses (Sheet 3 of 6)
E:gggdsid AZ(?I{GA;-S ?;;f;:\slvzzi Register Name Reset Value

FO8EH Reserved
FO8FH Reserved
FO098H Byte DMAOBYC2 XX
FO99H Byte DMA1BYC2 XX
FO9AH Reserved
FO9BH Reserved

A20GATE and Fast CPU Reset
FO092H 0092H Byte PORT92 XXXXXX10B

Slave Interrupt Controller
FOAOH 00AOH Byte ICW1s/IRRs/ISRs/ XX
OCW?2s/OCW3s
FOA1H 00A1H Byte ICW2s/ICW3s/ICW4s/ XX
OCW1s/POLLs
Chip-select Unit

F400H Word CSOADL 0000H
F402H Word CSOADH 0000H
F404H Word CSOMSKL 0000H
F406H Word CSOMSKH 0000H
F408H Word CS1ADL 0000H
FAO0AH Word CS1ADH 0000H
FAOCH Word CS1MSKL 0000H
FAOEH Word CS1IMSKH 0000H
FA10H Word CS2ADL 0000H
FA12H Word CS2ADH 0000H
FA14H Word CS2MSKL 0000H
F416H Word CS2MSKH 0000H
F418H Word CS3ADL 0000H
F41AH Word CS3ADH 0000H
F41CH Word CS3MSKL 0000H
F41EH Word CS3MSKH 0000H
F420H Word CS4ADL 0000H
F422H Word CS4ADH 0000H
F424H Word CS4MSKL 0000H
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table D-1. Peripheral Register Addresses

(Sheet 4 of 6)

intel.

E:gggdsid AZ(?I{GA;-S ?;;f;:\slvzzi Register Name Reset Value
F426H Word CS4MSKH 0000H
F428H Word CS5ADL 0000H
F42AH Word CS5ADH 0000H
F42CH Word CS5MSKL 0000H
FA2EH Word CS5MSKH 0000H
F4A30H Word CS6ADL 0000H
F432H Word CS6ADH 0000H
F434H Word CS6MSKL 0000H
FA36H Word CS6MSKH 0000H
F4A38H Word UCSADL FF6FH
FA3AH Word UCSADH FFFFH
FA3CH Word UCSMSKL FFFFH
FA3EH Word UCSMSKH FFFFH

Synchronous Serial I/O Unit

FA80H Word SSIOTBUF 0000H
F482H Word SSIORBUF 0000H
F484H Byte SSIOBAUD 00H
F486H Byte SSIOCON1 COH
F488H Byte SSIOCON2 00H
F48AH Byte SSIOCTR 00H

Refresh Control Unit
FAAOH Word RFSBAD 0000H
FAA2H Word RFSCIR 0000H
F4A4H Word RFSCON 0000H
FAAGH Word RFSADD OOFFH

Watchdog Timer Unit
FACOH Word WDTRLDH 003FH
FAC2H Word WDTRLDL FFFFH
FAC4H Word WDTCNTH 003FH
FAC6H Word WDTCNTL FFFFH
FAC8H Word WDTCLR Not a register
FACAH Byte WDTSTATUS 00H
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-4

Int9|® SYSTEM REGISTER QUICK REFERENCE

Table D-1. Peripheral Register Addresses (Sheet 5 of 6)

Expanded PC/AT Access Type

Address Address (Byte/Word) Register Name Reset Value
Asynchronous Serial I/O Channel 0 (COM1)
FAF8H 03F8H Byte RBRO/TBRO/DLLO XXIXXI02H
F4F9H 03F9H Byte IERO/DLHO 00H/00H
FAFAH 03FAH Byte IIRO 01H
FAFBH 03FBH Byte LCRO 00H
FAFCH 03FCH Byte MCRO 00H
FAFDH 03FDH Byte LSRO 60H
FAFEH 03FEH Byte MSRO XOH
FAFFH 03FFH Byte SCRO XX
Clock Generation and Power Management
F800H Byte PWRCON 00H
F804H Word CLKPRS 0000H

Device Configuration Registers

F820H Byte P1CFG 00H
F822H Byte P2CFG 00H
F824H Byte P3CFG 00H
F826H Byte PINCFG 00H
F830H Byte DMACFG 00H
F832H Byte INTCFG 00H
F834H Byte TMRCFG 00H
F836H Byte SIOCFG 00H
Parallel I/0O Ports

F860H Byte P1PIN XX
F862H Byte P1LTC FFH
F864H Byte P1DIR FFH
F868H Byte P2PIN XX
F86AH Byte P2LTC FFH
F86CH Byte P2DIR FFH
F870H Byte P3PIN XX
F872H Byte P3LTC FFH
F874H Byte P3DIR FFH
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table D-1. Peripheral Register Addresses (Sheet 6 of 6)

E:gggdsid AZ(?:eA;-s ?;;te;:\slvzz(; Register Name Reset Value
Asynchronous Serial I/O Channel 1 (COM2)

F8F8H 02F8H Byte RBR1/TBR1/DLL1 XXIXXI02H
F8F9H 02F9H Byte IER1/DLH1 00H/00H
F8FAH 02FAH Byte IIR1 01H
F8FBH 02FBH Byte LCR1 00H
F8FCH 02FCH Byte MCR1 00H
F8FDH 02FDH Byte LSR1 60H
F8FEH 02FEH Byte MSR1 XOH
F8FFH 02FFH Byte SCR1 XX
NOTES:

1. Byte pointer in flip-flop in DMA determines which register is accessed.
2. Shaded rows indicate reserved areas.

D-6

intel.

D.2 CLKPRS

SYSTEM REGISTER QUICK REFERENCE

Clock Prescale Register

Expanded Addr: F804H

CLKPRS ISA Addr: —
(read/write) Reset State: 0000H
15 8
[- - | - [= JL =17 =1 = [rs |
7 0
| ps7 ps6 | Pss | pPsa || pPs3 | ps2 | pst | pso |
Bit Bit Function
Number Mnemonic
15-9 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
8-0 PSs8:0 Prescale Value:
These bits determine the divisor that is used to generate PSCLK. Legal
values are from 0000H (divide by 2) to 01FFH (divide by 513).
divisor = PS8:0 + 2

D-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.3 CSnADH (UCSADH)

Chip-select High Address Expanded Addr: F402H, FA0AH
CSnADH (n = 0-6), UCSADH F412H, F41AH
(read/write) F422H, FA2AH
F432H, F43AH
ISA Addr: —
Reset State: 0000H (CSnADH)
FFFFH (UCSADH)
15 8
L - 1 = [=1 = JL = [= [oms | cau |
7 0
| cai3 | caiz | cau | cao || cas | cas | car | cre |
Bit Bit)
Number Mnemonic Function
15-10 — Reserved; for compatibility with future devices, write zeros to these bits.
9-0 CA15:6 Chip-select Channel Address Upper Bits:
Defines the upper 10 bits of the channel’s 15-bit address. The address
bits CA15:6 and the mask bits CM15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.

D-8

intel.

SYSTEM REGISTER QUICK REFERENCE

D.4 CSnADL (UCSADL)

Chip-select Low Address

Expanded Addr: F400H, F408H

CSnADL (n=0-6), UCSADL F410H, F418H

(read/write)

F420H, F428H
F430H, F438H
ISA Addr: —
Reset State: 0000H (CSnADL)
FF6FH (UCSADL)

CA3 ‘ cA2 H CAl ‘CASMM‘ BS16 ‘ MEM ‘

— ‘ws4 H wss‘wsz‘wm‘wso‘

Bit
Number

Bit
Mnemonic

Function

15-11

CA5:1

Chip-select Address Value Lower Bits:

Defines the lower 5 bits of the channel’s 15-bit address. The address bits
CA5:1 and the mask bits CM5:1 form a masked address that is compared to
memory address bits A15:11 or I/O address bits A5:1.

10

CASMM

SMM Address Bit:

If this bit is set (and unmasked), the CSU activates the chip-select channel
only while the processor is in SMM (and not in a hold state). Otherwise, the
CSU activates the channel only when processor is operating in a mode
other than SMM.

Setting the SMM mask bit in the channel’'s mask low register masks this bit.
When this bit is masked, an address match activates the chip-select,
regardless of whether the processor is in SMM or not.

BS16

Bus Size 16-bit:

0 = All bus cycles to addresses in the channel’'s address block are byte-
wide.

1 = Bus cycles are 16 bits unless the bus size control pin (BS8#) is
asserted.

MEM

Bus Cycle Type:

0 = Configures the channel for an I/O addresses
1 = Configures the channel for memory addresses

RDY

Bus Ready Enable:

0 = External READY# is ignored. READY# generated by CSU to terminate
the bus cycle.

1 = Requires that external READY# be active to complete a bus cycle. This
bit must be set to extend wait states beyond the number determined by
WS4:0 (see “Bus Cycle Length Control” on page 14-11).

6-5

Reserved; for compatibility with future devices, write zeros to these bits.

4-0

WS4:0

Wait State Value:

WS4:0 defines the minimum number of wait states inserted into the bus
cycle. A zero value means no wait states.

D-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.5 CSnMSKH (UCSMSKH)

Chip-select High Mask Expanded Addr: F406H, FA0EH
CSnMSKH (n = 0-6), UCSMSKH F416H, F41EH
(read/write) F426H, F42EH
F436H, F43EH
ISA Addr: —
Reset State: 0000H (CSnNMSKH)
FFFFH (UCSMSKH)
15 8
L - 1 = [=1 = JL = [= [owms [cwu |
7 0
| omi3 | omi2 | cvu | cmio || com9 | coms | cm7 | cme |
Bit Bit)
Number Mnemonic Function
15-10 — Reserved; for compatibility with future devices, write zeros to these bits.
9-0 CM15:6 Mask Value Upper Bits:
Defines the upper 10 bits of the channel's 15-bit mask. The mask bits
CM15:6 and the address bits CA15:6 form a masked address that is
compared to memory address bits A25:16 or I/O address bits A15:6.

D-10

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.6 CSnMSKL (UCSMSKL)

Chip-select Low Mask Expanded Addr: F404H, F40CH
CSnMSKL (n = 0-6), UCSMSKL F414H, F41CH
(read/write) F424H, FA2CH
F434H, F43CH
ISA Addr: —
Reset State: 0000H (CSNMSKL)
FFFFH (UCSMSKL)
15 8
| oms | oma | om3 | om2 || o [omswm | — | — |
7 0
- r-1r-1-JC =1 -] = [csen |
Bit Bit)
Number Mnemonic Function
15-11 CM5:1 Chip-select Mask Value Lower Bits:

Defines the lower 5 bits of the channel's 15-bit mask. The mask bits
CM5:1 and the address bits CA5:1 form a masked address that is
compared to memory address bits A15:11 or I/O address bits A5:1.

10 CMSMM SMM Mask Bit:

0 = The SMM address bit is not masked.

1 = Masks the SMM address bit in the channel’s Chip-Select Low
Address register. When the SMM address bit is masked, an address
match activates the chip-select, regardless of whether the processor

is in SMM.
9-1 — Reserved; for compatibility with future devices, write zeros to these bits.
0 CSEN Chip-select Enable:

0 = Disables the chip-select channel.
1 = Enables the chip-select channel.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.7 DLLn AND DLHn

Divisor Latch Low DLLO DLL1

DLLO, DLL1 Expanded Addr: F4F8H F8F8H

(read/write) ISA Addr: 03F8H 02FS8H

Reset State: 02H 02H
7 0
LD7 LD6 LD3 LD2 LD1 LDO

Divisor Latch High DLHO DLH1

DLHO, DLH1 Expanded Addr: F4F9H F8F9H

(read/write) ISA Addr: 03F9H 02F9H

Reset State: 00H 00H
7 0
uD15 uD14 uD12 ‘ ‘ ubD11 uD10 uD9 uD8
Bit Bit)
Number Mnemonic Function

DLLn LD7:0 Lower 8 Divisor and Upper 8 Divisor Bits:

(7-0) Write the lower 8 divisor bits to DLLn and the upper 8 divisor bits to
DLHn. The baud-rate generator output is a function of the baud-rate
generator input (BCLKIN) and the 16-bit divisor.

DLHn UD15:8

7-0

(7-0) baud-rate generator output frequency = m

divisor
bit rate (shifting rate) = baud-rate generator output frequency/16
NOTE: The divisor latch registers share address ports with other SIO registers. Bit 7 (DLAB) of

LCRn must be set in order to access the divisor latch registers.

If DLL = DLH = 00H, baud-rate generator ouput frequency = 0 (stops clock).

D-12

intel.

SYSTEM REGISTER QUICK REFERENCE

D.8 DMABSR
DMA Bus Size Expanded Addr: FO18H
DMABSR ISA Addr: —
(write only) Reset State: X1X10000B
7 0
I S I O N O
Bit Bit Function
Number Mnemonic
— Reserved; for compatibility with future devices, write zero to this bit.
6 RBS Requester Bus Size:
Specifies the requester’s data bus width for the channel specified by bit
0.
0 = 16-bit bus
1 = 8-bit bus
— Reserved; for compatibility with future devices, write zero to this bit.
TBS Target Bus Size:
Specifies the target’s data bus width for the channel specified by bit 0.
0 = 16-bit bus
1 = 8-bit bus
3-1 0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selections for bits 7—4 affect channel 0.
1 = The selections for bits 7—4 affect channel 1.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.9 DMACFG
DMA Configuration Expanded Addr: F830H
DMACFG ISA Addr: —
(read/write) Reset State: 00H
7 0

DIMSK | DIREQ2 | DIREQL | D1IREQO H DOMSK | DOREQ2 | DOREQ1 | DOREQO

Bit Bit

Number Mnemonic Function
7 D1IMSK DMA Acknowledge 1 Mask:
0 = DMA channel 1's acknowledge (DMAACK1#) signal is not masked.
1 = Masks DMA channel 1's acknowledge (DMAACKZ1#) signal. Useful
when channel 1's request (DREQ1) input is connected to an internal
peripheral.
6-4 D1REQ2:0 DMA Channel 1 Request Connection:

Connects one of the eight possible hardware sources to channel 1's
request input (DREQ1).

000 = DRQL1 pin (external peripheral)

001 = SIO channel 1's receive buffer full signal (RBFDMA1)

010 = SIO channel 0's transmit buffer empty signal (TXEDMAQ)
011 = SSIO receive holding buffer full signal (SSRBF)

100 = TCU counter 2's output signal (OUT2)

101 = SIO channel 0's receive buffer full signal (RBFDMAQ)

110 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
111 = SSIO transmit holding buffer empty signal (SSTBE)

3 DOMSK DMA Acknowledge 0 Mask:

0 = DMA channel 0's acknowledge (DMAACKO#) signal is not masked.

1 = Masks DMA channel 0's acknowledge (DMAACKO#) signal. Useful
when channel 0's request (DREQO) input is connected to an internal
peripheral.

2-0 DOREQ2:0 DMA Channel 0 Request Connection:

Connects one of the eight possible hardware sources to channel 0's
request input (DREQO).

000 = DRQO pin (external peripheral)

001 = SIO channel 0's receive buffer full signal (RBFDMAO)

010 = SIO channel 1's transmit buffer empty signal (TXEDMAL)
011 = SSIO transmit holding buffer empty signal (SSTBE)

100 = TCU counter 1's output signal (OUT1)

101 = SIO channel 1's receive buffer full signal (RBFDMA1)

110 = SIO channel 0’s transmit buffer empty signal (TXEDMAO)
111 = SSIO receive holding buffer full signal (SSRBF)

D-14

intel.

SYSTEM REGISTER QUICK REFERENCE

D.10 DMACHR
DMA Chaining Expanded Addr: FO19H
DMACHR ISA Addr: —
(write only) Reset State: O00H
7 0
— — — - || = CE 0 cs
Bit Bit Function
Number Mnemonic
7-3 — Reserved; for compatibility with future devices, write zeros to these bits.
2 CE Chaining Enable:
0 = Disables the chaining buffer-transfer mode for the channel specified
by bit 0.
1 = Enables the chaining buffer-transfer mode for the channel specified
by bit 0.
0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.11 DMACMD1

DMA Command 1

Expanded Addr: FOO8H

DMACMD1 ISA Addr: 0008H

(write only) Reset State: O00H

7 0
— —_ — PRE ‘ ‘ — CE — —
Bit Bit Function

Number Mnemonic

7-5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 PRE Priority Rotation Enable:

0 = Priority is fixed based on value in DMACMD?2.

1 = Enables the rotation method for changing the bus control priority
structure. That is, after the external bus master or one of the DMA
channels is given bus control, it is assigned to the lowest priority
level.

— Reserved; for compatibility with future devices, write zero to this bit.
CE Channel Enable:

0 = Enables channel 0 and 1.

1 = Disables the channels.

1-0 — Reserved; for compatibility with future devices, write zeros to these bits.

D-16

intel.

D.12 DMACMD2

SYSTEM REGISTER QUICK REFERENCE

DMA Command 2
DMACMD2
(write only)

7

Expanded Addr: FO1AH
ISA Addr: —
Reset State: 08H

_ _ H PL1 PLO ES DS

Bit Bit
Number Mnemonic

Function

7-4 —

Reserved; for compatibility with future devices, write zeros to these bits.

3-2 PL1:0

Low Priority Level Set:

Use these bits to assign a particular bus request to the lowest priority
level in fixed priority mode.

00 = Assigns channel 0's request (DREQO) to the lowest priority level

01 = Assigns channel 1's request (DREQ1) to the lowest priority level

10 = Assigns the external bus master request (HOLD) to the lowest
priority level

11 = Reserved

EOP# Sampling:

0 = Causes the DMA to sample the EOP# input asynchronously.
1 = Causes the DMA to sample the end-of-process (EOP#) input
synchronously.

DREQn Sampling:

0 = Causes the DMA to sample the DREQn inputs asynchronously.
1 = Causes the DMA to sample the channel request (DREQn) inputs
synchronously.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.13 DMAGRPMSK

DMA Group Channel Mask Expanded Addr: FOOFH

DMAGRPMSK ISA Addr: 000FH

(read/write) Reset State: 03H

7 0
_ — _ — ‘ ‘ — — HRM1 HRMO
Bit Bit Function

Number Mnemonic
7-2 — Reserved. These bits are undefined; for compatibility with future devices,

do not modify these bits.

1 HRM1 Hardware Request Mask 1:

0 = Channel 1's hardware requests are not masked.

1 = Masks (disables) channel 1's hardware requests. When this bit is
set, channel 1 can still receive software requests.

0 HRMO Hardware Request Mask 0:

0 = Channel 0’s hardware requests are not masked.
1 = Masks (disables) channel 0's hardware requests. When this bit is
set, channel 0 can still receive software requests.

D-18

intel.

SYSTEM REGISTER QUICK REFERENCE

D.14 DMAIEN

DMA Interrupt Enable Expanded Addr: FO1CH

DMAIEN ISA Addr: —

(read/write) Reset State: O00H

7 0

— —_ — — ‘ ‘ — — TC1 TCO
Bit Bit Function
Number Mnemonic

7-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 TC1 Transfer Complete 1:
0 = Disables Transfer Complete interrupts.
1 = Connects channel 1's transfer complete signal to the interrupt

control unit's DMAINT input.

Note: When channel 1 is in chaining mode (DMACHR.2=1 and
DMACHR.0=1), this bit is a don’t care.

0 TCO Transfer Complete 0:
0 = Disables Transfer Complete interrupts.
1 = Connects channel 0's transfer complete signal to the interrupt

control unit's DMAINT input.

Note: When channel 0 is in chaining mode (DMACHR.2=1 and
DMACHR.0=0), this bit is a don’t care.

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.15 DMAIS

DMA Interrupt Status Expanded Addr: FO19H

DMAIS ISA Addr: —

(read only) Reset State: O00H

7 0

‘-‘-‘TCl‘TCOH—‘—‘Cll‘CIO
Bit Bit Function
Number Mnemonic

7-6 — Reserved. These bits are undefined.

5 TC1 Transfer Complete 1:
When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 1 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.
Note: In chaining mode, this bit becomes a don't care.

4 TCO Transfer Complete 0:
When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input). This
bit is set only if bit 0 of the interrupt enable register is set. Reading the
DMA status register (DMASTS) clears this bit.
Note: In chaining mode, this bit becomes a don't care.

3-2 — Reserved. These bits are undefined.

1 Cl1 Chaining Interrupt 1:
When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 1. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)
Note: Outside chaining mode, this bit becomes a don't care.

0 CIo Chaining Interrupt O:
When set, this bit indicates that new requester and target addresses and
a new byte count should be written to channel 0. This bit is cleared when
new transfer information is written to the channel. (Writing to the most-
significant byte of the target address clears this bit.)
Note: Outside chaining mode, this bit becomes a don't care.

D-20

intel.

D.16 DMAMOD1

SYSTEM REGISTER QUICK REFERENCE

DMA Mode 1 Expanded Addr: FOOBH
DMAMOD1 ISA Addr: 000BH
(write only) Reset State: O00H
7 0
DTM1 DTMO TI A || TD1 TDO 0 cs
Bit Bit Function
Number Mnemonic
7-6 DTM1:0 Data-transfer Mode:

00 = Demand

01 = Single

10 = Block

11 = Cascade

5 TI Target Increment/Decrement:

0 = Causes the target address to be incremented after each data
transfer in a buffer transfer.

1 = Causes the target address for the channel specified by bit O to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.

Note: When the target address is programmed to remain constant

(DMAMOD2.2 = 1), this bitis a don't care.

4 Al Autoinitialize:

0 = Disables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

1 = Enables the autoinitialize buffer-transfer mode for the channel
specified by bit 0.

3-2 TD1:0 Transfer Direction:

Determines the transfer direction for the channel specified by bit 0.

00 = Target is read; nothing is written (used for testing)

01 = Data is transferred from the requester to the target

10 = Data is transferred from the target to the requester

11 = Reserved

Note: In cascade mode, these bits become don't cares.

0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selections for bits 7-2 affect channel 0.
1 = The selections for bits 7-2 affect channel 1.

D-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.17 DMAMOD2

DMA Mode 2 Expanded Addr: FO1BH
DMAMOD2 ISA Addr: —
(write only) Reset State: O00H
7 0
BCO RD D RH || R TH 0 cs
Bit Bit Function
Number Mnemonic
7 BCO Bus Cycle Option:
0 = Selects the fly-by data transfer bus cycle option for the channel specified
by bit 0.
1 = Selects the two-cycle data transfer bus cycle option for the channel
specified by bit 0.
6 RD Requester Device Type:
0 = Clear this bit when the requester for the channel specified by bit 0 is in
memory space.
1 = Set this bit when the requester for the channel specified by bit 0 is in /O
space.
This bit is ignored if BCO is cleared.
5 TD Target Device Type:
0 = Clear this bit when the target for the channel specified by bit O is in
memory space.
1 = Set this bit when the target for the channel specified by bit 0 is in I/O
space.
4 RH Requester Address Hold:
0 = Causes the address to be modified (incremented or decremented,
depending on DMAMODZ2.3).
1 = Causes the requester’s address for the channel specified by bit 0 to
remain constant during a buffer transfer.
3 RI Requester Address Increment/Decrement:
0 = Causes the requester address to be incremented after each data transfer
in a buffer transfer.
1= Causes the requester address for the channel specified by bit 0 to be
decremented after each data transfer in a buffer transfer. Note that it
does not decrement words. When decrementing it will do two byte
transfers for a word.
Note: When the target address is programmed to remain constant
(DMAMOD2.4 = 1), this bit is a don't care.
2 TH Target Address Hold:
0 = Causes the address to be modified (incremented or decremented,
depending on DMAMODL1.5).
1 = Causes the target's address for the channel specified by bit 0 to remain
constant during a buffer transfer.
1 0 Must be 0 for correct operation.
0 CSs Channel Select:
0 = The selections for bits 7-2 affect channel 0.
1 = The selections for bits 7-2 affect channel 1.

D-22

intel.

D.18 DMAMSK

SYSTEM REGISTER QUICK REFERENCE

DMA Individual Channel Mask Expanded Addr: FOOAH
DMAMSK ISA Addr: 000AH
(write only) Reset State: 04H
7 0
— —_ — - || = HRM 0 cs
Bit Bit)
Number Mnemonic Function
7-3 — Reserved; for compatibility with future devices, write zeros to these bits.
2 HRM Hardware Request Mask:
0 = Unmasks (enables) hardware requests for the channel specified by
bit 0.
1 = Masks (disables) hardware requests for the channel specified by
bit 0.
NOTE: When this bit is set, the channel can still receive software
requests.
0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

D-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.19 DMAnBYCn, DMANREQn AND DMANTARnN

intel.

Requester Address

Target Address

Byte Count

Requester Address

Target Address

Byte Count

DMA Channel 0

24 16 8 0
‘ DMAOREQ3 ‘ ‘ DMAOREQ?2 ‘ ‘ DMAOREQ1 ‘ ‘ DMAOREQO ‘
FO11H (BP=1) FO11H (BP=0) FO10H (BP=1) FO10H (BP=0)
24 16 8 0
‘ DMAOTAR3 ‘ ‘ DMAOTAR2 ‘ ‘ DMAOTAR1 ‘ ‘ DMAOTARO ‘
FO86H FO87H FOOOH p=1) FOOOH (8P=0)
16 8 0
‘ DMAOBYC2 ‘ ‘ DMAOBYC1 ‘ ‘ DMAOBYCO ‘
FO98H FOO1H (BP=1) FOO1H (BP=0)

DMA Channel 1
24 16 8 0
‘ DMA1REQ3 ‘ ‘ DMA1REQ?2 ‘ ‘ DMALREQ1 ‘ ‘ DMALREQO ‘
FO13H (BP=1) FO13H (BP=0) FO12H (BP=1) FO12H (BP=0)
24 16 8 0
‘ DMALTAR3 H DMALTAR2 H DMALTAR1 H DMALTARO ‘
FO85H FO83H FO02H Pp=1) FOO2H (8P=0)
16 8 0
‘ DMALBYC2 ‘ ‘ DMA1BYC1 ‘ ‘ DMALBYCO ‘
FO99H FOO3H (BP=1) FOO3H (BP=0)

D-24

intel.

D.20 DMAOVFE

SYSTEM REGISTER QUICK REFERENCE

DMA Overflow Enable

Expanded Addr: FO1DH

DMAOVFE ISA Addr: —
(read/write) Reset State: 0AH
7 0
— — — — || rov1 TOV1 ROVO TOVO
Bit Bit Function
Number Mnemonic
7-4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
3 ROV1 Channel 1 Requester Overflow Enable:
0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement
2 TOV1 Channel 1 Target & Byte Counter Overflow Enable:
0 = lowest 16 bits of target address and byte count
increment/decrement
1 = all bits of target address and byte count increment/decrement
1 ROVO Channel 0 Requester Overflow Enable:
0 = lowest 16 bits of requester address increment/decrement
1 = all bits of requester address increment/decrement
0 TOVO Channel 0 Target & Byte Counter Overflow Enable:
0 = lowest 16 bits of target address and byte count
increment/decrement
1 = all bits of target address and byte count increment/decrement

D-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.21 DMASRR
DMA Software Request (read format) Expanded Addr: FOO9H
DMASRR ISA Addr: 0009H
Reset State: O00OH
7 0
— — — - || = — SR1 SRO
Bit Bit Function
Number Mnemonic
7-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
1 SR1 Software Request 1:
When set, this bit indicates that channel 1 has a software request
pending.
0 SRO Software Request 0:
When set, this bit indicates that channel 0 has a software request
pending.

DMA Software Request (write format) Expanded Addr: FOO9H
DMASRR ISA Addr: 0009H
Reset State: O00OH
7 0
— — — - || = SR 0 cs
Bit Bit Function
Number Mnemonic
7-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 SR Software Request:
Setting this bit generates a software request for the channel specified by
bit 0. When the channel’s buffer transfer completes, this bit is cleared.
0 Must be 0 for correct operation.
0 Cs Channel Select:
0 = The selection for bit 2 affects channel 0.
1 = The selection for bit 2 affects channel 1.

D-26

intel.

SYSTEM REGISTER QUICK REFERENCE

D.22 DMASTS

DMA Status Expanded Addr: FOO8H

DMASTS ISA Addr: 0008H

(read only) Reset State: O00H

7 0

— — R1 RO || — — TC1 TCO
Bit Number Bit Mnemonic Function

7-6 — Reserved. These bits are undefined.

5 R1 Request 1:
When set, this bit indicates that channel 1 has a hardware request
pending. When the request is removed, this bit is cleared.

4 RO Request 0:
When set, this bit indicates that channel 0 has a hardware request
pending. When the request is removed, this bit is cleared.

3-2 — Reserved. These bits are undefined.

1 TC1 Transfer Complete 1:
When set, this bit indicates that channel 1 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TC1 in DMAIS.

0 TCO Transfer Complete O:
When set, this bit indicates that channel 0 has completed a buffer
transfer (either its byte count expired or it received an EOP# input).
Reading this register clears this bit and clears TCO in DMAIS.

D-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.23 ICW1 (MASTER AND SLAVE)

Initialization Command Word 1 master slave

ICW1 (master and slave) Expanded Addr: FQ20H FOAOH

(write only) ISA Addr: 0020H OOAOH

Reset State: XXH XXH

7 0
0 0 0 RSEL1 ‘ ‘ LS 0 0 1
Bit Bit Function

Number Mnemonic
7-5 — Clear these bits to guarantee device operation.
4 RSEL1 Register Select 1 (Also see OCW2 and OCW3):

ICW1, OCW?2, and OCW3 are accessed through the same addresses.

0= OCW?2 or OCWS3 is accessed (Figure 9-13 and Figure 9-15).
1= ICW1 register is accessed.

3 LS Level/Edge Sensitive:

0 = Selects edge-triggered IR input signals.
1 = Selects level-sensitive IR input signals.

All internal peripherals interface with the 82C59As in edge-triggered
mode only. This is compatible with the PC/AT bus specification. Each
source signal initiates an interrupt request by making a low-to-high
transition. External peripherals interface with the 8259As in edge-
triggered or level-sensitive mode. The modes are selected for the
device, not for individual interrupts.

NOTE: If an internal peripheral interrupt is used, the 8259A that the
interrupt is connected to must be programmed for edge-triggered

interrupts.
2-1 — Clear these bhits to guarantee device operation.
0 — Set this bit to guarantee device operation.

NOTE: The 82C59A must be initialized before it can be used. After reset, the 82C59A register states are
undefined. The 82C59A modules must be initialized before the IF flag in the core FLAG register is
set. All peripherals that use interrupts connected to the ICU must be initialized before initializing
the ICU.

D-28

intel.

D.24 ICW2 (MASTER AND SLAVE)

SYSTEM REGISTER QUICK REFERENCE

Initialization Command Word 2 master slave
ICW2 (master and slave) Expanded Addr: FQ21H FOA1H
(write only) ISA Addr: 0021H OO0A1lH
Reset State: XXH XXH
7 0
7 6 T5 T4 || T3 0 0 0
Bit Bit Function
Number Mnemonic
7-3 T7:3 Base Interrupt Type:
Write the base interrupt vector’s five most-significant bits to these bits.
2-0 T2:0 Clear these bits to guarantee device operation.
D.25 ICW3 (MASTER)
Initialization Command Word 3 Expanded Addr: F021H
ICW3 (master) ISA Addr: 0021H
(write only) Reset State: XXH
7 0
s7 S6 S5 sa || s3 s2 s1 0
Bit Bit Function
Number Mnemonic
7-3 S7:3 Slave IRs
0 = No slave 8259A is attached to the corresponding IR signal of the
master.
1= Aslave 82C59A is attached to the corresponding IR signal of the
master.
2 S2 0 = Internal slave not used
1 = Internal slave is cascaded from the master’s IR2 signal.
1 S1 Slave IRs
0 = No slave 8259A is attached to the master through the IR1 signal of
the master.
1= Aslave 82C59A is attached to the IR1 signal of the master.
0 — Clear this bit to guarantee device operation.

D-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.26 ICW3 (SLAVE)

Initialization Command Word 3 Expanded Addr: FOA1H
ICW3 (slave) ISA Addr: 00A1H
(write only) Reset State: XXH
7 0
0 0 0 o || o 0 1 0
Bit Bit Function
Number Mnemonic
7-2 — Clear these bits to guarantee device operation.
1 — Set this bit to guarantee device operation.
0 — Clear this bit to guarantee device operation.
D.27 ICW4 (MASTER AND SLAVE)
Initialization Command Word 4 master slave
ICW4 (master and slave) Expanded Addr: F021H FOA1H
(write only) ISA Addr: 0021H O0OA1H
Reset State: XXH XXH
7 0
0 0 0 seNM || o 0 AEOI 1
Bit Bit Function
Number Mnemonic
7-5 — Write zero to these bits to guarantee device operation.
4 SFNM Special-fully Nested Mode:
0 = Selects fully nested mode.
1 = Selects special-fully nested mode. Only the master 82C59A can
operate in special-fully nested mode.
3-2 — Write zero to these bits to guarantee device operation.
AEOI Automatic EOl Mode:
0 = Disables automatic EOl mode.
1 = Enables automatic EOlI mode. Only the master 82C59A can operate
in automatic EOIl mode.
0 — Write one to this bit to guarantee device operation.

D-30

intel.

SYSTEM REGISTER QUICK REFERENCE

D.28 IDCODE
Identification Code Register 2027 0013H (3V)
IDCODE Reset State: 2827 0013H (5V)
31 24
0 0 1 0 0(3V) 0 0 0
1(5V)
23 16
[o o [+ [o J[o [2 [1+ | 1 |
15 8
[o o [o [o J[o [o [o | o |
7 0
[o o [o [+ J[o [o [& [2 |
Bit Bit : Function
Number Mnemonic
31-28 v3:0 Device version number.
27-12 PN15:0 Device part number.
11-1 MFR10:0 Manufacturer identification (compressed JEDEC106-A code).
0 IDP Identification Present. Always true for this device.

This is the first data bit shifted out of the device during a data scan
immediately following an exit from the test-logic-reset state. A one
indicates that an IDCODE register is present. (A zero originates from the
BYPASS register and indicates that the device being interrogated has no
IDCODE register.)

D-31

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.29 IERn
Interrupt Enable IERO IER1
IERO, IER1 Expanded Addr: F4F9H F8F9H
(read/write) ISA Addr: 03F9H 02F9H
Reset State: 00H 00H
7 0
— — — — || wms RLS TBE RBF
Bit Bit Function
Number Mnemonic
7-4 — Reserved; for compatibility with future devices, write zeros to these bits.
3 MS Modem Status Interrupt Enable:
0 = Modem input signal changes do not cause interrupts.
1 = Connects the modem status signal to the interrupt control unit's
SIOINTn output. A change on one or more of the modem input
signals activates the modem status signal.
2 RLS Receiver Line Status Interrupt Enable:
0 = LSR error conditions do not cause interrupts.
1 = Connects the receiver line status signal to the interrupt control unit's
SIOINTn output. Sources for this interrupt include overrun error,
parity error, framing error, and break interrupt.
1 TBE Transmit Buffer Empty Interrupt Enable:
0 = Transmit Buffer Empty signal does not cause interrupts.
1 = Connects the transmit buffer empty signal to the interrupt control
unit's SIOINTn output.
0 RBF Receive Buffer Full Interrupt Enable:
0 = Receive buffer full signal does not cause interrupts.
1 = Connects the receive buffer full signal to the interrupt control unit's
SIOINTn output.
NOTE: The interrupt enable register is multiplexed with the divisor latch high register. You must clear

bit 7 (DLAB) of the serial line control register (LCRn) before you can access the interrupt

control register.

D-32

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.30 lIRn

Interrupt ID IIRO IIR1
IIRO, IIR1 Expanded Addr: F4FAH F8FAH

(read only) ISA Addr: 03FAH 02FAH
Reset State: O1H 01H

_ _ _ — H — IS2 IS1 IP#

Bit Bit

. Function
Number Mnemonic

7-3 — Reserved. These bits are undefined.

2 1S2:1 Interrupt Source:

If an interrupt is pending (bit 0 = 0), these bits specify which status signal
caused the pending interrupt.

1S2 I1S1 Interrupt Source

0 0 modem status signal*

0 1 transmitter buffer empty signal

1 0 receive buffer full signal

1 1 receiver line status signal**

* When one of the modem input signals (CTSr#, DSRn#, RIn#, and
DCDm#) changes state, the modem status signal is activated.

** A framing error, overrun error, parity error, or break interrupt activates
the receiver line status signal.

Reading the modem status register clears the modem status signal.
Reading the IIRn register or writing to the transmit buffer register clears
the transmit buffer empty signal. Reading the receive buffer register
clears the receive buffer full signal. Reading the receive buffer register or
the serial line status register clears the LSRn error bits, which clears the
receiver line status signal.

0 I1P# Interrupt Pending:
This bit indicates whether an interrupt is pending.

0 = Interrupt is pending
1 = No interrupt is pending

D-33

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.31 INTCFG

Interrupt Configuration Expanded Addr: F832H

INTCFG ISA Addr: —

(read/write) Reset State: 00H

7 0
CE IR3 IR4 SWAP ‘ ‘ IR6 IR5/IR4 IR1 IRO
Bit Bit Function

Number Mnemonic

7 CE Cascade Enable:

0 = Disables the cascade signals CAS2:0 from appearing on the A18:16
address lines during interrupt acknowledge cycles.

1 = Enables the cascade signals CAS2:0, providing access to external
slave 82C59A devices. The cascade signals are used to address
specific slaves. If enabled, slave IDs appear on the A18:16 address
lines during interrupt acknowledge cycles, but are high during idle
cycles.

6 IR3 Internal Master IR3 Connection:

See Table 5-1 on page 5-8 for all the IR3 configuration options.
5 IR4 Internal Master IR4 Connection:

See Table 5-2 on page 5-8 for all the IR4 configuration options.
4 SWAP INT6/DMAINT Connection:

0 = Connects DMAINT to the slave IR4. Connects INT6 to the slave IR5.

1 = Connects the INT6 pin to the slave IR4. Connects DMAINT to the slave
IR5.

3 IR6 Internal Slave IR6 Connection:

0 = Connects Vg to the slave IR6 signal.
1 = Connects the INT7 pin to the slave IR6 signal.

2 IR5/IR4 Internal Slave IR4 or IR5 Connection:
These depend on whether INTCFG.4 is set or clear.

0 = Connects V4 to the slave IR5 signal.
1 = Connects either the INT6 pin or DMAINT to the slave IR5 signal.

1 IR1 Internal Slave IR1 Connection:

0 = Connects the SSIO interrupt signal (SSIOINT) to the slave IR1 signal.
1 = Connects the INT5 pin to the slave IR1 signal.

0 IRO Internal Slave IR0 Connection:

0 = Connects Vg to the slave IR0 signal.
1 = Connects the INT4 pin to the slave IR0 signal.

D-34

intel.

D.32 IR

SYSTEM REGISTER QUICK REFERENCE

Instruction Register

Reset State

IR (Using TRST#): 02H
3 0
INST3 INST2 INST1 INSTO
Bit Bit : Function
Number Mnemonic
3-0 INST3:0 Instruction opcode. At reset (using TRST#, or after 5 TCK cycles with

TMS held low), this field is loaded with 0010, the opcode for the IDCODE
instruction. Instructions are shifted into this field serially through the TDI

pin. (Table 18-4 lists the valid instruction opcodes.)

D-35

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

D.33 LCRn
Serial Line Control LCRO LCR1
LCRO, LCR1 Expanded Addr: FAFBH FS8FBH
(read/write) ISA Addr: 03FBH 02FEBH
Reset State: 00H 00H
7 0
DLAB SB SP EPS ‘ ‘ PEN STB WLS1 WLSO
Bit Bit Function
Number Mnemonic
7 DLAB Divisor Latch Access Bit:

This bit determines which of the multiplexed registers is accessed.

0 = Allows access to the receiver and transmit buffer registers (RBRn and
TBRn) and the interrupt enable register (IERn).
1 = Allows access to the divisor latch registers (DLLn and DLHn).

SB

Set Break:

0 = No effect on TXDn.
1 = Forces the TXDn pin to the spacing (logic 0) state for as long as bit is
set.

SP

EPS

PEN

Sticky Parity, Even Parity Select, and Parity Enable:

These bits determine whether the control logic produces (during
transmission) or checks for (during reception) even, odd, no, or forced
parity.
SP PS PEN Function

parity disabled (no parity option)

produce or check for odd parity

produce or check for even parity

produce or check for forced parity (parity bit = 1)
produce or check for forced parity (parity bit = 0)

E
X
0
1
0

R PR OO X
PR RRO

1

STB

Stop Bits:

This bit specifies the number of stop bits transmitted and received in each
serial character.

0 = 1 stop bit

1 = 2 stop bits (1.5 stop bits for 5-bit characters)

1-0

WLS1:0

Word Length Select:

These bits specify the number of data bits in each transmitted or received
serial character.

00 = 5-bit character
01 = 6-bit character
10 = 7-bit character
11 = 8-bit character

D-36

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.34 LSRn

Serial Line Status LSRO LSR1

LSRO, LSR1 Expanded Addr: F4FDH F8FDH

(read only) ISA Addr: 03FEDH 02FEDH

Reset State: 60H 60H
7 0
— TE TBE Bl || FE PE OE RBF
Bit Bit Function
Number Mnemonic
— Reserved. This bit is undefined.
TE Transmitter Empty:

The transmitter sets this bit to indicate that the transmit shift register and
transmit buffer register are both empty. Writing to the transmit buffer
register clears this bit.

5 TBE Transmit Buffer Empty:
The transmitter sets this bit after it transfers data from the transmit buffer
to the transmit shift register. Writing to the transmit buffer register clears
this bit.

4 BI Break Interrupt:
The receiver sets this bit whenever the received data input is held in the
spacing (logic 0) state for longer than a full word transmission time.
Reading the receive buffer register or the serial line status register clears
this bit.

3 FE Framing Error

The receiver sets this bit to indicate that the received character did not
have a valid stop bit. Reading the receive buffer register or the serial line
status register clears this bit. If data frame is set for two stop bits the
second stop bit is ignored.

2 PE Parity Error:

The receiver sets this bit to indicate that the received data character did
not have the correct parity. Reading the receive buffer register or the
serial line status register clears this bit.

1 OE Overrun Error:

The receiver sets this bit to indicate an overrun error. An overrun occurs
when the receiver transfers a received character to the receive buffer
register before the CPU reads the buffer’s old character. Reading the
serial line status register clears this bit.

0 RBF Receive Buffer Full:

The receiver sets this bit after it transfers a received character from the
receive shift register to the receive buffer register. Reading the receive
buffer register clears this bit.

D-37

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.35 MCRn

Modem Control

MCRO, MCR1 Expanded Addr:

(read/write) ISA Addr:
Reset State:

MCRO
F4FCH
03FCH
00H

MCR1
F8FCH
02FCH
00H

— ‘ — ‘ — LOOP ‘ ‘ ouT2 OUTL

RTS

DTR

Bit Bit

Number Mnemonic Function

7-5 — Reserved; for compatibility with future devices, write zeros to these bits.

4 LOOP Loop Back Test Mode:
0= Normal mode

the SIO channel to:
« set its transmit serial output (TXDn)

package pins

« connects MCRn bits to MSRn bits

1= Setting this bit puts the SIOn into diagnostic (or loop back test) mode. This causes

« disconnect its receive serial input (RXDn) from the package pin
« loop back the transmitter shift register’s output to the receive shift register’s input
« disconnect the modem control inputs (CTSn#, DSRn#, RIn#, and DCDr#) from the

« force modem control outputs (RTSr# and DTR#) to their inactive states

3-2 ouT2:1 Test Bits:

clear OUT2 deactivates the internal DCDn bit.

5-8 for the configuration options.

In diagnostic mode (bit 4=1), these bits control the ring indicator (RIn) and data carrier
detect (DCDn#) modem inputs. Setting OUTL1 activates the internal RIn bit; clearing
OUT1 deactivates the internal RIn bit. Setting OUT2 activates the internal DCDn bit;

In normal user mode (bit 4=0) OUT1 has no effect and OUT2 in conjunction with
INTCFG.5/6 selects internal SIO interrupt or external interrupt. See Table 5-1 on page

1 RTS Ready to Send:

deactivates the internal CTSn bit.

the RTSn# pin. Note that pin is inverted from bit.

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal CTSn bit; clearing this bit

In internal connection mode, setting this bit activates the internal CTSn# signal and the
RTSn# pin; clearing this bit deactivates the internal CTSn# signal and the RTSn# pin.

In standard mode, setting this bit activates the RTSr# pin; clearing this bit deactivates

0 DTR Data Terminal Ready:

deactivates the internal DSRn# signal.

the DTRr# pin. Note that pin is inverted from bit.

The function of this bit depends on whether the SIOn is in diagnostic mode
(MCRn.4=1), internal connection mode, or standard mode.

In diagnostic mode, setting this bit activates the internal DSRr# signal; clearing this bit

In internal connection mode, setting this bit activates the internal DSRn# and DCDn#
signals and the DTRn# pin; clearing this bit deactivates the internal DSRn# and DCDn#
signals and the DTRn# pin. Note that pin is inverted from bit.

In standard mode, setting this bit activates the DTR# pin; clearing this bit deactivates

D-38

intel.

D.36 MSRn

SYSTEM REGISTER QUICK REFERENCE

Modem Status
MSRO, MSR1
(read only)

MSRO
FAFEH
03FEH
XOH

MSR1
F8FEH
02FEH
XOH

Expanded Addr:
ISA Addr:
Reset State:

DCD

RI

DSR CTS “ DDCD TERI DDSR DCTS

Bit
Number

Bit
Mnemonic

Function

7

DCD

Data Carrier Detect:

This bit is the complement of the data carrier detect (DCDn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.3 (OUT2).

RI

Ring Indicator:

This bit is the complement of the ring indicator (RIr#) input. In diagnostic
test mode, this bit is equivalent to MCRn.2 (OUT1).

DSR

Data Set Ready:

This bit is the complement of the data set ready (DSRn#) input. In
diagnostic test mode, this bit is equivalent to MCRn.0 (DTR).

CTS

Clear to Send:

This bit is the complement of the clear to send (CTSr#) input. In
diagnostic test mode, this bit is equivalent to MCRn.1 (RTS).

DDCD

Delta Data Carrier Detect:

When set, this bit indicates that the DCDn# input has changed state
since the last time this register was read. Reading this register clears
this bit.

TERI

Trailing Edge Ring Indicator:

When set, this bit indicates that the RIn# input has changed from a low
to a high state since the last time this register was read. Reading this
register clears this bit.

DDSR

Delta Data Set Ready:

When set, this bit indicates that the DSRm# input has changed state
since the last time this register was read. Reading this register clears
this bit.

DCTS

Delta Clear to Send:

When set, this bit indicates that the CTSr# input has changed state
since the last time this register was read. Reading this register clears
this bit.

D-39

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.37 OCW1 (MASTER AND SLAVE)

Operation Command Word 1
OCW1 (master and slave)

master slave
Expanded Addr: FO21H FOA1H

(read/write) ISA Addr: 0021H OOA1H
Reset State: XXH XXH
7 0
M7 M6 M5 M4 ‘ ‘ M3 M2 M1 MO
Bit Bit Function
Number Mnemonic
7-0 M7:0 Mask IR:

0 = Enables interrupts on the corresponding IR signal.
1 = Disables interrupts on the corresponding IR signal.

NOTE: Setting the mask bit does not clear the respective interrupt
pending bit.

set.

NOTE: The 8259A must be initialized before it can be used. After reset, the 8259A register states are
undefined. The 8259A modules must be initialized before the IF flag in the core FLAG register is

D-40

intel.

SYSTEM REGISTER QUICK REFERENCE

D.38 OCW?2 (MASTER AND SLAVE)

(write only)

Operation Command Word 2
OCW2 (master and slave)

master slave
Expanded Addr: FO20H FOAOQH

ISA Addr: 0020H 0OAOH
Reset State: XXH XXH

SL

EOI RSEL1 H RSELO L2 L1 Lo

Bit
Number

Bit
Mnemonic

Function

R

SL

EOI

The Rotate (R), Specific Level (SL), and End-of-Interrupt (EOI) Bits:
These bits change the priority structure and/or send an EOl command.
SLEOI Command

Cancel automatic rotation*

Send a nonspecific EOl command

No operation

Send a specific EOl command**

Enable automatic rotation*

Enable automatic rotation and send a nonspecific EOI
Initiate specific rotation**

Initiate specific rotation and send a specific EOI**
These cases allow you to change the priority structure while the
82C59A is operating in the automatic EOl mode.

** The L2:0 bits (see below) specify the specific level for these cases.

*RPRRPRPOOOO T
PR OORROO
rORrORORO

RSEL1:0

Register Select Bits:

ICW1, OCW2 and OCWS3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 00
to these bits to access OCW2.

RSEL1 RSELO

0 0 OoCw2
0 1 OCw3
1 X ICW1

L2:0

IR Level:

When you program bits 7-5 to initiate specific rotation, these bits specify
the IR signal that is assigned the lowest level.

When you program bits 7-5 to send a specific EOl command, these bits
specify the IR signal that receives the EOl command.

If SL=0, then these bits have no effect.

D-41

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.39 OCW3 (MASTER AND SLAVE)

Operation Command Word 3 master slave

OCW3 (master and slave) Expanded Addr: FQ20H FOAOH

(write only) ISA Addr: 0020H OOAOH

Reset State: XXH XXH

7 0
0 ESMM SMM RSEL1 ‘ ‘ RSELO POLL ENRR RDSEL
Bit Bit Function

Number Mnemonic

— Clear this bit to guarantee device operation.

ESMM Enable Special Mask Mode (ESMM) and Special Mask Mode (SMM):
5 SMM Use these bits to enable or disable special mask mode.
ESMM SMM
0 0 No action
0 1 No action
1 0 Disable special mask mode
1 1 Enable special mask mode
4-3 RSEL1:0 Register Select:

ICW1, OCW2 and OCWS3 are accessed through the same addresses.
The states of RSEL1:0 determine which register is accessed. Write 01
to these bits to access OCWa3.

RSEL1 RSELO

0 0 oCcw2
0 1 OoCcw3
1 X ICwW1
2 POLL Poll Command:
Set this bit to issue a poll command, thus initiating the polling process.
ENRR Enable Register Read Select (ENRR) and Read Register Select
(RDSEL):

0 RDSEL ’ _ _ _)
These bits select which register is read during the next FO20H and

FOAOH (or PC/AT address 0020H, 00AOH) read access.
ENRR RDSEL Register Read on Next Read Pulse

0 0 No action

0 1 No action

1 0 Interrupt Request Register
1 1 In-service Register

D-42

intel.

D.40 P1CFG

SYSTEM REGISTER QUICK REFERENCE

Port 1 Configuration Expanded Addr:
P1CFG ISA Addr:
(read/write) Reset State:
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P1.7 at the package pin.
1 = Selects HLDA at the package pin.
6 PM6 Pin Mode:
0 = Selects P1.6 at the package pin.
1 = Selects HOLD at the package pin.
5 PM5 Pin Mode:
0 = Selects P1.5 at the package pin.
1 = Selects LOCK# at the package pin.
4 PM4 Pin Mode:
0 = Selects P1.4 at the package pin.
1 = Selects RI0O# at the package pin.
3 PM3 Pin Mode:
0 = Selects P1.3 at the package pin.
1 = Selects DSR0# at the package pin.
2 PM2 Pin Mode:
0 = Selects P1.2 at the package pin.
1 = Selects DTRO# at the package pin.
1 PM1 Pin Mode:
0 = Selects P1.1 at the package pin.
1 = Selects RTS0# at the package pin.
0 PMO Pin Mode:
0 = Selects P1.0 at the package pin.
1 = Selects DCDO# at the package pin.

D-43

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.41 P2CFG
Port 2 Configuration Expanded Addr: F822H
P2CFG ISA Addr: —
(read/write) Reset State: O00H
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P2.7 at the package pin.
1 = Selects CTS0# at the package pin.
6 PM6 Pin Mode:
0 = Selects P2.6 at the package pin.
1 = Selects TXDO at the package pin.
5 PM5 Pin Mode:
0 = Selects P2.5 at the package pin.
1 = Selects RXDO at the package pin.
4 PM4 Pin Mode:
0 = Selects P2.4 at the package pin.
1 = Selects CS4# at the package pin.
3 PM3 Pin Mode:
0 = Selects P2.3 at the package pin.
1 = Selects CS3# at the package pin.
2 PM2 Pin Mode:
0 = Selects P2.2 at the package pin.
1 = Selects CS2# at the package pin.
1 PM1 Pin Mode:
0 = Selects P2.1 at the package pin.
1 = Selects CS1# at the package pin.
0 PMO Pin Mode:
0 = Selects P2.0 at the package pin.
1 = Selects CS0# at the package pin.

D-44

intel.

SYSTEM REGISTER QUICK REFERENCE

D.42 P3CFG
Port 3 Configuration Expanded Addr: F824H
P3CFG ISA Addr: —
(read/write) Reset State: O00H
7 0
PM7 PM6 PM5 PMa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 PM7 Pin Mode:
0 = Selects P3.7 at the package pin.
1 = Selects COMCLK at the package pin.
6 PM6 Pin Mode:
0 = Selects P3.6 at the package pin.
1 = Selects PWRDOWN at the package pin.
5 PM5 Pin Mode:
0 = Selects P3.5 at the package pin.
1 = Connects master IR7 to the package pin (INT3).
4 PM4 Pin Mode:
0 = Selects P3.4 at the package pin.
1 = Connects master IR6 to the package pin (INT2).
3 PM3 Pin Mode:
0 = Selects P3.3 at the package pin.
1 = Connects master IR5 to the package pin (INT1).
2 PM2 Pin Mode:
0 = Selects P3.2 at the package pin.
1 = Connects master IR1 to the package pin (INTO).
1 PM1 Pin Mode:
See Table 5-1 on page 5-8 for all the PM1 configuration options.
0 PMO Pin Mode:
See Table 5-1 on page 5-8 for all the PMO configuration options.

D-45

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.43 PINCFG
Pin Configuration Expanded Addr: F826H
PINCFG ISA Addr: —
(read/write) Reset State: 00H
7 0
— PM6 PM5 Pwa || Pm3 PM2 PM1 PMO
Bit Bit Function
Number Mnemonic
7 — Reserved. This bit is undefined; for compatibility with future devices, do
not modify this bit.
6 PM6 Pin Mode:
0 = Selects CS6# at the package pin.
1 = Selects REFRESH# at the package pin.
5 PM5 Pin Mode:
0 = Selects the coprocessor signals, PEREQ, BUSY#, and ERROR#, at
the package pins.
1 = Selects the timer control unit signals, TMROUT2, TMRCLK2, and
TMRGATE?2, at the package pins.
4 PM4 Pin Mode:
0 = Selects DACKO# at the package pin.
1 = Selects CS5# at the package pin.
3 PM3 Pin Mode:
0 = Selects EOP# at the package pin.
1 = Selects CTS1# at the package pin.
2 PM2 Pin Mode:
0 = Selects DACK1# at the package pin.
1 = Selects TXD1 at the package pin.
1 PM1 Pin Mode:
0 = Selects SRXCLK at the package pin.
1 = Selects DTR1# at the package pin.
0 PMO Pin Mode:
0 = Selects SSIOTX at the package pin.
1 = Selects RTS1# at the package pin.

D-46

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.44 PnDIR

Port Dlrection Expanded Addr: F864H, F86CH, F874H
PnDIR (n=1-3) ISA Addr: —
(read/write) Reset State: FFH
7 0
PD7 PD6 PD5 Pp4 || PD3 PD2 PD1 PDO
Bit Bit Function
Number Mnemonic
7-0 PD7:0 Pin Direction:
0 = Configures the pin as a complementary output.
1 = Configures the pin as an open-drain output or high-impedance input.

D-47

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

D.45 PnLTC
Port Data Latch Expanded Addr: F862H, F86AH, F872H
PnLTC (n=1-3) ISA Addr: —
(read/write) Reset State: FFH
7 0
PL7 PL6 PL5 PLa || PL3 PL2 PL1 PLO
Bit Bit Function
Number Mnemonic
7-0 PL7:0 Port Data Latch:
Writing a value to a PL bit causes that value to be driven onto the
corresponding pin.
For a complementary output, write the desired pin value to its PL bit.
This value is strongly driven onto the pin.
For an open-drain output, a one results in a high-impedance (input) state
at the pin.
For a high-impedance input, write a one to the corresponding PL bit. A
one results in a high-impedance state at the pin, allowing external
hardware to drive it.
D.46 PnPIN
Port Pin State Expanded Addr: F860H, F868H, F870H
PnPIN (n=1-3) ISA Addr: —
(read only) Reset State: XXH
7 0
pPS7 PS6 PS5 Psa || Ps3 PS2 PS1 PSO
Bit Bit Function
Number Mnemonic
7-0 PS7:0 Pin State:
Reading a PS bit returns the logic state present on the associated port
pin.

D-48

intel.

SYSTEM REGISTER QUICK REFERENCE

D.47 POLL (MASTER AND SLAVE)

Poll Status Byte
POLL (master and slave)

master slave
Expanded Addr: FO20H FOAOH

(read only) ISA Addr: 0020H OOAOH
Reset State: XXH XXH
7 0
INT — — - || = L2 L1 LO
Bit Bit Function
Number Mnemonic
7 INT Interrupt Pending:
0 = No request pending.
1 = Indicates that a device attached to the 82C59A requires servicing.
6-3 — Reserved. These bits are undefined.
2-0 L2:0 Interrupt Request Level:
When bit 7 is set, these bits indicate the highest-priority IR signal that
requires servicing. When bit 7 is clear, i.e., no request is pending, these
bits are indeterminate.

D-49

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.48 PORT92
Port 92 Configuration Expanded Addr: FO92H
PORT92 ISA Addr: 0092H
(read/write) Reset State: XXXXXX10B
7 0
— — — - || = — A20G | CPURST
Bit Bit Function
Number Mnemonic
7-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
1 A20G A20 Grounded:
0 = Clearing this bit forces address line A20 to 0. This bit affects
addresses generated only by the core. Addresses generated by the
DMA and the Refresh Unit are not affected by this bit.
1 = Setting this bit leaves core-generated addresses unmodified.
0 CPURST CPU Reset:
0 = Clearing this bit performs no operation.
1 = Setting this bit resets the core without resetting the peripherals.
This bit must be cleared before issuing another reset.

D-50

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.49 PWRCON

Power Control Register Expanded Addr: F800H

PWRCON ISA Addr: —

(read/write) Reset State: 00H

7 0
— — — — | [woTroY | HsrReaDY | Pci PCO
Bit Bit Function

Number Mnemonic
7-4 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
3 WDTRDY Watch Dog Timer Ready:

0 = An external READY must be generated to terminate the cycle when
the WDT times out in Bus Monitor Mode.

1 = Internal logic generates READY# to terminate the cycle when the
WDT times out in Bus Monitor Mode.

2 HSREADY Halt/Shutdown Ready:
0 = An external ready must be generated to terminate a HALT/Shutdown
cycle.
1 = Internal logic generates READY# to terminate a HALT/Shutdown
cycle.
1-0 PC1:0 Power Control:

Program these bits, then execute a HALT instruction. The device enters
the programmed mode when READY# (internal or external) terminates
the halt bus cycle. When these bits have equal values, the HALT

instruction causes a normal halt and the device remains in active mode.

PC1 PCO

0 0 active mode

1 0 idle mode

0 1 powerdown mode
1 1 active mode

D-51

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.50 RBRn

Receive Buffer RBRO RBR1

RBRO, RBR1 Expanded Addr: F4F8H F8F8H

(read only) ISA Addr: 03F8H 02FS8H

Reset State: XXH XXH

7 0
RB7 RB6 RB5 RB4 ‘ ‘ RB3 RB2 RB1 RBO
Bit Bit Function

Number Mnemonic
7-0 RB7:0 Receive Buffer Bits:

These bits make up the last word received. The receiver shifts bits in,
starting with the least-significant-bit. The receiver then strips off the
asynchronous bits (start, parity, and stop) and transfers the received
data bits from the receive shift register to the receive buffer.

NOTE: The receive buffer register shares an address port with other SIO registers. Bit 7 (DLAB) of
the LCRn must be cleared in order to read the receive buffer register.

D-52

intel.

D.51 REMAPCFG

SYSTEM REGISTER QUICK REFERENCE

Address Configuration Register Expanded Addr: 0022H
REMAPCFG PC/AT Address: 0022H
Reset State: 0000H
15 8
L ese | - [- - Jl = [=TT -1 -]
7 0
| — | sir | sor | 1SR || MR | DR | — [TR |
Bit Bit)
Number Mnemonic Function
15 ESE 0 = Disables expanded I/O space
1 = Enables expanded I/O space
14-7 — Reserved.
6 S1R 0 = Makes serial channel 1 (COM2) accessible in both DOS I/O space
and expanded 1/O space
= Remaps serial channel 1 (COM2) address into expanded 1/O space
5 SOR 0 = Makes serial channel 0 (COM1) accessible in both DOS I/O space
and expanded 1/O space
= Remaps serial channel 0 (COM1) address into expanded 1/O space
4 ISR 0 = Makes the slave 82C59A interrupt controller accessible in both DOS
1/O space and expanded I/O space
1 = Remaps slave 82C59A interrupt controller address into expanded
1/O space
3 IMR 0 = Makes the master 82C59A interrupt controller accessible in both
DOS I/0 space and expanded I/O space
1 = Remaps master 82C59A interrupt controller address into expanded
1/0O space
2 DR 0 = Makes the DMA address accessible in both DOS 1/O space and
expanded /O space
1 = Remaps DMA address into expanded 1/O space
— Reserved.
0 TR 0 = Makes the timer control unit accessible in both DOS I/O space and
expanded /O space
1 = Remaps timer control unit address into expanded I/O space

D-53

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.52 RFSADD
Refresh Address Expanded Addr: F4A6H
RFSADD ISA Addr: —
(read/write) Reset State: OOFFH
15 8
| - — | raz | ra2z || Ra1 | RAIO | RA9 | RAB |
7 0
| RA7 rRa6 | Ras | Ra4 || Ra3 | RA2 | RAL | 1 |
Bit Bit Function
Number Mnemonic
15-14 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
13-1 RA13:1 Refresh Address Bits:
These bits comprise A13:1 of the refresh address.
0 — Refresh Bit 0:
AO of the refresh address. This bit is always 1 and is read-only.
D.53 RFSBAD
Refresh Base Address Expanded Addr: F4AOH
RFSBAD ISA Addr: —
(read/write) Reset State: 0000H
15 8
| - — | — | = || razs | ra24a | RAs | RA22 |
7 0
| RA21 | RA20 | RA19 | RA18 || RA17 | RA16 | RA15 | RA14 |
Bit Bit Function
Number Mnemonic
15-12 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
11-0 RA25:14 Refresh Base:
These bits make up the A25:14 address bits of the refresh address. This
establishes a memory region for refreshing.

D-54

intel.

SYSTEM REGISTER QUICK REFERENCE

D.54 RFSCIR
Refresh Clock Interval Expanded Addr: F4A2H
RFSCIR ISA Addr: —
(read/write) Reset State: 0000H
15 8
L - 1 = [=1 = JL = [= [ree [res |
7 0
| rcz | rRce | Res | Rea || Res | Rc2 | Rol | Roo |
Bit Bit)
Number Mnemonic Function
15-10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
9-0 RC9:0 Refresh Counter Value:
Write the counter value to these ten bits. The interval counter counts
down from this value. When the interval counter reaches one, the control
unit initiates a refresh request (provided it does not have a request
pending). The counter value is a function of DRAM specifications and
processor frequency (see the equation above).
D.55 RFSCON
Refresh Control Expanded Addr: F4A4H
RFSCON ISA Addr: —
(read/write) Reset State: 0000H
15 8
[rev | = | = | = J[= | = | cw | o |
7 0
| covv | cve | ovs | cva || cva | cv2 | ovi | cwo |
Bit Bit Function
Number Mnemonic
15 REN Refresh Control Unit Enable:
This bit enables or disables the refresh control unit.
0 = Disables refresh control unit
1 = Enables refresh control unit
14-10 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
9-0 CV9:.0 Counter Value:
These read-only bits represent the current value of the interval counter.
Write operations to these bits have no effect.

D-55

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.56 SCRn

Scratch Pad SCRO SCR1

SCRO, SCR1 Expanded Addr: F4FFH F8FFH

(read/write) ISA Addr: 03FFH 02FFH

Reset State: XXH XXH

7 0
SP7 SP6 SP5 sP4 ‘ ‘ SP3 Sp2 SP1 SPO
Bit Bit Function

Number Mnemonic
7-0 SP7:0 Writing and reading this register has no effect on SIOn operation.

D-56

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.57 SIOCFG

SIO and SSIO Configuration Expanded Addr: F836H

SIOCFG ISA Addr: —

(read/write) Reset State: O00H

7 0
SIM SOM — - || = SSBSRC | S1BSRC | SOBSRC
Bit Bit Function

Number Mnemonic
7 S1iM S101 Modem Signal Connections:

0 = Connects the SIO1 modem input signals to the package pins.
1 = Connects the SIO1 modem input signals internally.
6 SOM S100 Modem Signal Connections:

0 = Connects the SIO0 modem input signals to the package pins.
1 = Connects the SIO0 modem input signals internally.

5-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

2 SSBSRC SSIO Baud-rate Generator Clock Source:

0 = Connects the internal PSCLK signal to the SSIO baud-rate
generator.

1 = Connects the internal SERCLK signal to the SSIO baud-rate
generator.

1 S1BSRC SI01 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO1 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO1 baud-rate
generator.

0 SOBSRC SIO0 Baud-rate Generator Clock Source:

0 = Connects the COMCLK pin to the SIO0 baud-rate generator.
1 = Connects the internal SERCLK signal to the SIO0 baud-rate
generator.

D-57

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.58 SSIOBAUD

SSIO Baud-rate Control

Expanded Addr: F484H

SSIOBAUD ISA Addr: —
(read/write) Reset State: O00H
7 0
BEN BV6 BV5 Bv4 || Bv3 BV2 BV1 BVO
Bit Bit Function
Number Mnemonic
7 BEN Baud-rate Generator Enable:
Setting this bit enables the baud-rate generator. Clearing this bit disables
the baud-rate generator, clears the baud-rate count value, and forces the
baud rate clock to zero.
6-0 BV6:0 Baud-rate Value:

The baud-rate value (BV) is the reload value for the baud-rate
generator’s seven-bit down counter. The baud-rate generator’s output is
a function of BV and the baud-rate generator’s input (BCLKIN), as
follows.

BCLKIN
+2

baud-rate output frequency (Hz) =

(H2)

If you know the desired output baud-rate frequency, you can determine
BV as follows.

0 BCLKIN 0
BV = o1
b x baud-rate output frequency

D-58

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.59 SSIOCON1

SSIO Control 1 Expanded Addr: F486H

SSIOCON1 ISA Addr: —

(read/write) Reset State: COH

7 0
TUE THBE TIE TEN ‘ ‘ ROE RHBF RIE REN
Bit Bit .

Number Mnemonic Function
7 TUE Transmit Underrun Error:

The transmitter sets this bit to indicate a transmit underrun error in the
TEN transfer mode. Clear this bit to clear the error flag. If a one is written
to TUE, itis ignored and TUE retains its previous value.

6 THBE Transmit Holding Buffer Empty:

(read only bit) | The transmitter sets this bit when the transmit buffer contents have been
transferred to the transmit shift register, indicating that the buffer is now
ready to accept new data. Writing data to the transmit buffer clears THBE.
When this bit is clear, the buffer is not ready to accept any new data.

5 TIE Transmitter Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the transmit buffer is empty.

1 = Setting this bit connects the transmit buffer empty internal signal to
the Interrupt Control Unit.

4 TEN Transmitter Enable:

0 = Disables the transmitter.
1 = Enables the transmitter.

3 ROE Receive Overflow Error:

The receiver sets this bit to indicate a receiver overflow error. Write zero
to this bit to clear the flag.

If a one is written to ROE, the one is ignored and ROE retains its previous
value.

2 RHBF Receive Holding Buffer Full:

(read only bit) | The receiver sets this bit when the receive shift register contents have
been transferred to the receive buffer.

Reading the buffer clears this bit.

1 RIE Receive Interrupt Enable:

0 = Clearing this bit prevents the Interrupt Control Unit from sensing
when the receive buffer is full.

1 = Setting this bit connects the receiver buffer full internal signal to the
Interrupt Control Unit.

0 REN Receiver Enable:

0 = Clearing this bit disables the receiver.
1 = Setting this bit enables the receiver.

D-59

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.60 SSIOCON2

SSIO Control 2 Expanded Addr: F488H

SSIOCON2 ISA Addr: —

(read/write) Reset State: O00OH

7 0

_ _ _ — H — AUTOTXM | TXMM RXMM

Bit Bit Function
Number Mnemonic
7-3 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.
2 AUTOTXM Automatic Transmit off mode for master mode

0 = Clearing this bit puts the TEN bit into normal operation

1 = Setting this bit and the TXMM bit causes TEN to be ignored. Every
time a word is loaded into the transmit shift register from the transmit
holding buffer it is transmitted out and then stops.

1 TXMM Transmit Master Mode:

0 = Clearing this bit puts the transmitter in slave mode. In slave mode, an
external device controls the transmit serial communications. An input
on the STXCLK pin clocks the transmitter.

1 = Setting this bit puts the transmitter in master mode. In master mode,
the internal baud-rate generator controls the transmit serial
communications. The baud-rate generator’s output clocks the
internal transmitter and appears on the STXCLK pin.

0 RXMM Receive Master Mode:

0 = Clearing this bit puts the receiver in slave mode. In slave mode, an
external device controls the receive serial communications. An input
on the SRXCLK pin clocks the receiver.

1 = Setting this bit puts the receiver in master mode. In master mode, the
internal baud-rate generator controls the receive serial
communications. The baud-rate generator’s output clocks the
internal receiver and appears on the SRXCLK pin.

D-60

intel.

D.61 SSIOCTR

SYSTEM REGISTER QUICK REFERENCE

Baud-rate Count Down Expanded Addr: F48AH
SSIOCTR ISA Addr: —
(read only) Reset State: O00H
7 0
BSTAT CV6 CV5 CV4 ‘ ‘ CV3 CVv2 Cv1 CVo
Bit Bit Function
Number Mnemonic
7 BSTAT Baud-rate Generator Status:
0 = The baud-rate generator is disabled.
1 = The baud-rate generator is enabled.
6-0 CV6:0 Current Value:
These bits indicate the current value of the baud-rate down counter.
D.62 SSIORBUF
Receive Holding Buffer Expanded Addr: F482H
SSIORBUF ISA Addr: —
(read only) Reset State: 0000H
15 8
| Re1is | rRe4 | RB13 | RB12 || RB1L | RBIO | RBO | RBS |
7 0
| Re7 re6 | Res | Re4a || Re3 | RB2 | RB1 | RBO |
Bit Bit)
Number Mnemonic Function
15-0 RB15:0 Receive Buffer Bits:
This register contains the last word received. The receive shift register
shifts bits in with the rising edge of the receiver clock pin. Data is shifted
in starting with the most-significant bit. The control logic then transfers
the received word from the receive shift register to SSIORBUF.

D-61

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

D.63 SSIOTBUF

These bits make up the next data word to be transmitted. The transmitter
loads this word into the transmit shift register. The transmit shift register
then shifts the bits out, along with the asynchronous communication bits
(start, stop, and parity). The data bits are shifted out least-significant bit

(TBO) first.

Transmit Holding Buffer Expanded Addr: F480H
SSIOTBUF ISA Addr: —
(read/write) Reset State: 0000H
15 8
| 7815 | TB14a | TBI3 [TBI2 || TBU | TBIO TBO | TBS |
7 0
| 187 | 86 | TB5 | TB4 || TB3 | TB2 TB1 | TBO |
Bit Bit)
Number Mnemonic Function
15-0 TB15:0 Transmit Buffer Bits:
These bits make up the next data word to be transmitted. The control
logic loads this word into the transmit shift register. The transmit shift
register shifts the bits out on the falling edge of the tranmitter clock pin.
The word is transmitted out starting with the most-significant bit (TB15).
D.64 TBRn
Transmit Buffer TBRO TBR1
TBRO, TBR1 Expanded Addr: F4F8H F8F8H
(write only) ISA Addr: 03F8H 02F8H
Reset State: XXH XXH
7 0
TB7 TB6 TB5 TB4 || TB3 TB2 TB1 TBO
Bit Bit Function
Number Mnemonic
7-0 TB7:0 Transmit Buffer Bits:

NOTE: The transmit buffer register shares an address port with other SIO registers. You must clear
bit 7 (DLAB) of LCRn before you can write to the transmit buffer register.

D-62

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.65 TMRCFG
Timer Configuration Expanded Addr: F834H
TMRCFG ISA Addr: —
(read/write) Reset State: O00H
7 0

| TMRDIS |SWGTEN GT2CON | CK2CON || GT1CON | CKICON | GTOCON | CKOCON

Bit Bit Function
Number Mnemonic
7 TMRDIS Timer Disable:

0 = Enables the CLKINn signals.
1 = Disables the CLKINn signals.

6 SWGTEN Software GATEn Enable

0 = Connects GATEn to either the V¢ pin or the TMRGATEnR pin.
1 = Enables GT2CON, GT1CON, and GTOCON to control the
connections to GATE2, GATE1 and GATEO respectively.

5 GT2CON Gate 2 Connection:
SWGTEN GT2CON
0 0 Connects GATE2 to V¢,
0 1 Connects GATE2 to the TMRGATE2 pin.
1 0 Turns GATE2 off.
1 1 Turns GATE2 on.
4 CK2CON Clock 2 Connection:

0 = Connects CLKIN2 to the internal PSCLK signal.
1 = Connects CLKIN2 to the TMRCLK2 pin.

3 GT1CON Gate 1 Connection:
SWGTEN GT1CON
0 0 Connects GATEL to V¢,
0 1 Connects GATE1 to the TMRGATEL1 pin.
1 0 Turns GATEL off.
1 1 Turns GATEL on.
2 CK1CON Clock 1 Connection:

0 = Connects CLKINL to the internal PSCLK signal.
1 = Connects CLKIN1 to the TMRCLK1 pin.

1 GTOCON Gate 0 Connection:
SWGTEN GTOCON
0 0 Connects GATEO to V¢,
0 1 Connects GATEO to the TMRGATEL1 pin.
1 0 Turns GATEDO off.
1 1 Turns GATEO on.
0 CKOCON Clock 0 Connection:

0 = Connects CLKINO to the internal PSCLK signal.
1 = Connects CLKINO to the TMRCLKO pin.

D-63

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

D.66 TMRCON
Timer Control (Control Word Format) Expanded Addr: FO43H
TMRCON ISA Addr: 0043H
Reset State: XXH
7 0
sc1 SCo RW1 rRwo || w2 M1 MO CNTFMT
Bit Bit Function
Number Mnemonic

7-6 SC1:.0 Select Counter:
Use these bits to specify a particular counter. The selections you make for
bits 5-0 define this counter’s operation.
00 = counter 0
01 = counter 1
10 = counter 2
11 is not an option for TMRCON's control word format. Selecting 11
accesses TMRCON's read-back format, which is shown in Figure 10-29.

5-4 RW1:0 Read/Write Select:
These bits select a read/write option for the counter specified by bits 7-6.
01 = read/write least-significant byte only
10 = read/write most-significant byte only
11 = read/write least-significant byte first, then most-significant byte
00 is not an option for TMRCON's control word format. Selecting 00
accesses TMRCON's counter-latch format, which is shown in Figure
10-27.

3-1 M2:0 Mode Select:
These bits select an operating mode for the counter specified by bits 7-6.
000 = mode O
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5
Xis a don't care.

0 CNTFMT Count Format:
This bit selects the count format for the counter specified by bits 7-6.
0 = binary (16 bits)
1 = binary coded decimal (4 decades)

D-64

intel.

D.67 TMRn

SYSTEM REGISTER QUICK REFERENCE

Timer n (Read Format)

Expanded Addr: FO40H, FO41H

These bits contain the counter’s count value. When reading the

counter’s count value, follow the read selection specified in the counter’s

control word.

TMRn (n = 0-2) FO42H
ISA Addr: 0040H, 0041H
0042H
Reset State: XXH
7 0
cv7 cve cvs cv4 ‘ ‘ cv3 cv2 cvi cVvo
Bit Bit Function
Number Mnemonic
7-0 CV7.0 Count Value:

D-65

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Timer n (Status Format) Expanded Addr: FO40H, FO41H
TMRn (n=0-2) FO42H

ISA Addr: 0040H, 0041H

0042H

Reset State: XXH
7 0
OUTPUT | NULCNT RwW1 RWO ‘ ‘ M2 M1 MO CNTFMT

Bit Bit Function

Number Mnemonic
7 OUTPUT Output Status:

This bit indicates the current state of the counter’s output signal.
0= OUTnis low

1= OUTnis high

6 NULCNT Count Status:

This bit indicates whether the latest count written to the counter has
been loaded. Some modes require a gate-trigger before the counter
loads new count values.

0 = the latest count written to the counter has been loaded
1 = a count has been written to the counter but has not yet been loaded

5-4 RW1:0 Read/Write Select Status:
These bits indicate the counter’s programmed read/write selection.

00 = Never occurs

01 = read/write least-significant byte only

10 = read/write most-significant byte only

11 = read/write least-significant byte first, then most-significant byte

3-1 M2:0 Mode Status:
These bits indicate the counter’s programmed operating mode.
000 = mode 0
001 = mode 1
X10 = mode 2
X11 = mode 3
100 = mode 4
101 = mode 5
Xis a don't care.
0 CNTFEMT Counter Format Status:

This bit indicates the counter’s programmed count format.

0 = binary (16 bits)
1 = binary coded decimal (4 decades)

D-66

intel.
D.68 UCSADH

See “CSnADH (UCSADH)” on page D-8.

D.69 UCSADL
See “CSnADL (UCSADL)” on page D-9.

D.70 UCSMSKH

See “CSnMSKH (UCSMSKH)” on page D-10.

D.71 UCSMSKL
See “CSnMSKL (UCSMSKL)” on page D-11.

SYSTEM REGISTER QUICK REFERENCE

D-67

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.72 WDTCNTH AND WDTCNTL

WDT Counter Value (High) Expanded Addr: FAC4H
WDTCNTH ISA Addr: —
(read only) Reset State: 003FH
15 8
‘ wc3l ‘ WC30 ‘ wcC29 ‘ wc28 ‘ ‘ wcC27 ‘ WC26 ‘ WcC25 ‘ wc24 ‘
7 0
‘ wc23 ‘ WwcC22 ‘ wc21 ‘ WC20 ‘ ‘ WC19 ‘ WwC18 ‘ wc17 ‘ WC16 ‘
WDT Counter Value (Low) Expanded Addr: F4C6H
WDTCNTL ISA Addr: —
(read only) Reset State: FFFFH
15 8
‘ WC15 ‘ WC14 ‘ wcC13 ‘ WwC12 ‘ ‘ wci1l ‘ WC10 ‘ WC9 ‘ wcs ‘
7 0
‘ wc7 ‘ wce ‘ wcs ‘ WcC4 ‘ ‘ wc3 ‘ wc2 ‘ wci ‘ WCo ‘
. Bit 4
Bit Number Mnemonic Function
High 15-0 WC31:16 WDT Counter Value High Word and Low Word:
Low 15-0 WC15:0 Read the high word of the counter value from WDTCNTH and the low
word from WDTCNTL.

D-68

Int9|® SYSTEM REGISTER QUICK REFERENCE

D.73 WDTRLDH AND WDTRLDL

WDT Reload Value (High) Expanded Addr: FACOH
WDTRLDH ISA Addr: —
(read/write) Reset State: 003FH
15 8
‘ WR31 ‘ WR30 ‘ WR29 ‘ WR28 ‘ ‘ WR27 ‘ WR26 ‘ WR25 ‘ WR24 ‘
7 0
‘ WR23 ‘ WR22 ‘ WR21 ‘ WR20 ‘ ‘ WR19 ‘ WR18 ‘ WR17 ‘ WR16 ‘
WDT Reload Value (Low) Expanded Addr: FAC2H
WDTRLDL ISA Addr: —
(read/write) Reset State: FFFFH
15 8
‘ WR15 ‘ WR14 ‘ WR13 ‘ WR12 ‘ ‘ WR11 ‘ WR10 ‘ WR9 ‘ WRS ‘
7 0
‘ WR7 ‘ WR6 ‘ WR5 ‘ WR4 ‘ ‘ WR3 ‘ WR2 ‘ WR1 ‘ WRO ‘
Bit Bit Function
Number Mnemonic
High 15-0 | WR31:16 WDT Reload Value (High Word and Low Word):
Low 15-0 | WR15:0 Write the high word of the reload value to WDTRLDH and the low word
to the WDTRLDL.

D-69

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

D.74 WDTSTATUS

WDT Status Expanded Addr: FACAH

WDTSTATUS ISA Addr: —

(read/write) Reset State: O00H

7 0

WDTEN — — - || = — BUSMON | CLKDIS
Bit Bit Function
Number Mnemonic

7 WDTEN Watchdog Mode Enabled:
This read-only bit indicates whether watchdog mode is enabled. Only a
lockout sequence can set this bit and only a device reset can clear it.
0 = Watchdog mode disabled
1 = Watchdog mode enabled

6-2 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

1 BUSMON Bus Monitor Enable:
0 = Disables bus monitor mode
1 = Enables bus monitor mode
Read this bit to determine the current status. A lockout sequence clears
BUSMON and prevents writes to the WDTSTATUS register.

0 CLKDIS Clock Disable:
Write to this bit to stop or restart the clock to the WDT; read it to
determine the current clock status. A lockout sequence clears CLKDIS
and prevents writing to this register.
0 = Clock enabled
1 = Processor clock (frequency=CLK2/2) disabled (stopped)

D-70

intel.
E

INSTRUCTION SET
SUMMARY

APPENDIX E
INSTRUCTION SET SUMMARY

This appendix provides reference information for the Intel386™ processor family instruction set.
The appendix is organized as follows:
¢ Instruction Encoding and Clock Count Summary (see below)

¢ Instruction Encoding (page-22)

E.1 INSTRUCTION ENCODING AND CLOCK COUNT SUMMARY

To calculate elapsed time for an instruction, multiply the instruction clock count, as listed in Table
E-1, by the processor clock period (e.g., 62.5 ns for 16 MHz).

Instruction clock count assumptions:
* The instruction has been prefetched, decoded, and is ready for execution.
* Bus cycles do not require wait states.
* There are no local bus HOLD requests delaying processor access to the bus.
* No exceptions are detected during instruction execution.

* When an effective address is calculated, it does not use two general register components.
One register, scaling and displacement can be used within the clock counts shown.
However, when the effective address calculation uses two general register components, add
1 clock to the clock count shown.

Instruction clock count notation:

* When two clock counts are given, the smaller refers to a register operand and the larger
refers to a memory operand.

* n = number of times repeated.

* m = number of components in the next instruction executed, where the entire displacement
(if any) counts as one component, the entire immediate data (if any) counts as one
component, and all other bytes of the instruction and prefix(es) of each count as one
component.

Misaligned or 32-bit operand accesses:
* When instructions access a misaligned 16-bit operand or 32-bit operand on even address:

— add 2* clocks for read or write
— add 4** clocks for read and write

* When instructions access32-bit operand on odd address:
— add 4* clocks for read or write
— add 8** clocks for read and write

E-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Wait states:
Wait states add 1 clock per wait state to instruction execution for each data access.

Table E-1 lists the instructions with their formats and execution times. The description of the
notes for Table E-1 begins on page E-20. See “Instruction Encoding” on page E-22 for the defi-
nition of the terms used in this table.

Table E-1. Instruction Set Summary (Sheet 1 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
; dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
GENERAL DATA TRANSFER
MOV = Move
reg!ster to 1000100w | mod regr/m 22 212 b h
register/memory
reg!ster/memory to 1000101w | mod reg im 2/4 2/4 b h
register
|mmed|ale to 1100011w [mod0OOT/m immediate data 22 212 b h
register/memory
immediate to register 1011w reg immediate data 2 2
(short form)
memory to accumulator 1010000w | full displacement ~ ~ b h
(short form)
accumulator to memory 1010001w | full displacement z z b h
(short form)
register memory to 10001110 | mod sreg3rim 2/5 22/23 b h,i,j
segment register
Seg_ment register to 10001100 | mod sreg3rim 2/2 2/2 b h
register/memory
MOVSX = Move with sign extension
register from 00001111 [1011111w | mod regrm 3/ 3/ b h
register/memory
MOVZX = Move with zero extension
register from 00001111 | 1011011w | modregr/m 3/ 3/ b h
register/memory
PUSH = Push
register/memory 11111111 | mod110r/m 5/7* 7/19* b h
register (short form) 01010 reg 2 4 b h
segment register (ES, 2 4 b h
CS, SS, or DS) 000 sreg2 110
(short form)
segment register (ES, 2 4 b h
CS, SS, or DS, FS or 00001111 10 sreg3 000
GS)

E-2

intel.

INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 2 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
immediate 011010s0 | immediate data 2 4 b h
PUSHA = Push All 01100000 18 34 b h
POP = Pop
register/memory 10001111 | mod00OT/m 5/7 719 b h
register (short form) 01011 reg 6 6 b h
segment register (ES, 7 25 b h,i,j
CS, SS, or DS) 000 sreg2 111
(short form)
segment register (ES, 7 25 b h,i,j
CS, SS, or DS) FS or 00001111 10 sreg3 001
GS
POPA =Pop all 01100001 29 35 b h
XCHG = Exchange
re_gister/_memory 1000011w | mod reg r/m 3/5%* 3/5*%* b, f f,h
with register
register with accumula- 3 3
tor (short form) 10010 reg
_ Clk Count Virtual
IN = Input from 8086 Mode
fixed port 1110010w | portnumber 127 14* 8*/29* sit, m
variable port 1110110w 128 15* 9*/29* s/t, m
OUT = Output to
fixed port 1110011w | portnumber 127 14* 8*/29* sit, m
variable port 1110111w 128 15* 9*/29* s/t, m
{‘:A =Load EAtOTedis- | 15061101 | mod regrm 2 2
SEGMENT CONTROL
IISIZ;S = Load pointer to 11000101 mod reg r/m 7 26*/28* b h,i,j
Iél;s = Load pointer to 11000100 mod reg r/m 7 26*/28* b h,i,j
";';S =Load pointerto | 50601111 [10110100 | modregr/m - 29%31* b hij
é%szmadpo'me”o 00001111 [10110101 | mod regrm v 26+/28 b h.i.j
gisz"oad pointerto 1 50001111 [10110010 | mod reg rim v 26+/28 b h.i.j
FLAG CONTROL
CLC =Clear carry flag 11111000 2 2

E-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 3 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
CLD = Clear direction 11111100 2 2
flag
CLI = Clear interrupt 11111010 8 8 m
enable flag
CLTS = Clear task 00001111 [00000110 5 5 © :
switched flag
CMC = Complement 11110101 2 2
carry flag
LAHF = Load AH into 10011111 2 2
flag
POPF = Pop flags 10011101 5 5 b h, n
PUSHF = Push flags 10011100 4 4 b h
SAHF = Store AH into 10011110 3 3
flags
STC = Set carry flag 11111001 2 2
STD =Setdirectionflag | 11111101
STI = Set interrupt 11111011 8 8 m
enable flag
ARITHMETIC INSTRUCTIONS
ADD = Add
register to register 000000dw | modreg r/im 2 2
register to memory 0000000w | modreg r/m Vs Vs b h
memory to register 0000001w | modreg r/m 6* 6* b h
|mmed|ale to 100000sw [mod0OOTf/m immediate data ar ar b h
register/memory
immediate to accumu- | 45000 10w | immediate data 2 2
lator (short form)
ADC = Add with carry
register to register 000100dw | modreg r/im 2 2
register to memory 0001000w | modregr/m Vaid Vaid b h
memory to register 0001001w | modregr/m 6* 6* b h
immediale to 100000sw [mod010r/m immediate data 2 2 b h
register/memory
immediate to accumu- | 5019 10w | immediate data 2 2
lator (short form)
INC = Increment
register/memory 1111111w | mod00O0Tr/m 2/6** 2/6** b h
register (short form) 01000 reg 2 2

E-4

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 4 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
SUB = Subtract
register from register 001010dw | modregr/m 2 2
register from memory 0010100w | modreg r/m 7 7 b h
memory from register 0010101w | modregr/m 6* 6* b h
|mmed|ate from 100000sw | mod 101 r/m immediate data ar ar b h
register/memory
immediate from accu- 0010110w | immediate data 2 2
mulator (short form)
SBB = Subtract with borrow
register from register 000110dw | modregr/m 2 2
register from memory 0001100w | modreg r/m 7 7 b h
memory from register 0001101w | modregr/m 6* 6* b h
|mmed|ate from 100000sw [mod011r/m immediate data 2 2 b h
register/memory
immediate from accu- 0001110w | immediate data 2 2
mulator (short form)
DEC = Decrement
register/memory 1111111w |reg001r/m 2/6 2/6 b h
register (short form) 01001 reg 2 2
CMP = Compare
register with register 001110dw | modregr/m 2 2
memory with register 0011100w | modreg r/m 5* 5* b h
register with memory 0011101w | modregr/m 6* 6* b h
immediale with 100000sw | mod111r/m immediate 2/5* 2/5* b h
register/memory data
immediate with accu- immediate 2 2
mulator (short form) 0011110w data
NEG = Change sign 1111011w | mod011r/m 2/6* 2/6* b h
AAA__= ASCI!I adjust for 00110111 4 4
addition
AAS =ASCIIadJuslfor 00111111 4 4
subtraction
DAA =_E_)ecima| adjust 00100111 4 4
for addition
DAS = D_ecimal adjust for 00101111 4 4
subtraction

E-5

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 5 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format Mode Ad Mode Ad
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
MUL = multiply (unsigned)
accumulator with 1111011w | mod100rm
register/memory
multiplier
— byte 12-17/ 12-17/ b, d dh
15-20* 15-20*
— word 12-25/ 12-25/ b, d dh
15-28* 15-28*
— doubleword 12-41/ 12-41/ b, d dh
17-46* 17-46*
IMUL = Integer multiply (signed)
accumulator with regis- 1111011w | mod 101 r/m
ter/memory
multiplier
— byte 12-17/ 12-17/ b, d dh
15-20* 15-20*
— word 12-25/ 12-25/ b, d d h
15-28* 15-28*
— doubleword 12-41/ 12-41/ b, d d h
17-46* 17-46*
register with regis- 00001111 |10101111 | modregrm
ter/memory
multiplier
— byte 12-17/ 12-17/ b, d d h
15-20* 15-20*
— word 12-25/ 12-25/ b, d dh
15-28* 15-28*
— doubleword 12-41/ 12-41/ b, d d h
17-46* 17-46*
_reglste_r/memory .th 011010s1 | modregr/m immediate data
immediate to register
— word 13-26 13-26/ b, d d h
14-27
— doubleword 13-42 13-42/ b, d d h
16-45
DIV = Divide (unsigned)
Accumulator by 1111011w | mod110v/m
register/memory
divisor
— byte 14/17 14/17 b, e e h
— word 22/25 22/25 b, e e h
— doubleword 38/43 38/43 b, e e h

E-6

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 6 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
IDIV = Integer divide (signed)
Accumulator by 1111011w | mod 111 r/m
register/memory
divisor
— byte 19/22 19/22 b, e e h
— word 27/30 27/30 b, e e h
— doubleword 43/48 43/48 b, e e h
AAD = ASClladjustfor | 145909101 | 00001010 19 19
divide
AAM:ASCIIadJustfor 11010100 | 00001010 17 17
multiply
CBW = Convert byte to 10011000 3 3
word
CWD = Convert word to 10011001 2 2
double-word
LOGIC
shift rotate instructions
not through carry (ROL, ROR, SAL, SAR, SHL, and SHR)
register/memory by 1 1101000w | mod TTT r/m 3/7** 3/7** b h
register/memory byCL | 1101001w | mod TTT r/m 3/7* 3/7* b h
register/memory by 1100000w | mod TTT¥im | immed 8-bit data s s b h
immediate count
through carry (RCL and RCR)
register/memory by 1 1101000w | mod TTT r/m 9/10* 9/10* b h
register/memory by CL | 1101001w | mod TTT r/m 9/10* 9/10* b h
register/memory by 1100000w | mod TTT¥im | immed 8-bit data oot | oo b h
immediate count
ggg Instruction
ROL
001
ROR
010
RCL
011
100 RCR
SHL/SAL
101
111 SHR
SAR
SHLD = Shift left double
register/memory by immed 3/7** 3/7**
immediate 00001111 |10100100 | modregt/m 8-bit data
register/memory by CL | 00001111 |10100101 | modregr/m 3/7** 3/7**

E-7

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 7 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
SHRD = Shift right double
register/memory by 00001111 [10101100 | mod regr/m immed 87 87
immediate 8-bit data
register/memory by CL | 00001111 |10101101 | modregr/m 3/7** 3/7**
AND = And
register to register 001000dw | modreg r/im 2 2
register to memory 0010000w | modregr/m Vaid Vaid b h
memory to register 0010001w | modregr/m 6* 6* b h
|mmed|ale to 1000000w [mod100r/m immediate data ar ar b h
register/memory
immediate o accumu- 0010010w | immediate data 2 2
lator (short form)
TEST= And function to flags, no result
reglster/_memory 1000010w | mod reg r/m 2/5* 2/5* b h
and register
immediate data and 1111011w [mod0O0OTr/m immediate data 25 s b h
register/memory
immediate data and immediate 2 2
accumulator (short 1010100w
data
form)
OR=0r
register to register 000010dw | modreg r/im 2 2
register to memory 0000100w | modregr/m Vaid Vaid b h
memory to register 0000101w | modregr/m 6* 6* b h
|mmed|ale to 1000000w [mod0O1r/m immediate data ar ar b h
register/memory
immediate o accumu- 0000110w | immediate data 2 2
lator (short form)
XOR = Exclusive or
register to register 001100dw | modreg r/im 2 2
register to memory 0011000w | modregr/m Vaid Vaid b h
memory to register 0011001w | modregr/m 6* 6* b h
immediale to 1000000w [mod110r/m immediate data 2 2 b h
register/memory
immediate o accumu- 0011010w | immediate data 2 2
lator (short form)
NOTS= Invert 1111011w | mod010r/m 218 218 b h
register/memory

E-8

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 8 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
STRING MANIPULATION INSTRUCTIONS Clk Count
Virtual . .
CMPS = Compare 1010011w 8086 Mode 10 10 b h
byte word
INS = Input byte/word 0110110w 130 17 10%/32** b s/t,h, m
from DX port
LODS = Load byte/word 5 5* b h
to AL/AX/EAX 1010110w
MOVS =Move byteword | 1010010w 7 Vaid b h
OUTS = Output 31 18 11*/33* b sit, h, m
byte/word to DX port 0110111w
SCAS =Scanbyteword | 1010111w Ve 7 b h
STOS = Store byte/word 4* 4* b h
from AL/AX/EX 1010101w
XLAT = Translate String 11010111 5* 5* h
REPEATED STRING MANIPULATION
Repeated by count in CX or ECX:
REPE CMPS = Compare string
find non-match 11110011 |1010011w Clk Count 5+ 9n** 5+ 9n** b h
. Virtual
find match 11110010 1010011w 8086 Mode 5+ 9n** 5+ 9n* b h
REPINS = Inputstring [11110010 [0110110w T8l+6n | 17+ 70t o 22:/ b st h,m
REPLODS =Loadstring [11110010 (1010110w 5+ 6n* 5+ 6n* b h
RE_PMOVS:Move 11110010 |1010010w 7 + 4n* 7+ 4n** b h
string
RE_P OUTS = Output 11110010 0110111w 130+8n 16 +8n* | 10 +8n*/ b sit, h, m
string 31+ 8n*
REPE SCAS = Scan 5+ 8n* 5+ 8n* b h
string 11110011 1010111w
Find non-AL/AX/EAX
REPNE SCAS = Scan 5+ 8n* 5+ 8n* b h
string 11110010 1010111w
Find AL/AX/EAX
RE_PSTOS:Store 11110010 |1010101w 5+ 5n* 5+ 5n* b h
string
BIT MANIPULATION
BSF = scan bit forward 00001111 |10111100 | mod regr/m 10 +3n* | 10 + 3n* b h
BSR = scan bit reverse 00001111 |10111101 | modregr/m 10 +3n* | 10 + 3n* b h
BT =test bit
register/memory, 00001111 [10111010 |mod100rm | immed 3/ 3/ b h
immediate 8-bit data

E-9

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 9 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
register/memory, 00001111 | 10100011 | modregr/m sn2z sn2z b h
register
BTC = test bit and complement
register/memory, 00001111 [10111010 |mod111rm | mmed 618" 616" b h
immediate 8-bit data
register/memory, 00001111 [10111011 | modregr/m 6/13 6/13 b h
register
BTR =test bit and reset
register/memory, 00001111 10111010 |mod110pm | Mmmed 6/8* 6/8* b h
immediate 8-bit data
register/memory, 00001111 | 10110011 | modregr/m 6/13 6/13 b h
register
BTS = test bit and set
register/memory, 00001111 [10111010 |mod101rm | mmed 6/8* 6/8* b h
immediate 8-bit data
register/memory, 00001111 | 10101011 | modregr/m 613 613 b h
register
CONTROL TRANSFER
CALL =Call
direct within segment 11101000 | full displacement 7 +m* 9 +m* b r
re_g/memory indirect 11111111 | mod010rm 7 +m¥ 9+ m¥ b h,r
within segment 10 + m* 12 + m*
direct intersegment 10011010 unsigned full offset, selector 17 + m* 42 + m* b ok
Protected mode only (direct intersegment)
Via call gate to same privilege level 64 +m hj, kr
Via call gate to different privilege level (no parameters) 98 +m h,j, kr
Via call gate to different privilege level (x parameters) 106+8x+ h,j, kr
m
From 286 task to 286 TSS 285 h,j, kr
From 286 task to Intel386 SX CPU TSS 310 h,j, kr
From 286 task to virtual 8086 task (Intel386 SX CPU TSS) 229 h,j, kr
From Intel386 SX CPU task to 286 TSS 285 h,j, kr
From Intel386 SX CPU task to Intel386 SX CPU TSS 392 h,j, kr
From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) 309 h,j, kr
indirect intersegment 11111111 mod011r/m 30+m 46 +m b hj, kr
Protected mode only (indirect intersegment)
Via call gate to same privilege level 68 +m hj, kr

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 10 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format Mode Ad- | Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
Via call gate to different privilege level (no parameters) 102+ m hj, kr
Via call gate to different privilege level (x parameters) 110+8x+ h,j, kr
m
From 286 task to 286 TSS h,j, kr
From 286 task to Intel386 SX CPU TSS h,j, kr
From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h,j, kr
From Intel386 SX CPU task to 286 TSS h,j, kr
From Intel386 SX CPU task to Intel386 SX CPU TSS 399 h,j, kr
From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) h,j, kr
JMP = Unconditional jump
short 11101011 | 8-bit displacement 7+m 7+m r
direct within segment 11101001 | full displacement 7+m 7+m r
winin segment | 11111111 | mod100um dem | dam | "
direct intersegment 11101010 unsigned full offset, selector 16 +m 31+m ok
Protected mode only (direct intersegment)
Via call gate to same privilege level 53+m hj, kr
From 286 task to 286 TSS h,j, kr
From 286 task to Intel386 SX CPU TSS h,j, kr
From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h,j, kr
From Intel386 SX CPU task to 286 TSS h,j, kr
From Intel386 SX CPU task to Intel386 SX CPU TSS h,j, kr
From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) 395 h,j, kr
indirect intersegment 11111111 mod101r/m 17+m 31+m b hj, kr
Protected mode only (indirect intersegment)
Via call gate to same privilege level 49 +m hj, kr
From 286 task to 286 TSS h,j, kr
From 286 task to Intel386 SX CPU TSS h,j, kr
From 286 task to virtual 8086 task (Intel386 SX CPU TSS) h,j, kr
From Intel386 SX CPU task to 286 TSS h,j, kr
From Intel386 SX CPU task to Intel386 SX CPU TSS 328 h,j, kr
From Intel386 SX CPU task to Virtual 8086 task (Intel386 SX CPU TSS) h,j, kr
RET = Return from CALL
within segment 11000011 12+m b g, hr

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table E-1. Instruction Set Summary (Sheet 11 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
within segment adding | 1 4 550010 | 16-bit displacement 12+m b g.hr
immed to SP
intersegment 11001011 36 +m b g, h,rJ, k,
intersegment adding 11001010 | 16-bit displacement 36+m b 9hik
immed to SP r
Protected mode only (RET):
to different privilege level
Intersegment 72 h,j, kr
Intersegment adding immed to SP 72 h,j, kr
CONDITIONAL JUMPS
(times are jump “Taken or not Taken”)
JO = jump on overflow
8-bit displacement 01110000 | 8-bit displacement 7+m 7+m r
or3 or3
Full displacement 00001111 | 10000000 | Fulldisplacement 7+m 7m r
or3 or3
JNO = Jump on not overflow
8-bit displacement 01110001 | 8-bit displacement 7+m 7m r
or3 or3
Full displacement 00001111 | 10000001 | Fulldisplacement 7+m 7+m r
or3 or3
JB/INAE = jump on below/not above or equal
8-bit displacement 01110010 | 8-bit displacement 7+m 7+m r
or3 or3
Full displacement 00001111 [10000010 | Fulldisplacement 7+m 7+m r
or3 or3
JNB/JAE = jump on not below/above or equal
8-bit displacement 01110011 | 8-bitdisplacement 7+m 7+m r
or3 or3
Full displacement 00001111 | 10000011 | Fulldisplacement 7m 7m r
or3 or3
JE/JZ= jump on equal/zero
8-bit displacement 01110100 | 8-bit displacement 7m 7m r
or3 or3
Full displacement 00001111 | 10000100 | Fulldisplacement 7+m 7+m r
or3 or3
JNE/INZ = jump on not equal/not zero
8-bit displacement 01110101 | 8-bit displacement 7+m 7+m r
or3 or3

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 12 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
Full displacement 00001111 | 10000101 | Full displacement 7+m 7+m r
or3 or3
JBE/JNA = jump on below or equal/not above
8-bit displacement 01110110 | 8-bit displacement 7+m 7+m r
or3 or3
Full displacement 00001111 [10000110 | Fulldisplacement 7+m 7+m r
or3 or3
JNBE/JA = jump on not below or equal/above
8-bit displacement 01110111 | 8-bit displacement 7 +;1 or |7 +;1 or r
Full displacement 00001111 [10000111 | Fulldisplacement 7+3m or 7+3m or r
JS =jump on sign
8-bit displacement 01111000 | 8-bit displacement 7 +;1 or |7 +;1 or r
Full displacement 00001111 | 10001000 | Fulldisplacement 7+g‘ or 7+g‘ or r
JNS = jump on not sign
8-bit displacement 01111001 | 8-bit displacement 7 +;T or |7 +:T or r
Full displacement 00001111 [10001001 | Fulldisplacement 7+g‘ or 7+g‘ or r
JP/JPE = jump on parity/parity even
8-bit displacement 01111010 | 8-bit displacement 7 +g| or |7 +g| or r
Full displacement 00001111 [10001010 | Fulldisplacement 7 +g‘ or |7 +g‘ or r
JNP/JPO = jump on not parity/parity odd
8-bit displacement 01111011 | 8-bit displacement 7 +g| or |7 +g| or r
Full displacement 00001111 | 10001011 | Fulldisplacement v +g‘ or | 7 +g‘ or r
JL/INGE = jump on less/not greater or
equal
8-bit displacement 01111100 | 8-bit displacement 7 +g| or |7 +g| or r
Full displacement 00001111 [10001100 | Fulldisplacement 7 +g‘ or |7 +g‘ or r
JNLAGE = jump on not less/greater or equal
8-bit displacement 01111101 | 8-bit displacement 7 +g| or |7 +g| or r

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table E-1. Instruction Set Summary (Sheet 13 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
Full displacement 00001111 | 10001101 | Full displacement v +3",1 or |7 +3",1 or r
JLE/ING = jump on less or equal/not greater
8-bit displacement 01111110 | 8-bit displacement 7 +;1 or |7 +;1 or r
Full displacement 00001111 [10001110 | Fulldisplacement 7 +3"’“ or |7 +3"’“ or r
JNLE/JG = jump on not less or equal/greater
8-bit displacement 01111111 | 8-bit displacement 7 +;1 or |7 +;1 or r
Full displacement 00001111 [10001111 | Fulldisplacement 7 +g‘ or |7 +g‘ or r
JCXZ =jumponCXzero | 11100011 | 8-bitdisplacement 9 +5m or |9 +5m or r
JECXZ =jump on ECX 11100011 | 8-bit displacement 9+mor 9+mor r
zero 5 5
(Address size prefix differentiates JCXZ from JECXZ)
LOOP = loop CX times 11100010 | 8-bit displacement 11+m 11+m r
LOOPZ/LOOPE =100p | 1 1150001 | g-bit displacement H+m | 1+m r
with zero/equal
LOOPNZ/LOOPNE = 11100000 | 8-bit displacement U+m | +m r
loop while not zero
CONDITIONAL BYTE SET
(Note: Times are register/memory)
SETO = set byte on overflow
to register/memory | 00001111 | 10010000 | mod 000 r/m | 4/5* 4/5*% h
SETNO = set byte on not overflow
to register/memory | 00001111 | 10010001 | mod 000 r/m | 4/5*% 4/5*% h
SETB/SETNAE = set byte on below/not above or equal
to register/memory | 00001111 | 10010010 | mod 000 r/m | 4/5*% 4/5*% h
SETNB = set byte on below/above or equal
to register/memory | 00001111 | 10010011 | mod 000 r/m | 4/5*% 4/5*% h
SETE/SETZ = set byte on equal/zero
to register/memory | 00001111 | 10010100 | mod 000 r/m | 4/5* 4/5*% h
SETNE/SETNZ = set byte on not equal/not zero
to register/memory | 00001111 | 10010101 | mod 000 r/m | 4/5*% 4/5* h

Int9|® INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 14 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
SETBE/SETNA = set byte on below or equal/not above
to register/memory | 00001111 | 10010110 | mod 000 r/m | 4/5*% 4/5*% h
SETNBE/SETA = set byte on not below or equal/above
to register/memory | 00001111 | 10010111 | mod 000 r/m | 4/5*% 4/5*% h
SETS = set byte on sign
to register/memory | 00001111 | 10011000 | mod 000 r/m | 4/5*% 4/5*% h
SETNS = set byte on not sign
to register/memory | 00001111 | 10011001 | mod 000 r/m | 4/5*% 4/5*% h
SETP/SETPE = set byte on parity/parity
even
to register/memory | 00001111 | 10011010 | mod 000 r/m | 4/5* 4/5*% h
SETNP/SETPO = set byte on not parity/parity odd
to register/memory | 00001111 | 10011011 | mod 000 r/m | 4/5*% 4/5* h
SETL/SETNGE = set byte on less/not greater or equal
to register/memory | 00001111 | 10011100 | mod 000 r/m | 4/5*% 4/5* h
SETNL/SETGE = set byte on not less/greater or equal
to register/memory | 00001111 | 01111101 | mod 000 r/m | 4/5* 4/5*% h
SETLE/SETNG = set byte on less or equal/not greater
to register/memory | 00001111 | 10011110 | mod 000 r/m | 4/5*% 4/5* h
SETNLE/SETG = set byte on not less or equal/greater
to register/memory 00001111 |10011111 | mod 000 r/m | 4/5*% 4/5* h
SL\:ZER = enter proce- 11001000 | 16-bit displacement, 8-bit level
L=0 10 10 b h
L=1 14 14 b h
L>1 17+8(n- | 17+8(n-
1 1
LEAVE = leave proce- 11001001 4 4 b h
dure
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type specified 11001101 | type 37 b
Type 3 11001100 33 b
INTO = Interrupt 4 if 11001110
overflow flag set
IfOF=1 35 b, e
IfOF =0 3 3 b, e

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 15 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
BOUND = Interrupt 5 if 01100010 | mod regrim
Detect value out of range
If out of range 44 b, e e, g h,j
k, r
If in range 10 10 b, e e g, h,j
k, r
Protected Mode Only (INT)
INT: Type Specified
Via interrupt or Trap Gate 71 g, kr
To same privilege level
Via Interrupt or Trap Gate ni g,), kr
To different privilege level
From 286 task to 286 TSS via Task Gate 438 g, kr
From 286 task to Intel 386 SX CPU TSS via Task Gate 465 g, kr
From 286 task to virtual 8086 mode via Task Gate 382 g, kr
From Intel386 SX CPU task to 286 TSS via Task Gate 440 g, kr
From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 467 g kr
From Intel386 SX CPU task to virtual 8086 mode via Task Gate 384 g, kr
From virtual 8086 mode to 286 TSS via Task Gate 445 g kr
From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 472 g, 0. kr
From virtual 8086 mode to privilege level O via trap gate or interrupt gate 275 g, kr
INT: TYPE 3
Via interrupt or Trap Gate 71 g, kr
To same privilege level
Via Interrupt or Trap Gate 11 g, kr
To different privilege level
From 286 task to 286 TSS via Task Gate 382 g, kr
From 286 task to Intel 386 SX CPU TSS via Task Gate 409 g, kr
From 286 task to virtual 8086 mode via Task Gate 326 g, kr
From Intel386 SX CPU task to 286 TSS via Task Gate 384 g, kr
From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 411 g, kr
From Intel386 SX CPU task to virtual 8086 mode via Task Gate 328 g, kr
From virtual 8086 mode to 286 TSS via Task Gate 389 g kr
From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 416 g, 0. kr
From virtual 8086 mode to privilege level O via trap gate or interrupt gate 223

intel.

INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 16 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
INTO:
Via interrupt or Trap Gate 71 g, kr
To same privilege level
Via Interrupt or Trap Gate 11 g, kr
To different privilege level
From 286 task to 286 TSS via Task Gate 384 g, kr
From 286 task to Intel 386 SX CPU TSS via Task Gate 411 g, kr
From 286 task to virtual 8086 mode via Task Gate 328 g, kr
From Intel386 SX CPU task to 286 TSS via Task Gate Intel386 g, kr
DX
From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 413 g kr
From Intel386 SX CPU task to virtual 8086 mode via Task Gate 329 g, kr
From virtual 8086 mode to 286 TSS via Task Gate 391 g kr
From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 418 g, 0. kr
From virtual 8086 mode to privilege level O via trap gate or interrupt gate 223
BOUND:
Via interrupt or Trap Gate 71 g, kr
To same privilege level
Via Interrupt or Trap Gate ni g,) kr
To different privilege level
From 286 task to 286 TSS via Task Gate 358 g, kr
From 286 task to Intel 386 SX CPU TSS via Task Gate 388 g, kr
From 286 task to virtual 8086 mode via Task Gate 335 g, kr
From Intel386 SX CPU task to 286 TSS via Task Gate 368 g, kr
From Intel386 SX CPU task to Intel 386 SX CPU TSS via task gate 398 g kr
From Intel386 SX CPU task to virtual 8086 mode via Task Gate 347 g, kr
From virtual 8086 mode to 286 TSS via Task Gate 368 g kr
From virtual 8086 mode to Intel 386 SX CPU TSS via task gate 398 g, kr
From virtual 8086 mode to privilege level O via trap gate or interrupt gate 223
INTERRUPT RETURN
IRET = Interruptreturn | 11001111 24 9 h’r” k,
Protected Mode Only
(IRET)
To same privilege level (within task) 42 g, h,jk
r

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

Table E-1. Instruction Set Summary (Sheet 17 of 19)

Clock Count Notes

Real Pro- Real Pro-
Ad- tected Ad- tected
dress | Virtual | dress | Virtual

Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
To different privilege level (within task) 86 g, hjk
r
From 286 task to 286 TSS 285 g, h,jk
r
From 286 task to Intel386 SX CPU TSS 318 g, hj,k
r
From 286 task to virtual 8086 task 267 g, h,jk
r
From 286 task to virtual 8086 mode (within task) 113
From Intel386 SX CPU task to 286 TSS 324 g, hj,k
r
From Intel386 SX CPU task to Intel386 SX CPU TSS 328 g, hjk
r
From Intel386 SX CPU task to virtual 8086 task 377 g, hjk
r
From Intel386 SX CPU task to virtual 8086 mode (within task) 113

PROCESSOR CONTROL INSTRUCTIONS

HLT = Halt 11110100 7 7 |

MOV = Move to and from control/debug/test registers

CR_O/CRZ/CRS from 00001111 00100010 1leeereg 10/4/5 10/4/5
register
register from CRO-3 00001111 |00100000 |11leeereg 6 6 |
DRO-3 from register 00001111 |00100011 |1leeereg 22 22 |
DR6-7 from register 00001111 |00100011 |1leeereg 16 16 |
register from DR6-7 00001111 |00100001 |11leeereg 14 14 |
register from DRO-3 00001111 |00100001 |11leeereg 22 22 |
TR6-7 from register 00001111 |00100110 |1leeereg 12 12 |
register from TR6-7 00001111 |[00100100 |(lleeereg 12 12 |
NOP = No operation 10010000 3 3
V_IAI_T = Wait until BUSY# 10011011 6 6
pin is negated
PROCESSOR EXTENSION INSTRUCTIONS
Processor Extension 11011TTT modLLLr/m See h
Escape Intel387
; SX
TTT and LLL bits are opcode datashe
information for coprocessor et for
clock
counts

intel.

INSTRUCTION SET SUMMARY

Table E-1. Instruction Set Summary (Sheet 18 of 19)

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
: dress | Virtual | dress | Virtual
Instruction Format Mode Ad- | Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
PREFIX BYTES
Address size prefix 01100111 0 0
LOCK = Bus lock prefix 11110000 0 0 m
Operand size prefix 01100110 0 0
Segment override prefix
Cs: 00101110 0 0
DS: 00111110 0 0
ES: 00100110 0 0
FS: 01100100 0 0
GS: 01100101 0 0
SS: 00110110 0 0
PROTECTION CONTROL
ARPL = adjust requested privilege level
from register/memory | 01100011 | mod reg r/m | N/A 20/21** a h
LAR =load access rights
from register/memory | 00001111 | 00000010 | mod reg r/m | N/A 15/16* a g hjp
LGDT = load global descriptor
table register |OOOOllll |00000001 |mod010r/m | 1* 1* b, c h,|
LIDT = load interrupt descriptor
table register |OOOOllll |00000001 |mod011r/m | 1* 1* b, c h,|
LLDT = load local descriptor
:Zz:;;erf‘rf:;ﬁ;‘:y 00001111 [00000000 | mod010rm NiA 20724 a ghijl
LMSW = load machine status word
from register/memory | 00001111 | 00000001 | mod110r/m | 10/13 10/13* b, c h, |
LSL = load segment limit
from register memory | 00001111 | 00000011 |m0dregr/m |
Byte-Granular limit N/A 20/21* a g, hijp
Page-Granular limit N/A 25/26* a g, hijp
LTR = load task register
from register/memory | 00001111 | 00000000 | mod001r/m | N/A 23/27* a g, hj!
SGDT = store global descriptor
table register |OOOOllll |00000001 |mod000r/m | 9* 9* b, c h
SIDT = store interrupt descriptor

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-1. Instruction Set Summary (Sheet 19 of 19)

intel.

Clock Count Notes
Real Pro- Real Pro-
Ad- tected Ad- tected
. dress | Virtual | dress | Virtual
Instruction Format
Mode Ad- Mode Ad-
or dress or dress
Virtual | Mode | Virtual | Mode
8086 8086
Mode Mode
table register 00001111 00000001 | mod0O1r/m 9* 9* b, c h
SLDT = store local descriptor table
to register/memory 00001111 | 00000000 | mod0OOT r/m N/A 2/2* a h
SMSW = store machine 00001111 00000001 mod 10 0 /m 2/2* 2/2* b, c h, |
status word
STR = store task register
to register/memory 00001111 | 00000000 | mod0O1r/m N/A 2/2* a h
VERR = verify read access
register/memory 00001111 | 00000000 | mod100r/m N/A 10/11* a g, hjp
VERW = verify write 00001111 | 00000000 | . o N/A 15/16* a g, hj,p
access
NOTES:
Notes a through c apply to Real Address Mode only:
a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6
(invalid opcode).
b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that

partially or fully extends beyond the maximum CS, DS, ES, FS, or GS limit, FFFFH. Exception 12 fault
(stack segment limit violation or not present) will occur in Real Mode if an operand reference is made

that partially or fully extends beyond the maximum SS limit.

C. This instruction may be executed in Real Mode, its purpose is primarily to initialize the CPU for
Protected Mode.

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode:

d. The Intel386 SX CPU uses an early-out multiply algorithm. The actual number of clocks depends on

the position of the most significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use this formula:

Actual Clock = if m <> 0 then max ([log, |m|], 3) + b clocks:

if m = 0 then 3 + b clocks

In this formula, m is the multiplier, and

E-20

b = 9 for register to register

b = 12 for memory to register

Int9|® INSTRUCTION SET SUMMARY

Notes

b = 10 for register with immediate to register
b = 11 for memory with immediate to register.

An exception may occur, depending on the value of the operand.
LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.

LOCK# is asserted during descriptor table accesses.

h through r apply to Protected Virtual Address Mode only:

Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS, or
GS cannot be used due to either a segment limit violation or access rights violation. If a stack limit is
violated, an exception 12 (stack segment limit violation or not present) occurs.

For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an
exception 13 fault (general protection violation). The segment’s descriptor must indicate “present” or
exception 11 (CS, DS, ES, FS, GS not present.) If the SS register is loaded and a stack segment not
present is detected, an exception 12 (stack segment limit violation or not present) occurs.

All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert
LOCK# to maintain descriptor integrity in multiprocessor systems.

JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an
exception 13 (general protection violation) if an applicable privilege rule is violated.

An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level)
An exception 13 fault occurs if CPL is greater than IOPL.

The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the
flag register are updated only if CPL = 0.

The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO when resetting
the PE bit.

Any violation of privilege rules as applied to the selector operand does not cause a protection
exception; rather the zero flag is cleared.

If the coprocessor’'s memory operand violates a segment limit or segment access rights, an exception
13 fault (general protection exception) will occur before the ESC instruction is executed. An exception
12 fault (stack segment limit violation or not present) will occur if the stack limit is violated by the
operand’s starting address.

The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or
an exception 13 fault (general protection violation) will occur.

The instruction will execute in s clocks if CPL < |IOPL. If CPL > IOPL, the instruction will take t clocks.
Clock count shown applies if /O permission allows 1/O to the port in virtual 8086 mode. If I/O bit map

denies permission, exception 13 (general protection fault occurs; refer to clock counts for INT 3
instruction.

E-21

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

E.2 INSTRUCTION ENCODING

All instruction encodings are subsets of the general instruction formamnsin Figure E-1. In-
structions consist of one or two primary opcode bytes, possibly an address specifier consisting of
the “mod r/m” byte and “scaled index” byte, a displacement if required, and an immediate data
field if required.

Within the primary opcode or opcodes, smaller encoding fields may be defined. These fields vary
according to the class of operation. The fields define such information as direction of the opera-
tion, size of the displacements, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have an addressing mode byte follow-
ing the primary opcode byte(s). This byte, the mod r/m byte, specifies the address mode to be
used. Certain encodings of the mod r/m byte indicate a second addressing byte, tmelegale-i
base byte, which follows the mod r/m byte to fully specify the addressing mode.

Addressing modes can include a displacement immediately following the mod r/m byte, or scaled
index byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits.

If the instruction specifies an immediate operand, the immediate operand follows any displace-
ment bytes. The immediate operand, if specified, is always the last field of the instruction.

Figure E-1 illustrates several of the fields that can appear in an instruction, such as the mod field
and the r/m field, but the figure does not show all fields. Several smaller fields also appear in cer-
tain instructions, sometimes within the opcode bytes themselves. Table E-2 is a complete list of
all fields appearing in the instruction set. Following Table E-2 are detailed tables for each field.

|TTTTTTTT TTTTTTTT| mod TT T r/m | ss index base |d32| 16 | 8 |none data32| 16 | 8 |none

7 07 0 765320 765320
| | | I | | |
opcode “mod r/m” “sih address immediate
(one or two bytes) bvte byte displacement data
(T represents an opcode bit) Y 4 (4,2,1 bytes (4, 2, 1 bytes
or none) or none)

register and address
mode specifier

Figure E-1. General Instruction Format

E-22

intel.

INSTRUCTION SET SUMMARY

Table E-2. Fields Within Instructions

Field Name Description Nurréli)tir of
w Specifies if data is byte of full size (full size is either 16 or 32 bits) 1
d Specifies Direction of Data Operation 1
S Specifies if an Immediate Data Field must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod:
3 for r/m
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, specifies a condition asserted
or a condition negated 4
NOTE: Figure E-1 shows encoding of individual instructions.

E.2.1 32-bit Extensions of the Instruction Set

With the Intel386 EX processor the 8086/80186/80286 instruction set is extended in two orthog-
onal directions: 32-bit forms of all 16-bit instructions are added to support the 32-bit data types,
and32-bitaddressing modes are made available for all instructions referencing memory. This or-
thogonal instruction set extension is accomplished having a Default (D) bit in the code segment
descriptor, and by having 2 prefixes to the instruction set.

The instruction defaults to operations of 16 bits or 32 bits, depending on the setting of the D bit
in the code segment descriptor, which gives the default length (either 32 bites or 16 bits) for both
operands and effective addresses when executing that code segment. In fadRess Mode

or Virtual 8086 Mode, no code segmentagstors are used, but a D value of 0 is assumed inter-
nally by the Intel386 EX processor when operating in those modes (for 16-bit default sizes com-
patible with the 8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, allow overriding
individually the Default selection of operand size and effective address size. These prefixes may
precede any opcode bytes and affect only the instruction they precede. If necessary, one or both
prefixes may be placed before the opcode bytes. The presence of the Operand Size Prefix and the
Effective Addres#refix toggles the operand size or the effective address size, respectively, to the
value “opposite” from the default setting. For example, if the default operand size is for 32-bit
data operations, then presence of the Operand Size Prefix toggles the instruction to use 32-bit ef-
fective address computations.

These 32-bit extensions are available in all modes, including the Real Address Mode or the Vir-
tual 8086 Mode. In these modes théadét is always 16 bits, so prefixes are needed to specify
32-bit operands or addresses. For instructions with more than one prefix the order of prefixes is
unimportant.

E-23

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

intel.

Unless specified otherwise, instructions with 8-bit and 16-bit operands do not affect the contents
of the high-order bits of the extended registers.
E.2.2 Encoding of Instruction Fields

Within the instruction are several fields indicating register selection, addressing mode, and so on.
The exact encodings of these fields are defined in the next several section.

E.2.2.1 Encoding of Operand Length (w) Field

For any given instruction performing a data operation, the instruction is executing as a 32-bit op-
eration or a 16-bit operation. Within the constraints of the operation size, the w field encodes the
operand size as either one byte or the full operation size, as shown in Table E-3.

Table E-3. Encoding of Operand Length (w) Field

w Eield Operand Size During 16-bit | Operand Size During 32-bit
Data Operations Data Operations
0 8 bits 8 bits
1 16 bits 32 bits

E.2.2.2

Encoding of the General Register (reg) Field

The general register is specified by the reg field, which may appear in the primary opcode bytes,
or as the reg field of the “mod r/m” byte, or as the r/m field of the “mod r/m” byte.

Table E-4. Encoding of reg Field When w Field is not Present in Instruction

reg Field Register Selected During Register Selected During
16-bit Data Operations 32-bit Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 Sl ESI
m DI EDI

E-24

Int9|® INSTRUCTION SET SUMMARY

Table E-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field During 16-bit Data Operations

Function of w Field
reg
(when w = 0) (when w = 1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH DI

Register Specified by reg Field During 32-bit Data Operations

Function of w Field

reg
(when w = 0) (when w = 1)
000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 DH ESI
11 BH EDI

E.2.2.3 Encoding of the Segment Register (sreg) Field

The sreg field in certain instructions is a 2-bit field allowing one of the four 80286 segment reg-
isters to be specified. The sreg field in other instructions is a 3-bit field, allowing the FS and GS
segment registers to be specified.

Table E-6. Encoding of the Segment Register (sreg) Field

2-B'|__ti:|r§92 Segment Register Selected 3-B'|:ti2|r§g3 Segment Register Selected
00 ES 000 ES
01 Cs 001 Cs
10 S 010 SS
1 DS 011 DS
100 FS
101 GS
110 do not use
11 do not use

E-25

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

E.2.2.4 Encoding of Address Mode

Except for special instructions, such as PUSH or POP, where the addressing mode is pre-deter-
mined, the addressing mode for the current instruction is specified by addressing bytes following
the primary opcode. The primary addressing byte is the “mod r/m” byte, and a second byte of ad-
dressing information, the “s-i-b” (scale-index-base) byte can be specified.

The s-i-b byte is specified when using 32-bit addressing mode and the “mod r/m” byte has r/m =
100 and mod = 00, 01, or 10. When the s-i-b byte is preser82tbé addressing mode is a func-
tion of the mod, ss, index, and base fields.

The primary addressing byte, the “mod r/m” byte, also contains three bits (shown as TTT in Fig-
ure E-1) sometimes used as an extension of the primary opcode. The three bits, however, may
also be used as a register field (reg).

When calculating an effective address, either 16-bit addressing or 32-bit addressing is used. 16-

bit addressing uses 16-bit address components to calculate the effective address while 32-bit ad-
dressing uses 32-bit address components to calculate the effective address. When 16-bit address:
ing is used, the “mod r/m” byte is interpreted as a 32-bit addressing mode specifier.

The following tables define all encodings of all 16-bit addressing modes and 32-bit addressing
modes.

E-26 I

intel.

INSTRUCTION SET SUMMARY

Table E-7. Encoding of 16-bit Address Mode with “mod r/m” Byte

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[BX + SI] 10 000 DS:[BX + S| + d16]

00 001 DS:[BX + DI] 10 001 DS:[BX + DI + d16]

00 010 SS:[BP + Sl] 10 010 SS:[BP + Sl + d16]

00 011 SS:[BP + DI] 10 011 SS:[BX + DI + d16]

00 100 DS:[SI] 10 100 DS:[SI + d16]

00 101 DS:[DI] 10 101 DS:[DI + d16]

00 110 DS:d16 10 110 SS:[BP + d16]

00 111 DS:[BX] 10 111 DS:[BX + d16]

01 000 DS:[BX + Sl + d8] 11 000 register - see tables below
01 001 DS:[BX + DI + d8] 11 001 register - see tables below
01 010 SS:[BP + Sl + d8] 11 010 register - see tables below
01 o11 SS:[BP + DI + d8] 11 011 register - see tables below
01 100 DS:[SI + d8] 11 100 register - see tables below
01 101 DS:[DI + d8] 11 101 register - see tables below
01 110 SS:[BP + d8] 11 110 register - see tables below
01 111 DS:[BX + d8] 11 111 register - see tables below

Register Specified by r/m
During 16-bit Data Operations

Function of w Field

mod r/m
(whenw=0) |(whenw=1)

11 000 AL AX
11 001 CL CX
11 010 DL DX
11 011 BL BX
11 100 AH SP
11 101 CH BP
11 110 DH Sl
11 111 BH DI

Register Specified by r/m
During 32-bit Data Operations

Function of w Field

mod r/m
(whenw=0) |(whenw=1)

11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

E-27

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL

Table E-8. Encoding of 32-bit Address Mode with “mod r/m” Byte (No

intel.

s-i-b Byte Present)

mod r/m Effective Address mod r/m Effective Address

00 000 DS:[EAX] 10 000 DS:[EAX + d32]

00 001 DS:[ECX] 10 001 DS:[ECX + d32]

00 010 SS:[EDX] 10 010 SS:[EDX + d32]

00 011 SS:[EBX] 10 011 SS:[EBX + d32]

00 100 s-i-b is present 10 100 s-i-b is present

00 101 DS:[d32] 10 101 SS:[EBP + d32]

00 110 DS:[ESI] 10 110 SS:[ESI + d32]

00 111 DS:[EDI] 10 111 DS:[EDI + d32]

01 000 DS:[EAX + d8] 11 000 register - see tables below
01 001 DS:[ECX + d8] 11 001 register - see tables below
01 010 SS:[EDX + d8] 11 010 register - see tables below
01 o11 SS:[EBX + dg] 11 011 register - see tables below
01 100 s-i-b is present 11 100 register - see tables below
01 101 SS:[EBP + dg] 11 101 register - see tables below
01 110 DS:[ESI + d8] 11 110 register - see tables below
01 111 DS:[EDI + d8] 11 111 register - see tables below

E-28

Register Specified by r/m
During 16-bit Data Operations

Function of w Field

mod r/m
(whenw=0) |(whenw=1)

11 000 AL AX
11 001 CL CX
11 010 DL DX
11 011 BL BX
11 100 AH SP
11 101 CH BP
11 110 DH Sli
11 111 BH DI

Register Specified by r/m
During 32-bit Data Operations

Function of w Field

mod r/m
(whenw=0) |(whenw=1)

11 000 AL EAX
11 001 CL ECX
11 010 DL EDX
11 011 BL EBX
11 100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EDI

Int9|® INSTRUCTION SET SUMMARY

Table E-9. Encoding of 32-bit Address Mode (“mod r/m” Byte and s-i-b Byte Present)

mod r/m Effective Address

00 000 DS:[EAX + (scaled index)]
00 001 DS:[ECX + (scaled index)]
00 010 DS:[EDX + (scaled index)]
00 011 DS:[EBX + (scaled index)]
00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)]

00 111 DS:[EDI + (scaled index)]

01 000 DS:[EAX + (scaled index) + d8]
01 001 DS:[ECX + (scaled index) + d8]
01 010 DS:[EDX + (scaled index) + d8]
01 011 DS:[EBX + (scaled index) + d8]
01 100 SS:[ESP + (scaled index) + d8]
01 101 SS:[EBP + (scaled index) + d8]
01 110 DS:[ESI + (scaled index) + d8]
01 111 DS:[EDI + (scaled index) + d8]
10 000 DS:[EAX + (scaled index) + d32]
10 001 DS:[ECX + (scaled index) + d32]
10 010 DS:[EDX + (scaled index) + d32]
10 011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10 110 DS:[ESI + (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32]

NOTE: Mod field in “mod r/m” byte; ss, index, base fields in “s-i-b” byte.

Ss Scale Factor
00 x1
01 x2
10 x4
11 x8
Index Index Register
000 EAX
001 ECX
010 EDX
on EBX
100 no index regt
101 EBP
110 ESI
111 EDI

T When index field is 100, indicating “no index register,”
the ss field must equal 00. If this is not true, the
effective address is undefined

E-29

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

E.2.2.5 Encoding of Operation Direction (d) Field

In many two-operand instructiotise d field is present to indicate which operand is considered
the source and which is the destination.

Table E-10. Encoding of Operation Direction (d) Field

d Direction of Operation

0 Register/Memory<--Register
“reg” field indicates source operand,;
“mod r/m” or “mod ss index base” indicates destination operand.

1 Register<--Register/Memory
“reg” field indicates destination operand;
“mod r/m” or “mod ss index base” indicates source operand.

E.2.2.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with immediate data fields. The s field has an effect
only if the size of the immediate data is 8 bits and is being placetbitba or 32-bit destination.

Table E-11. Encoding of Sign-Extend (s) Field

S Effect on Immediate Data8 Effect on Immediate Data 16|32
0 None None
Sign-Extend Datas8 to fill None
16-bit or 32-bit destination

E.2.2.7 Encoding of Conditional Test (tttn) Field

For the conditional instructions (conditional jumps and set on condition), tttn is encoded with n
indicating to use the condition (n=0) or its negation (n=1), and ttt giving the condition to test.

Table E-12. Encoding of Conditional Test (tttn) Field

Mnemonic Condition tttn
(0] Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal oon
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less or Equal/Greater Than mnm

E-30

Int9|® INSTRUCTION SET SUMMARY

E.2.2.8 Encoding of Control or Debug or Test Register (eee) Field

For the loading and storing of the Control, Debug and Test registers.
Table E-13. When Interpreted as Control Register Field

eee Code Reg Name
000 CRO
010 CR2
011 CR3

NOTE: Do not use any other encoding

Table E-14. When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

NOTE: Do not use any other encoding

Table E-15. When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TR7

NOTE: Do notuse any other encoding

E-31

intel.

GLOSSARY

intel.

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1, GUIDE TO THIS MANUAL, discusses notational conventions.)

Assert

BIOS

BIU

Boundary-scan

CSsu

Clear

Deassert

DMA

DOS Address Space

The act of making a signal active (enabled). The
polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To
assertRD# is to drive it low; to assert HLDA is to
drive it high.

Basic input/output system. The interface between the
hardware and the operating system.

Bus interface unit. The internal peripheral that
controls the external bus.

The termboundary-scamefers to the ability to scan
(observe) the signals at the boundary (the pins) of a
device. A major omponent of thd TAGstandard.

Chip-select unit. The internal peripheral that selects
an external memory device during an external bus
cycle.

The termclear refers to the value of a bit or the act of
giving it a value. If a bit is clegits value is “0”;
clearing a bit gives it a “0” value.

The act of making a signal inactive (disabled). The
polarity (high/low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To
deassert RD# is to drive it high; to deassert HLDA is
to drive it low.

Direct memory access controller. The internal
peripheral that allows external or internal peripherals
to transfer information directly to or from the system.
The two-channel DMA controller is an enhanced
version of the industry-standard 8237A DMA
peripheral.

Addresses OH—03FFH. The internal timers, interrupt
controller, serial 1/0O ports, and DMA controller can

Glossary-1

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

DOS-compatible Mode

Edge-triggered

Enhanced DOS Mode

Expanded Address Space

ICU

Idle Mode

Interrupt Latency

Glossary-2

be mapped into this space. In this manual, the terms
DOS addresandPC/AT addresgare synonymous.

The addressing mode in which the internal timer,
interrupt controller, serial /0 ports, and DMA
controller are mapped into the DOS address space.
This mode decodes only the lower 10 address bits, so
theexpanded address spaiseinaccessible.

The mode in which the intaupt contoller recognizes

a rising edge (low-to-high transition) on an interrupt
request signal as an interrupt request. The internal
peripherals use edge-triggered interrupt requests; this
is compatible with the PC/AT bus specification.
External peripherals can use either edge-triggered or
level-sensitivénterrupt requests.

The addressing mode in which the internal timer,
interrupt controller, serial 1/0 ports, and DMA
controller are mapped into both tB®S address
spaceand theexpanded address spadeis mode
decodes all 16 address bits. All internal peripherals
can be accessed in the expanded address space; the
internal timer, interrupt controller, serial I/O ports,

and DMA controller can also be accessed in the DOS
address space.

Addresses OFO0OOH—OF8FFH. All internal peripheral
registers reside in this space. The internal timer,
interrupt controller, serial 1/0O ports, and DMA
controller can also be mapped into DOS (or PC/AT)
address space.

Interrupt control unit. The internal peripheral that
receives interrupt requests from internal peripherals
and external pins, resolves priority, and presents the
requests to the CPU. The ICU is functionally identical
to two industry-standard 82C59A programmable
interrupt controllers connected in cascade.

The power conservation mode that freezes the core
clocks but leaves the peripheral clocks running.

The delay between the time that the master 82C59A
presents an interrupt request to the CPU and the time
that the interrupt acknowledge cycle begins.

intel.

Interrupt Response Time

Interrupt Resolution

ISR

JTAG

Level-sensitive

LSB

NonDOS Mode

Nonintrusive DOS Mode

Normally not-ready

GLOSSARY

The amount of time required to complete an interrupt
acknowledge cycle and transfer program control to
the interrupt service routine.

The delay between the time that the interrupt
controller receives an interrupt request and the time
that the master 82C59A presents the request to the
CPU.

Interrupt service routine. A user-supplied software
routine designed to service specific interrupt requests.

Joint Test ActiorGroup. The IEEE thnical
subcommittee that developed the testability standard
published as Standard 1149.1-19%EE Standard
Test Access Port and Boundary-Scan Architegture
and its supplement, Standart¥49.1a-1993. The test-
logic unit is fully compliant with this standard.

The mode in which the inteupt contoller recognizes

a high level (logic one) on an interrupt request signal
as an interrupt request. Unlike adge-triggered
interrupt request, a level-sensitive interrupt request
will continue to generate interrupts as long as it is
asserted.

Least-significant bit of a byte or least-significant byte
of a word.

The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller are mapped into tlexpanded address
space This mode decodes all 16 address bits. All
internal peripherals can be accessed only in the
expanded address space.

The addressing mode in which the internal timer,
interrupt controller, serial I/O ports, and DMA
controller can be individually mapped out of DS
address spacand replaced by the corresponding
external peripherals. This mode decodes only the
lower 10 address bits, so thepanded address space
is inaccessible.

The termnormally not-readyrefers to a system in
which a bus cycle continues until the accessed device
asserts READY#.

Glossary-3

Intel386™ EX EMBEDDED MICROPROCESSOR USER’'S MANUAL Int9I®

PC/AT Address Space

Pipelining

Powerdown Mode

RCU

Reserved Bits

Set

SIO Unit

SMM

SMRAM

SSIO Unit

Glossary-4

Addresses OH—03FFH. The internal timers, interrupt
controller, serial 1/O ports, and DMA controller can
be mapped into this space. In this manual, the terms
DOS addresandPC/AT addresgare synonymous.

A bus interface technique that controls the address
and status outputs so the outputs for the next bus cycle
become valid before the end of the current bus cycle,
allowing external bus cycles to overlap. By increasing
the amount of time available for exhal memory or

I/O devices to respond, pipelining allows systems to
achieve high bandwidth with relatively slow,
inexpensive components.

The power conservation mode that freezes both the
core clocks and the peripheral clocks.

Refresh control unit. The module that simplifies the
interface between the processor and DRAM
components by providing the necessary bus control
and timing for refresh operations.

Register bits that are not used in this device but may
be used in future implementations. Avoid any
software dependence on these bits.

The termsetrefers to the value of a bit or the act of
giving it a value. If a bit is set, its value is “1”; setting
a bit gives it a “1” value.

Serial input/output unit. The internal peripheral that
allows the system to communicate with external
peripheral devices and modems.

System management mode. The hardware and
software enhancement that reduces system power
consumption by allowing the device to execute
specific routines for power management.

A 32-Kbyte memory partition (38000H-3FFFFH)
used forSMM. The upper 512 bytes (3FEOOH-
3FFFFH) are reserved for the CPU and must reside in
RAM; the remainder of the partition is used for user-
supplied driver code and magside in read-only
storage.

Synchronouserial input/output unit. The internal
peripheral that provides 16-bit bidirectional serial

intel.

State Time (or State)

TAP

TCU

Test-logic Unit

UART

WDT

GLOSSARY

communications. The transmitter and receiver can
operate independently (with different clocks) to
provide full-duplex communication.

The basic time unit of the device; the combined

period of the two internal timing signals, PH1 and

PH2. With a 50 MHz external clock, one state time
equals 80 ns. Because the device can operate at many
frequencies, this manual defines time requirements in
terms ofstate timesather than in specific units of

time.

Test access port. The dedicated input and output pins
through which a tester communicates with tiwgt-
logic unit A major component of th&TAGstandard.

Timer/counter unit. The internal peripheral that
provides three independent 16-bit down-counters.

The module that facilitates testing of the device logic
and interconnections between the device and the
board. This module is fully compliant with IEEE
Standard 1149.1, commonly called thHeAG

standard.

Universal asynchronous receiver and transmitter. A
part of theSIO unit

Watchdog timer. An internal, 32-bit down-counter
that can operate as a general-purpose timer, a software
watchdog timer, or a bus monitor.

Glossary-5

intel.

Index

intel.

#, defined, 1-3
82C59A, 9-1

A
Address bus6-1
Address lines
new, 3-1
Address space
configuration register4-6
expanded 1/04-3
enabling/disabling4-8
I/0 decoding techniques}-6
I/0 for PC/AT systems4-2
peripheral registers4-15
Addressing modes4-9-4-14
DOS-compatible mode4-9-4-10
enhanced DOS mode}-11, 4-13
nonDOS mode4-11 4-14
nonintrusive DOS mode4-11, 4-12
AEN signal, deriving,B-2-B-3
AEOI mode, 9-9
aligned data transfer§-9
Applications, typical,2-1
Architectural overview,2-1-2-4
Assert, defined,1-4
Asynchronous serial I/O unigeeSerial I/O unit
Automatic end of interrupt (AEOI) mod&-9

B
Baud-rate generatol 1-4-11-5 13-5-13-6
BIU, SeeBus interface unit
Block diagram
clock and power management un;2
DMA unit, 12-2
1/0 port, 16-2
JTAG test-logic unit,18-2
SIO unit, 11-2
baud-rate generator clocid,1-4
modem control signals]11-29
receiver,11-9
transmitter,11-7

INDEX

SSIO unit, 13-2 13-3
baud-rate generator clock,3-5
timer/counter unit,10-2
watchdog timer unit,17-2
BOUND, 18-2
Boundary scanegister, 18-1
Built-in self-test, 8-12
Bulletin board system (BBS)1-7
Bus arbiter
register addressegl-15 D-1
Bus arbiter, configuration5-3
Bus control arbitration12-9
Bus cycle length adjustments for oagping
chip-select regions14-11, 14-12
Bus interface pins6-3
Bus interface unit,3-4, 6-1-6-37
address bus6-1
bus control pins,6-2
bus cycles,6-13-6-33
BS8, 6-31-6-33
halt/shutdown,6-26-6-27
interrupt acknowledgef-23-6-25
pipelined, 6-19-6-23
read, 6-13-6-14
refresh, 6-28-6-30
write, 6-16-6-18
bus lock, 6-34-6-35
LOCK# signal duration,6-35
locked cycle activators6-34
locked cycle timing,6-34
bus operation6-5-6-14
bus state diagran®-8, 6-20
bus statesp-7-6-8
bus status
definitions, 6-5
data bus,6-1
transfers and operand alignmef&9
HOLD/HLDA, 6-20, 6-35
departures from PC/AT architecturB-4
HOLD signal latency,6-37
timing, 6-36

Index-1

INTEL386™ EX MICROPROCESSOR USER’S MANUAL

operation during idle mode3-5
overview, 6-1-6-3
pipelining, 6-8
ready logic, 6-10
See als®Bus control arbitration
signals, 6-3-6-4
Bus signals, departures from PC/AT
architecture,B-2-B-3
Bus size control for chip-selecti4-11
BYPASS, 18-2

C
CAS#-before-RAS# refreshl 5-1, 15-12
Chip-select unit,14-1-14-24
operation, 14-2-14-12
bus cycle length adjustment$4-12
bus cycle length controll4-11
bus size control14-11
defining a channel's address block4-2-
14-9
overlapping regions14-11
system management mode suppd-10
overview, 14-1
programming,14-13-14-20
considerations14-22
CS"ADH, 14-17 D-8
CSADL, 14-18 D-9
CSIMSKH, 14-19D-10
CSMSKL, 14-2Q0 D-11
P2CFG egister, 14-16
PINCFG register,14-15
UCSADH, 14-17, D-8
UCSADL, 14-18 D-9
UCSMSKH, 14-19D-10
UCSMSKL, 14-20D-11
register addresse€-17, D-3
registers,14-14-14-20
signals, 14-13
Clear, defined,1-5
Clock and power managemt unit, 8-1-8-13
clock generation logic8-1-8-3
controlling power management mode&:8
controlling PSCLK frequency8-7
design considerations
powerdown considerationg-13
reset considerations3-11

Index-2

intel.

idle mode, 8-9

overview, 8-1-8-7

power management logi@-3-8-5

powerdown mode8-10

registers,8-6

CLKPRS, 8-7
PWRCON, 8-8

reset considerations8-11

signals, 8-6

synchronization,8-3

timing diagram,8-9-8-11
Clock management

register addressed-19 D-5
Clock synchronization8-3
Code Prefetch Unit3-4
CompuServe fams, 1-7
Configuration

bus arbiter,5-3-5-5

core, 5-21-5-22

device, 5-1-5-37

DMA controller, 5-3

example,5-28-5-33

I/0 ports, 5-23 5-255-26,5-27,9-18 10-22

11-1811-19 11-2Q 14-16 D-43, D-44,

D-45

interrupt control unit,5-7

pins, 5-23-5-27

Port92, 5-22

procedure,5-28

refresh control unit5-3

serial I/O unit,5-14

serial synchronous 1/0O uni-18

timer/counter unit,5-11

worksheets,5-34-5-37
Core

configuring, 5-21-5-22
Core architecture2-1
Core overview

CX enhancements3-1

Internal architecture3-2
CPU-only reset5-22 B-4
CSU, SeeChip-select unit
Customer servicel-6
CX internal architecture3-2

intel.

D
Deassert, defined]-4
Decoding techniques, /0 addregk,6
Design considerations
clock and power management unf; 11
input/output ports,16-10
interrupt control unit,9-29-9-30
JTAG test-logic unit,18-14
refresh control unit,15-11
synchronous serial I/0 unifl 3-25
Device configuration,5-1-5-37
procedure,5-28
register addresse€-19, D-5
worksheets,5-34-5-37
DMA controller, 12-1-12-61
block diagram,12-2
configuring, 5-3
departures from PC/AT architecturB-1-B-3
DMACLR command,12-50
DMACLRBP command,12-50
DMACLRMSK command,12-50
DMACLRTC command,12-50
interrupts, 12-26-12-27
operation, 12-5-12-27
8237Acompatibility, 12-27
basic refresh cycle15-5
buffer-transfer modes]2-12
bus control arbitration12-9
bus cycle options for data transfe2-5-
12-8
cascade model2-25-12-26
changing priority of DMA channel and
external bus request4,2-10
data-transfer modes
block, 12-18-12-20
demand,12-21-12-24
single, 12-14-12-17
DMA transfers, 12-5
endingDMA transfers, 12-10
starting DMA transfers 12-9
overview, 12-1-12-4

INDEX

programming,12-28-12-51
address and byte count registet2-33
channel registers12-33
considerations12-50
DMAOBYCn, 12-33, D-24
DMAOREQn, 12-33, D-24
DMAOTARN, 12-33, D-24
DMA1BYCn, 12-33, D-24
DMA1REQn, 12-33, D-24
DMAL1TARN, 12-33, D-24
DMABSR register,12-46
DMACFG, 5-6,12-32 D-14
DMACFG register,12-32
DMACHR, 12-47 D-15
DMACHR register, 12-47
DMACMD1, 12-35D-16
DMACMDL1 register, 12-35
DMACMD?2, 12-37 D-17
DMACMD?2 register, 12-37
DMAGRPMSK, 12-45 D-18
DMAIEN, 12-48 D-19
DMAIEN register, 12-48
DMAIS, 12-49 D-20
DMAIS register, 12-49
DMAMOD1, 12-39D-21
DMAMOD1 register, 12-38
DMAMOD2, 12-41 D-22
DMAMOD? register, 12-40-12-41
DMAMSK, 12-44 D-23
DMAOVFE register,12-34
DMASRR, 12-43 D-26
DMASRR register,12-42 12-43
DMASTS, 12-36 D-27
DMASTS register,12-36
PINCFG register,12-28 12-31

register addressegl-15 D-1

registers,12-28

signals, 12-4

using with external deviceH-3

Documents, related]-5
DOS Address, defined]-4

Index-3

INTEL386™ EX MICROPROCESSOR USER’S MANUAL Int9I®

DOS compatibility
departures from PC/AT architecture

bus signals,B-2
CPU-only reset,B-4
DMA unit, B-1
HOLD, HLDA pins, B-4, B-5
interrupt control unit,B-4
SIO units, B-4

DRAM, refreshing,15-12

DRAM, SeeRefresh control unit

E

EISA compatibility, 4-3-4-5

ESE bit programming4-8

Exceptions and interrupts, relative priority; 7

Execution Unit, 3-4, 3-5

Expanded address, definei;4

Expanded I/0 address spaek,3
enabling/disabling4-8

=

FaxBack servicel-6

Flow diagram
CSU bus cycle length adjustmerit4-12
demand data-transfer mod&2-22-12-24
DMA block data-transfer model2-19-12-20
DMA cascade model2-26
DMA demand data-transfer modé&2-22
DMA single data-transfer model,2-15-12-17
interrupt process9-11,9-12 9-13
SIO reception,11-11
SIO transmission11-8

H

HALT cycle
Ready generation8-10

HALT restart from SMM, 7-9

HOLD, HLDA
departures from PC/AT architecturB-4, B-5
timing, 6-20, 6-35

I/O ports,Seelnput/output ports
I/O restart from SMM,7-9
ICU, Seelnterrupt control unit

Index-4

IDCODE, 18-2
Identifier registers,3-6, 7-15
Idle mode, 8-9
bus interface unit operation during-5
SMM interaction with, 8-5
timing diagram,8-9
watchdog timer unit operation durin@-5
IEEE Standard Test Access Port and
Bounday-Scan Architecture,18-1
Input/output ports,16-1-16-10
block diagram,16-2
design considerations]6-10
overview, 16-1-16-5
pin multiplexing, 16-5
pin reset status16-5
programming
initialization sequence16-10
pin configuration,16-7
PnCFG register,16-7
PnDIR register, 16-8
PnLTC register, 16-8
PnPIN register,16-9
register addressed-19 D-5
registers,16-6
signals, 16-5
Instruction Decode Unit3-4
Instruction Queue 3-5
Instruction Register (IR)18-7
Instructions, notational convention$-3
Interrupt control unit,9-1-9-30
configuring, 5-7
departure from PC/AT architectur&-4
design considerations)-29
interrupt acknowledge cycle9-29-9-30
interrupt detection9-29
interrupt polling, 9-14-9-15
interrupt priority, 9-6-9-8
assigning arnterrupt level, 9-6
changing the default interrupt structur@;7
determining priority,9-7-9-8
interrupt process9-9-9-14
interrupt sources9-4
interrupt service routinef-23
interrupt vectors,9-8

intel.

operation,9-4-9-16
overview, 9-1
programming,9-15-9-32
considerations9-32
ICW1, 9-20 D-28
ICW1 register,9-20
ICW2, 9-21 D-29
ICW2 register,9-21
ICW3, 9-22 9-23 D-29,D-30
ICW3 register,9-22 9-23
ICW4, 9-24 D-30
ICW4 register,9-24
IERN, 11-27, D-32
IIRn, 11-28, D-33
INTCFG, 5-10 9-19 D-34
INTCFG register,9-19
OCWa1, 9-25 D-40
OCW1 register,9-25
OCW2, 9-26 D-41
OCW?2 register,9-26
OCWS3, 9-27, D-42
OCWa3 register,9-27
P3CFG egister,9-18
POLL, 9-28 D-49
POLL register,9-28
register addresse€-16 4-17, D-2, D-3
registers,9-15-9-17
signals, 9-5
spurious interrupts9-30
Interrupt priority, 9-6-9-8
Interrupt service routine6-23
Interrupts and exceptions, relative priorify; 7

J
JTAG reset,8-12
JTAG test-logic unit,18-1-18-14
block diagram,18-2
design considerations] 8-14
operation, 18-3-18-9
bounday-scan register,18-9
bypass register18-8
identification code register]8-8
instruction register 18-7
test access port controllet,8-4-18-6
instructions, 18-7-18-8
state diagram,18-6

INDEX

overview, 18-1-18-2

Resetting upon power-ugd,8-3

testing, 18-10-18-11
bypassing devices on a boarti3-10
disabling the output drivers] 8-11
identifying the device, 18-10
sampling device operation and preloading
data, 18-10
testing the interconnectiond,8-10

timing information, 18-12-18-13

L

Literature, 1-8

Literature, ordering,1-5, 1-8
LOCK#, 6-34-6-35
lockout sequencel 7-4

M

Manual contents, summant-1-1-2
Measurements, defined,-3
Misaligned data transfer§-9
Mode, 12-22

N

Naming conventions1-3-1-4
Non-page mode]15-13
Nonspecific EOl command9-14
Notational conventions1-3-1-4
Numbers, conventions].-3

@)

Operand alignment
aligned, 6-9
misaligned, 6-9

Operating mode 9-8

]
Page mode 15-12
Paging Unit, 3-4, 3-5
PC/AT Address, dimed, 1-4
PC/AT system aifiitecture, departures fronB-1
Performance 2-1
Peripherals, internal
configuring, 5-3-5-37
DOS compatible 4-2
embedded application-specifid-2

Index-5

INTEL386™ EX MICROPROCESSOR USER’S MANUAL

register locations4-5, 4-15

Peripherals, summang-3

Physical address spac8;1

Pin configuration,5-23
PINCFG, 5-24,10-23 11-17,12-31,13-17,
14-15 D-46

Pin descriptions A-1-A-10

intel.

interrupt control unit,9-32

RCU, 15-6-15-10
REMAPCFG example4-8

serial 1/0 unit, 11-15-11-32
SSI0, 13-17#13-25
timer/counter unit,10-20-10-33
watchdog timer unit,17-7-17-12

Pin states after reset and during idle, powerdown, Programming considerations

and hold, A-9
Pipelined instructions, define®-2
Port configuration
P1CFG,5-2511-18 D-43
P2CFG,5-26,11-19 14-16 D-44
P3CFG,5-27,9-18 10-22 11-2Q D-45
PnCFG, 16-7
PnDIR, 16-8 D-47
PnLTC, 16-8 D-48
PnPIN, 16-9 D-48
PORT92,5-22 D-50
PORT92
register addresse€-17, D-3
Power management
controlling modes 8-8, 17-4-17-6
logic, 8-3-8-7
programming
PWRCON, 8-8,17-11, D-51
register addresse€-19 D-5
See alsddle mode, powerawn mode, system
management mode
Powerdown mode
considerations8-13
SMM interaction with, 8-5
timing diagram,8-11
Powerup
Built-in self-test, 8-12
JTAG reset,8-12
Prefetch Queue3-4
Priority of exceptions and interruptd,-7
Programmed operating mod8;8
Programming
chip-select unit,14-13-14-20
clock and power management ur¢; 7-8-10
DMA controller, 12-28-12-51
ESE bit, 4-8

Index-6

chip-select unit,14-22

DMA controller, 12-50

serial I/O unit, 11-32

timer/counter unit,10-33
Protected mode9-8
Protection Test Unit3-5
PSCLK, 8-1-8-2,8-7,10-1,10-3 10-21, 13-1,

13-513-18

PSCLK frequency

Controlling, 8-7
PSRAM, 15-11

R

RAS#-only refresh,15-1, 15-12
RCU, SeeRefresh control unit
Ready logic,6-10
Real mode,9-8
Refresh control unit15-1-15-16
bus arbitration,15-5
configuring, 5-3
connections,15-3
design considerations] 5-11
dynamic memory control15-1
operation, 15-5
overview, 15-2-15-5
programming,15-6-15-10
RFSADD, 15-1Q D-54
RFSADD rgister, 15-10
RFSBAD, 15-9 D-54
RFSBAD register,15-9
RFSCIR, 15-7, D-55
RFSCIR register15-7
RFSCON, 15-8 D-55
RFSCON register,15-8
refresh addressed,5-4
refresh intervals15-4
refresh methods15-1

intel.

register addresse€-18 D-4
registers,15-6
signals, 15-4
Register
naming conventionsl-4
organization,4-1-4-20
Register bits, notational conventionk;4
Register names, notational conventiods4
Register, status during SMM/-3
Registers
BOUND, 18-2
BYPASS, 18-2
CLKPRS, 8-6,8-7,13-16 13-19 D-7
Componenand revision I1D,7-15
CSnADH, 14-1414-17,D-8
CSADL, 14-14 14-18 D-9
CIIMSKH, 14-14 14-19 D-10
CIIMSKL, 14-14 14-2Q D-11
DLHnN, 11-15, 11-22, D-12
DLLn, 11-15, 11-22, D-12
DMAOBYCn, 12-28, 12-33, D-24
DMAOREQn, 12-28, 12-33, D-24
DMAOTARN, 12-28, 12-33, D-24
DMA1BYCn, 12-28, 12-33, D-24
DMA1REQn, 12-28, 12-33, D-24
DMA1TARN, 12-28, 12-33, D-24
DMABSR, 12-29 12-46 D-13
DMACFG, 5-6,12-28 12-32 D-14
DMACHR, 12-3Q 12-47, D-15
DMACMD1, 12-28 12-35 D-16
DMACMD2, 12-29 12-37, D-17
DMAGRPMSK, 12-29 12-45 D-18
DMAIEN, 12-3Q12-48 D-19
DMAIS, 12-3Q 12-49 D-20
DMAMOD1, 12-29 12-38 12-39 D-21
DMAMOD?2, 12-29 12-40-12-41, D-22
DMAMSK, 12-29 12-44 D-23
DMAOVFE, 12-3Q 12-34
DMASRR, 12-29 12-42 12-43 D-26
DMASTS, 12-2912-36 D-27
ICW1, 9-2Q0 D-28
ICW2, 9-21, D-29
ICW3, 9-22 9-23 D-29, D-30
ICW4, 9-24 D-30

INDEX

IDCODE, 18-2 D-31

Identifier, 7-15

IERn, 11-15, 11-27, D-32

IIRn, 11-16, 11-28, D-33

INTCFG, 5-10,9-19 D-34

IR, 18-7,D-35

LCRn, 11-15, 11-25, D-36

LSRn, 11-15, 11-26, D-37

MCRn, 11-16, 11-29, 11-30, D-38
MSRn, 11-16, 11-31, D-39

OCw1, 9-25 D-40

OCWwWz2, 9-26,D-41

OCWS3, 9-27,D-42
P1CFG,5-2511-1511-18 D-43
P2CFG,5-26,11-1511-1914-14 14-16
D-44

P3CFG,5-27,9-18 10-4, 10-22 11-15
11-2Q D-45

PINCFG, 5-24,10-4,10-2311-15 11-17,
12-28 12-31,13-16 13-17,14-14 14-15
D-46

PnCFG, 11-1516-6 16-7

PnDIR, 16-6 16-8 D-47

PnLTC, 16-6 16-8 D-48

PnPIN, 16-6 16-9 D-48

POLL, 9-28 D-49

PORT92,5-22 D-50

Port92, 5-22

PWRCON, 8-6, 8-8, 17-11, D-51
RBRn, 11-15, 11-24, D-52
REMAPCEFG, 4-6, 4-7, D-53

RFSADD, 15-1Q D-54

RFSBAD, 15-9 D-54

RFSCIR, 15-7, D-55

RFSCON, 15-8 D-55

SCRy, 11-16, 11-32, D-56

SIOCFG, 5-17,11-1511-21,13-16 13-18
D-57

SMM revision ID, 7-15

SSIOBAUD, 13-16 13-2Q D-58
SSIOCON1,13-16 13-21,13-22 D-59
SSIOCON2,13-16 13-23

SSIOCTR, 13-16 13-21 D-60
SSIORBUF, 13-16 13-25 D-60

Index-7

INTEL386™ EX MICROPROCESSOR USER’S MANUAL

SSIOTBUF, 13-16 13-24 D-61
TBRn, 11-15, 11-23, D-61
TMRCFG, 5-13 10-4, 10-21, D-62
TMRCON, 10-4,10-25 10-28 10-3Q D-63
TMRn, 10-4, 10-26, 10-29, 10-32, D-64, D-65
UCSADH, 14-1414-17 D-8
UCSADL, 14-1414-18 D-9
UCSMSKH, 14-14 14-19 D-10
UCSMSKL, 14-14 14-2Q D-11
WDTCLR, 17-7
WDTCNTH, 17-7,17-8 D-67
WDTCNTL, 17-7,17-8 D-67
WDTRLDH, 17-7,17-1Q D-68
WDTRLDL, 17-7,17-1Q D-68
WDTSTATUS, 17-7,17-9 D-69

reload event,17-4

Reserved bits, definedl-5

Reset
considerations8-11
CPU-only, B-4

Resume instruction (RSM)7-15

RSM, SeeResume instruction

S

Scratch pad registers
SCRy, 11-32, D-56
Segment Descriptor Cach8;5
Segmentation Unit3-4, 3-5
SERCLK, 8-1-8-2,11-1,11-4 11-21 13-1,
13-513-18
Serial 1/0 unit, 11-1-11-45
block diagram,11-2
configuring, 5-14
departure from PC/AT architectur®-3
DMA service, 5-3-5-5
operation,11-4-11-14
baud-rate generatod 1-4-11-5
data transmission process flod;1-8
diagnostic mode,11-12
interrupt sources11-13
modem control,11-12
receiver,11-9-11-10
transmitter,11-6-11-8
overview, 11-1-11-3

Index-8

intel.
programming

accessing multiplexed registeré1-16
considerations11-32
DLHnregister,11-22
DLLnregister,11-22
IERN register, 11-27
IIRNn register,11-28
LCRn, 11-25, D-36
LCRn register,11-25
LSRn, 11-26, D-37
LSRn register,11-26
MCRn, 11-30, D-38
MCRn register,11-29-11-30
modem control signals] 1-29-11-30
MSRn, 11-31, D-39
MSRn register, 11-31
P1CFG register,11-18
P2CFG register,11-19
P3CFG register,11-20
PINCFG register,11-17
RBRn, 11-24, D-52
RBRn register, 11-24
SCRhregister,11-32
SIOCFG, 5-17,11-21,13-18 D-57
SIOCFG register11-21
TBRn, 11-23, D-61
TBRn register, 11-23
register addressed-19 4-20, D-5, D-6
registers,11-15-11-16
signals, 11-3
Set, defined,1-5
Signal descriptionsA-1-A-10
Signal names, notational conventiods4
SIO, SeeSerial I/O unit
SMM, SeeSystem management mode
SMM, see System Management Modé3
SMRAM, 7-2
chip-select unit support for{-12
state dump area/-14
Specific EOl command9-14
SSI0,SeeSynchronous serial I/O unit
Synchronous serial I/0O unif] 3-1-13-25
configuring, 5-18
design considerations] 3-25
DMA service, 5-3
master/slave mode arrangement8-2-13-3

intel.

operation, 13-5-13-15
baud-rate generatod, 3-5-13-6
receiver,13-12-13-15
transmitter, 13-6

overview, 13-1-13-4

programming,13-16-13-25
CLKPRS register,13-19
PINCFG, 13-17
SIOCFG register13-18
SSIOBAUD, 13-2Q D-58
SSIOBAUD register,13-20
SSIOCON1,13-22 D-59
SSIOCON1 register13-21, 13-22 D-59
SSIOCON2 register13-23
SSIOCTR, 13-21, D-60
SSIOCTR register13-21
SSIORBUF, 13-25 D-60
SSIORBUF register,13-25
SSIOTBUF, 13-24 D-61
SSIOTBUF register,13-24

register addresse€-18 D-4

registers,13-16

signals, 13-4

SIOCFG, 5-17,11-21,13-18 D-57

System management mod2;1, 7-1-7-15

CSU support,7-12 14-10

HALT restart, 7-9

hardware interface3-1, 7-1
SMI#, 7-1
SMIACT#, 7-2
SMRAM state dump area/-14

1/0 restart, 7-1

identifier registers,3-6, 7-15

interaction with idle and powerdowr8-5

overview, 7-1

priority, 7-7

resume instruction/-15

SMI# interrupt, 7-3, 7-11-7-15
during HALT cycle, 7-8
during I/O instruction,7-9
during SMM handler,7-10
HALT during SMM handler,7-11
SMI# during SMM operation,7-12

SMRAM, 7-2

state dump area/-14-7-15

System register organizatiod;-1

INDEX

address configuration registe4-6
address space, I/O for PC/AT systerds?
addressing mode#}-9

DOS-compatible mode4-9

enhanced DOS model-11

nonDOS mode4-11

nonintrusive DOS mode4-11
enabling/disabling expanded 1/0 spaée8
expanded I/O address spa¢k3
I/0 address decoding techniqueb,6
organization of peripheral register4;5
overview, 4-1
peripheral register addressek; 15
peripheral registers4-2
processor core architecturé;2
programming

ESE bit, 4-8

REMAPCFG example4-8

T
TAP controller, 18-4
TAP Test Access Port] 8-1
TCU, SeeTimer/counter unit
Technical support,1-7
Terminology, 1-4-1-5, Glossary-1Glossary-5
Test access port]8-1
Test-logic unitSeeJTAG test-logic unit
Timer/counter unit,10-1-10-33
configuring, 5-11
hardware triggerable one-sh8geMode 1
hardware-triggered strob8eeMode 5
initial count values,10-26
interrupt on terminal coun§eeMode 0
mode 0,10-6-10-8
basic operation10-7
disabling the count10-7
writing a new count,10-8
mode 1,10-8-10-10
basic operation]10-9
retriggering the one-shotl0-9
writing a new count,10-10
mode 2,10-10-10-12
basic operation,10-11
disabling the count10-11
writing a new count,10-12

Index-9

INTEL386™ EX MICROPROCESSOR USER’S MANUAL

mode 3,10-12-10-15
basic operation]10-13-10-14
basic operation (odd count},0-14
disabling the count10-14
writing a new count,10-15
mode 4,10-16-10-17
basic operation]10-16
disabling the count10-17
writing a new count,10-17
mode 5,10-18-10-19
basic operation,10-18
retriggering the strobel0-19
writing a new count,10-19
operation, 10-5-10-19
operations caused by GARE 10-6
overview, 10-1-10-4
programming
considerations10-33
initializing the counters,10-24-10-25
D-63
input and output signalsl0-26-10-23
reading the counter]0-27-10-33
counter-latch commandl0-27
read-back commandl0-30
simple read,10-27
TMRCFG, 5-13 10-21 D-62
TMRCON, 10-25 10-28 D-63
TMRn, 10-29, 10-32, D-64, D-65
writing the counters,10-26
rate generatoSeeMode 2
read-back commands, multipld0-33
register addresse€-16 D-2
registers,10-4
TMRCON, 10-30
TMRn, 10-26
signals, 10-3
software-triggered strob&eeMode 4
square waveSeeMode 3
Timing, 8-9
Timing diagram
basic external bus cycle§-6
basic internal and external bus cycl&s,12
basic refresh cycle6-29
BS8 cycle, 6-33
counter mode 010-7
counter mode 110-9, 10-10

Index-10

intel.
counter mode 210-11 10-12

counter mode 310-13 10-14 10-15
counter mode 410-16 10-17

counter mode 510-18 10-19

DMA transfer, 12-9 12-11 12-21
entering and leaving idle mod8&-9
entering and leaving powerdown mod#,11
HALT cycle, 6-27

interrupt acknowledge cycleg-25 9-29
JTAG test-logic unit,18-12 18-13
LOCK# signal during pipelining6-35
nonpipelined read cycleg-15
nonpipelined write cyclef-18
pipelined cycles,6-21

refresh cycle during HOLD/HLDA6-30
SSIO receiver,13-15

SSIO transmitter 13-11

U

Units of measure, defined,-3
V

Virtual-86 mode, 9-8

w

Watchdogtimer unit, 17-1-17-16
block diagram,17-2
design considerations].7-12
disabling the WDT,17-6
lockout sequencel7-4
operation, 17-3-17-4
during idle mode,8-5
overview, 17-1-17-2
programming,17-5-17-6
bus monitor mode17-5
general-purpose timer modé,7-4
software watchdog model 7-5
WDTCNTH, 17-8 D-67
WDTCNTL, 17-8 D-67
WDTRLDH, 17-1Q D-68
WDTRLDL, 17-1Q D-68
WDTSTATUS, 17-9 D-69
register addresse€-18 D-4

int9I® INDEX

registers,17-7
WDTCLR, 17-7
WDTCNTH, 17-7
WDTCNTL, 17-7
WDTRLDH, 17-7
WDTRLDL, 17-7
WDTSTATUS, 17-7
reload event, 17-4
signals, 17-3
WDT, SeeWatchdog timer unit
Worksheets
peripheral configuration5-34
pin configuration,5-34
World Wide Web,1-7

Index-11

	Intel386 EX Embedded Microprocessor User’s Manual
	CONTENTS
	CHAPTER 1 GUIDE TO THIS MANUAL
	1.1 Manual Contents
	1.2 Notational Conventions
	1.3 Special Terminology
	1.4 Related Documents
	1.5 Electronic Support Systems
	1.5.1 FaxBack Service
	1.5.2 Bulletin Board System (BBS)
	1.5.3 CompuServe Forums
	1.5.4 World Wide Web

	1.6 Technical Support
	1.7 Product Literature

	CHAPTER 2 ARCHITECTURAL OVERVIEW
	2.1 Intel386 EX Embedded Processor Core
	2.2 Integrated Peripherals

	CHAPTER 3 CORE OVERVIEW
	3.1 Intel386 CX Processor Enhancements
	3.1.1 System Management Mode
	3.1.2 Additional Address Lines

	3.2 Intel386 CX Processor Internal Architecture
	3.2.1 Core Bus Unit
	3.2.2 Instruction Prefetch Unit
	3.2.3 Instruction Decode Unit
	3.2.4 Execution Unit
	3.2.5 Segmentation Unit
	3.2.6 Paging Unit

	3.3 Core Intel386 EX Processor Interface

	CHAPTER 4 SYSTEM REGISTER ORGANIZATION
	4.1 Overview
	4.1.1 Intel386 Processor Core Architecture Registe...
	4.1.2 Intel386 EX Processor Peripheral Registers

	4.2 I/O Address Space for PC/AT Systems
	4.3 Expanded I/O Address Space
	4.4 Organization of Peripheral Registers
	4.5 I/O Address Decoding Techniques
	4.5.1 Address Configuration Register
	4.5.2 Enabling and Disabling the Expanded I/O Spac...
	4.5.2.1 Programming REMAPCFG Example

	4.6 Addressing Modes
	4.6.1 DOS-compatible Mode
	4.6.2 Nonintrusive DOS Mode
	4.6.3 Enhanced DOS Mode
	4.6.4 Non-DOS Mode

	4.7 Peripheral Register Addresses

	CHAPTER 5 DEVICE CONFIGURATION
	5.1 Introduction
	5.2 Peripheral Configuration
	5.2.1 DMA Controller, Bus Arbiter, and Refresh Uni...
	5.2.1.1 Using The DMA Unit with External Devices
	5.2.1.2 DMA Service to an SIO or SSIO Peripheral
	5.2.1.3 Using The Timer To Initiate DMA Transfers
	5.2.1.4 Limitations Due To Pin Signal Multiplexing...
	5.2.2 Interrupt Control Unit Configuration
	5.2.3 Timer/counter Unit Configuration
	5.2.4 Asynchronous Serial I/O Configuration
	5.2.5 Synchronous Serial I/O Configuration
	5.2.6 Chip-select Unit and Clock and Power Managem...
	5.2.7 Core Configuration

	5.3 Pin Configuration
	5.4 Device Configuration Procedure
	5.5 Configuration Example
	5.5.1 Example Design Requirements
	5.5.2 Example Design Solution

	CHAPTER 6 BUS INTERFACE UNIT
	6.1 Overview
	6.1.1 Bus Signal Descriptions

	6.2 Bus Operation
	6.2.1 Bus States
	6.2.2 Pipelining
	6.2.3 Data Bus Transfers and Operand Alignment
	6.2.4 Ready Logic

	6.3 Bus Cycles
	6.3.1 Read Cycle
	6.3.2 Write Cycle
	6.3.3 Pipelined Cycle
	6.3.4 Interrupt Acknowledge Cycle
	6.3.5 Halt/Shutdown Cycle
	6.3.6 Refresh Cycle
	6.3.7 BS8 Cycle
	6.3.7.1 Write Cycles
	6.3.7.2 Read Cycles

	6.4 Bus Lock
	6.4.1 Locked Cycle Activators
	6.4.2 Locked Cycle Timing
	6.4.3 LOCK# Signal Duration

	6.5 External Bus Master Support (Using HOLD, HLDA)...
	6.5.1 HOLD/HLDA Timing
	6.5.2 HOLD Signal Latency

	6.6 Design Considerations
	6.6.1 Interface To Intel387™ SX Math Coprocessor
	6.6.1.1 System Configuration
	6.6.1.2 Software Considerations

	6.6.2 SRAM/FLASH Interface
	6.6.3 PSRAM Interface
	6.6.4 Paged DRAM Interface
	6.6.5 Non-Paged DRAM Interface

	CHAPTER 7 SYSTEM MANAGEMENT MODE
	7.1 System Management Mode Overview
	7.2 SMM Hardware Interface
	7.2.1 System Management Interrupt Input (SMI#)
	7.2.2 SMM Active Output (SMIACT#)
	7.2.3 System Management RAM (SMRAM)

	7.3 System Management Mode Programming and Configu...
	7.3.1 Register Status During SMM
	7.3.2 System Management Interrupt
	7.3.2.1 SMI# Priority
	7.3.2.2 System Management Interrupt During HALT Cy...
	7.3.2.3 HALT Restart
	7.3.2.4 System Management Interrupt During I/O Ins...
	7.3.2.5 I/O Restart

	7.3.3 SMM Handler Interruption
	7.3.3.1 Interrupt During SMM Handler
	7.3.3.2 HALT During SMM Handler
	7.3.3.3 Idle Mode and Powerdown Mode During SMM
	7.3.3.4 SMI# During SMM Operation

	7.3.4 SMRAM Programming
	7.3.4.1 Chip-select Unit Support for SMRAM
	7.3.4.2 SMRAM State Dump Area

	7.3.5 Resume Instruction (RSM)

	7.4 The Intel386 EX Processor Identifier Registers...
	7.5 Programming Considerations
	7.5.1 System Management Mode Code Example

	CHAPTER 8 CLOCK AND POWER MANAGEMENT UNIT
	8.1 Overview
	8.1.1 Clock Generation Logic
	8.1.2 Power Management Logic
	8.1.2.1 SMM Interaction with Power Management Mode...
	8.1.2.2 Bus Interface Unit Operation During Idle M...
	8.1.2.3 Watchdog Timer Unit Operation During Idle ...

	8.1.3 Clock and Power Management Registers and Sig...

	8.2 Controlling the PSCLK Frequency
	8.3 Controlling Power Management Modes
	8.3.1 Idle Mode
	8.3.2 Powerdown Mode
	8.3.3 Ready Generation During HALT

	8.4 Design Considerations
	8.4.1 Reset Considerations
	8.4.2 Power-up Considerations
	8.4.2.1 Built-in Self Test
	8.4.2.2 JTAG Reset

	8.4.3 Powerdown Mode and Idle Mode Considerations

	8.5 Programming Considerations
	8.5.1 Clock and Power Management Unit Code Example...

	CHAPTER 9 INTERRUPT CONTROL UNIT
	9.1 Overview
	9.2 ICU operation
	9.2.1 Interrupt Sources
	9.2.2 Interrupt Priority
	9.2.2.1 Assigning an Interrupt Level
	9.2.2.2 Determining Priority

	9.2.3 Interrupt Vectors
	9.2.4 Interrupt Process
	9.2.5 Poll Mode

	9.3 Register Definitions
	9.3.1 Port 3 Configuration Register (P3CFG)
	9.3.2 Interrupt Configuration Register (INTCFG)
	9.3.3 Initialization Command Word 1 (ICW1)
	9.3.4 Initialization Command Word 2 (ICW2)
	9.3.5 Initialization Command Word 3 (ICW3)
	9.3.6 Initialization Command Word 4 (ICW4)
	9.3.7 Operation Command Word 1 (OCW1)
	9.3.8 Operation Command Word 2 (OCW2)
	9.3.9 Operation Command Word 3 (OCW3)
	9.3.10 Interrupt Request Register (IRR)
	9.3.11 In-Service Register (ISR)
	9.3.12 Poll Status Byte (POLL)

	9.4 Design Considerations
	9.4.1 Interrupt Acknowledge Cycle
	9.4.2 Interrupt Detection
	9.4.3 Spurious Interrupts
	9.4.4 Cascading Interrupt Controllers

	9.5 Programming Considerations
	9.5.1 Interrupt Control Unit Code Examples

	CHAPTER 10 TIMER/COUNTER UNIT
	10.1 Overview
	10.1.1 TCU Signals and Registers

	10.2 TCU Operation
	10.2.1 Mode 0 – Interrupt on Terminal Count
	10.2.2 Mode 1 – Hardware Retriggerable One-shot
	10.2.3 Mode 2 – Rate Generator
	10.2.4 Mode 3 – Square Wave
	10.2.5 Mode 4 – Software-triggered Strobe
	10.2.6 Mode 5 – Hardware-triggered Strobe

	10.3 Register Definitions
	10.3.1 Configuring the Input and Output Signals
	10.3.1.1 Hardware Control of GATEn
	10.3.1.2 Software Control of GATEn

	10.3.2 Initializing the Counters
	10.3.3 Writing the Counters
	10.3.4 Reading the Counter
	10.3.4.1 Simple Read
	10.3.4.2 Counter-latch Command
	10.3.4.3 Read-back Command

	10.4 Programming Considerations
	10.4.1 Timer/Counter Unit Code Examples

	CHAPTER 11 ASYNCHRONOUS SERIAL I/O UNIT
	11.1 Overview
	11.1.1 SIO Signals

	11.2 SIO Operation
	11.2.1 Baud-rate Generator
	11.2.2 SIOn Transmitter
	11.2.3 SIOn Receiver
	11.2.4 Modem Control
	11.2.5 Diagnostic Mode
	11.2.6 SIO Interrupt and DMA Sources
	11.2.6.1 SIO Interrupt Sources
	11.2.6.2 SIO DMA sources

	11.2.7 External UART Support

	11.3 Register Definitions
	11.3.1 Pin and Port Configuration Registers (PINCF...
	11.3.2 SIO and SSIO Configuration Register (SIOCFG...
	11.3.3 Divisor Latch Registers (DLLn and DLHn)
	11.3.4 Transmit Buffer Register (TBRn)
	11.3.5 Receive Buffer Register (RBRn)
	11.3.6 Serial Line Control Register (LCRn)
	11.3.7 Serial Line Status Register (LSRn)
	11.3.8 Interrupt Enable Register (IERn)
	11.3.9 Interrupt ID Register (IIRn)
	11.3.10 Modem Control Register (MCRn)
	11.3.11 Modem Status Register (MSRn)
	11.3.12 Scratch Pad Register (SCRn)

	11.4 Programming Considerations
	11.4.1 Asynchronous Serial I/O Unit Code Examples

	CHAPTER 12 DMA CONTROLLER
	12.1 Overview
	12.1.1 DMA Terminology
	12.1.2 DMA Signals

	12.2 DMA Operation
	12.2.1 DMA Transfers
	12.2.2 Bus Cycle Options for Data Transfers
	12.2.2.1 Fly-By Mode
	12.2.2.2 Two-Cycle Mode
	12.2.2.3 Programmable DMA Transfer Direction
	12.2.2.4 Ready Generation For DMA Cycles
	12.2.2.5 DMA Usage of the 4-Byte Temporary Registe...

	12.2.3 Starting DMA Transfers
	12.2.4 Bus Control Arbitration
	12.2.5 Ending DMA Transfers
	12.2.6 Buffer-transfer Modes
	12.2.6.1 Single Buffer-Transfer Mode
	12.2.6.2 Autoinitialize Buffer-Transfer Mode
	12.2.6.3 Chaining Buffer-Transfer Mode
	12.2.7 Data-transfer Modes
	12.2.7.1 Single Data-transfer Mode
	12.2.7.2 Block Data-transfer Mode
	12.2.7.3 Demand Data-transfer Mode

	12.2.8 Cascade Mode
	12.2.9 DMA Interrupts
	12.2.10 8237A Compatibility

	12.3 Register Definitions
	12.3.1 Pin Configuration Register (PINCFG)
	12.3.2 DMA Configuration Register (DMACFG)
	12.3.3 Channel Registers
	12.3.4 Overflow Enable Register (DMAOVFE)
	12.3.5 Command 1 Register (DMACMD1)
	12.3.6 Status Register (DMASTS)
	12.3.7 Command 2 Register (DMACMD2)
	12.3.8 Mode 1 Register (DMAMOD1)
	12.3.9 Mode 2 Register (DMAMOD2)
	12.3.10 Software Request Register (DMASRR)
	12.3.11 Channel Mask and Group Mask Registers (DMA...
	12.3.12 Bus Size Register (DMABSR)
	12.3.13 Chaining Register (DMACHR)
	12.3.14 Interrupt Enable Register (DMAIEN)
	12.3.15 Interrupt Status Register (DMAIS)
	12.3.16 Software Commands

	12.4 Design Considerations
	12.5 Programming Considerations
	12.5.1 DMA Controller Code Examples

	CHAPTER 13 SYNCHRONOUS SERIAL I/O UNIT
	13.1 Overview
	13.1.1 SSIO Signals

	13.2 SSIO Operation
	13.2.1 Baud-rate Generator
	13.2.2 Transmitter
	13.2.2.1 Transmit Mode using Enable Bit
	13.2.2.2 Autotransmit Mode
	13.2.2.3 Slave Mode

	13.2.3 Receiver

	13.3 Register Definitions
	13.3.1 Pin Configuration Register (PINCFG)
	13.3.2 SIO and SSIO Configuration Register (SIOCFG...
	13.3.3 Prescale Clock Register (CLKPRS)
	13.3.4 SSIO Baud-rate Control Register (SSIOBAUD)
	13.3.5 SSIO Baud-rate Count Down Register (SSIOCTR...
	13.3.6 SSIO Control 1 Register (SSIOCON1)
	13.3.7 SSIO Control 2 Register (SSIOCON2)
	13.3.8 SSIO Transmit Holding Buffer (SSIOTBUF)
	13.3.9 SSIO Receive Holding Buffer (SSIORBUF)

	13.4 Design Considerations
	13.5 Programming Considerations
	13.5.1 SSIO Example Code

	CHAPTER 14 CHIP-SELECT UNIT
	14.1 Overview
	14.2 CSU upon reset
	14.3 CSU Operation
	14.3.1 Defining a Channel’s Address Block
	14.3.2 System Management Mode Support
	14.3.3 Bus Cycle Length Control
	14.3.4 Bus Size Control
	14.3.5 Overlapping Regions

	14.4 Register Definitions
	14.4.1 Pin Configuration Register (PINCFG)
	14.4.2 Port 2 Configuration Register (P2CFG)
	14.4.3 Chip-select Address Registers
	14.4.4 Chip-select Mask Registers

	14.5 Design Considerations
	14.6 Programming Considerations
	14.6.1 Chip-Select Unit Code Example

	CHAPTER 15 REFRESH CONTROL UNIT
	15.1 Dynamic Memory Control
	15.1.1 Refresh Methods

	15.2 Refresh Control Unit Overview
	15.2.1 RCU Signals
	15.2.2 Refresh Intervals
	15.2.3 Refresh Addresses
	15.2.4 Bus Arbitration

	15.3 RCU Operation
	15.4 Register Definitions
	15.4.1 Refresh Clock Interval Register (RFSCIR)
	15.4.2 Refresh Control Register (RFSCON)
	15.4.3 Refresh Base Address Register (RFSBAD)
	15.4.4 Refresh Address Register (RFSADD)

	15.5 Design Considerations
	15.6 Programming Considerations
	15.6.1 Refresh Control Unit Example Code

	CHAPTER 16 INPUT/OUTPUT PORTS
	16.1 Overview
	16.1.1 Port Functionality

	16.2 Register Definitions
	16.2.1 Pin Configuration
	16.2.2 Initialization Sequence

	16.3 Design Considerations
	16.3.1 Pin Status During and After Reset

	16.4 Programming Considerations
	16.4.1 I/O Ports Code Example

	CHAPTER 17 WATCHDOG TIMER UNIT
	17.1 Overview
	17.1.1 WDT Signals

	17.2 Watchdog Timer Unit Operation
	17.2.1 Idle and Powerdown modes
	17.2.2 General-purpose Timer Mode
	17.2.3 Software Watchdog Mode
	17.2.4 Bus Monitor Mode

	17.3 Disabling the WDT
	17.4 Register Definitions
	17.5 Design Considerations
	17.6 Programming Considerations
	17.6.1 Writing to the WDT Reload Registers (WDTRLD...
	17.6.2 Minimum Counter Reload Value
	17.6.3 Watchdog Timer Unit Code Examples

	CHAPTER 18 JTAG TEST-LOGIC UNIT
	18.1 Overview
	18.2 Test-Logic Unit Operation
	18.2.1 Test Access Port (TAP)
	18.2.2 Test Access Port (TAP) Controller
	18.2.3 Instruction Register (IR)
	18.2.4 Data Registers

	18.3 Testing
	18.3.1 Identifying the Device
	18.3.2 Bypassing Devices on a Board
	18.3.3 Sampling Device Operation and Preloading Da...
	18.3.4 Testing the Interconnections (EXTEST)
	18.3.5 Disabling the Output Drivers

	18.4 Timing Information
	18.5 Design Considerations

	APPENDIX A SIGNAL DESCRIPTIONS
	APPENDIX B COMPATIBILITY WITH THE PC/AT* ARCHITECT...
	B.1 Hardware Departures from PC/AT System Architec...
	B.1.1 DMA Unit
	B.1.2 Industry Standard Bus (ISA) Signals
	B.1.3 Interrupt Control Unit
	B.1.4 SIO Units
	B.1.5 CPU-only Reset
	B.1.6 HOLD, HLDA Pins
	B.1.7 Port B

	B.2 Software Considerations for a PC/AT System Arc...
	B.2.1 Embedded Basic Input Output System (BIOS)
	B.2.2 Embedded Disk Operating System (DOS)
	B.2.3 Microsoft* Windows*

	APPENDIX C EXAMPLE CODE HEADER FILES
	C.1 Register Definitions for Code Examples
	C.2 Example Code Defines

	APPENDIX D SYSTEM REGISTER QUICK REFERENCE
	D.1 Peripheral Register Addresses
	D.2 CLKPRS
	D.3 CSnADH (UCSADH)
	D.4 CSnADL (UCSADL)
	D.5 CSnMSKH (UCSMSKH)
	D.6 CSnMSKL (UCSMSKL)
	D.7 DLLn and DLHn
	D.8 DMABSR
	D.9 DMACFG
	D.10 DMACHR
	D.11 DMACMD1
	D.12 DMACMD2
	D.13 DMAGRPMSK
	D.14 DMAIEN
	D.15 DMAIS
	D.16 DMAMOD1
	D.17 DMAMOD2
	D.18 DMAMSK
	D.19 DMAnBYCn, DMAnREQn and DMAnTARn
	D.20 DMAOVFE
	D.21 DMASRR
	D.22 DMASTS
	D.23 ICW1 (master and slave)
	D.24 ICW2 (master and slave)
	D.25 ICW3 (master)
	D.26 ICW3 (slave)
	D.27 ICW4 (master and slave)
	D.28 IDCODE
	D.29 IERn
	D.30 IIRn
	D.31 INTCFG
	D.32 IR
	D.33 LCRn
	D.34 LSRn
	D.35 MCRn
	D.36 MSRn
	D.37 OCW1 (master and slave)
	D.38 OCW2 (master and slave)
	D.39 OCW3 (master and slave)
	D.40 P1CFG
	D.41 P2CFG
	D.42 P3CFG
	D.43 PINCFG
	D.44 PNDIR
	D.45 PnLTC
	D.46 PnPIN
	D.47 POLL (master and slave)
	D.48 PORT92
	D.49 PWRCON
	D.50 RBRn
	D.51 REMAPCFG
	D.52 RFSADD
	D.53 RFSBAD
	D.54 RFSCIR
	D.55 RFSCON
	D.56 SCRn
	D.57 SIOCFG
	D.58 SSIOBAUD
	D.59 SSIOCON1
	D.60 SSIOCON2
	D.61 SSIOCTR
	D.62 SSIORBUF
	D.63 SSIOTBUF
	D.64 TBRn
	D.65 TMRCFG
	D.66 TMRCON
	D.67 TMRn
	D.68 UCSADH
	D.69 UCSADL
	D.70 UCSMSKH
	D.71 UCSMSKL
	D.72 WDTCNTH and WDTCNTL
	D.73 WDTRLDH and WDTRLDL
	D.74 WDTSTATUS

	APPENDIX E INSTRUCTION SET SUMMARY
	E.1 Instruction Encoding and Clock Count Summary
	E.2 Instruction Encoding
	E.2.1 32-bit Extensions of the Instruction Set
	E.2.2 Encoding of Instruction Fields
	E.2.2.1 Encoding of Operand Length (w) Field
	E.2.2.2 Encoding of the General Register (reg) Fie...
	E.2.2.3 Encoding of the Segment Register (sreg) Fi...
	E.2.2.4 Encoding of Address Mode
	E.2.2.5 Encoding of Operation Direction (d) Field
	E.2.2.6 Encoding of Sign-Extend (s) Field
	E.2.2.7 Encoding of Conditional Test (tttn) Field
	E.2.2.8 Encoding of Control or Debug or Test Regis...

	GLOSSARY
	INDEX

	Figures
	Figure 2�1. Intel386™ EX Embedded Processor Block ...
	Figure 3�1. Instruction Pipelining
	Figure 3�2. The Intel386™ CX Processor Internal Bl...
	Figure 4�1. PC/AT I/O Address Space (10-bit Decode...
	Figure 4�2. Expanded I/O Address Space (16-bit Dec...
	Figure 4�3. Address Configuration Register (REMAPC...
	Figure 4�4. Setting the ESE Bit Code Example
	Figure 4�5. DOS-Compatible Mode
	Figure 4�6. Example of Nonintrusive DOS-Compatible...
	Figure 4�7. Enhanced DOS Mode
	Figure 4�8. NonDOS Mode
	Figure 5�1. Peripheral and Pin Connections
	Figure 5�2. Configuration of DMA, Bus Arbiter, and...
	Figure 5�3. DMA Configuration Register (DMACFG)
	Figure 5�4. Interrupt Control Unit Configuration
	Figure 5�5. Interrupt Configuration Register (INTC...
	Figure 5�6. Timer/Counter Unit Configuration
	Figure 5�7. Timer Configuration Register (TMRCFG)
	Figure 5�8. Serial I/O Unit 0 Configuration
	Figure 5�9. Serial I/O Unit 1 Configuration
	Figure 5�10. SIO and SSIO Configuration Register (...
	Figure 5�11. SSIO Unit Configuration
	Figure 5�12. Configuration of Chip-select Unit and...
	Figure 5�13. Core Configuration
	Figure 5�14. Port 92 Configuration Register (PORT9...
	Figure 5�15. Pin Configuration Register (PINCFG)
	Figure 5�16. Port 1 Configuration Register (P1CFG)...
	Figure 5�17. Port 2 Configuration Register (P2CFG)...
	Figure 5�18. Port 3 Configuration Register (P3CFG)...
	Figure 6�1. Basic External Bus Cycles
	Figure 6�2. Simplified Bus State Diagram (Does Not...
	Figure 6�3. Ready Logic
	Figure 6�4. Basic Internal and External Bus Cycles...
	Figure 6�5. Nonpipelined Address Read Cycles
	Figure 6�6. Nonpipelined Address Write Cycles
	Figure 6�7. Complete Bus States (Including Pipelin...
	Figure 6�8. Pipelined Address Cycles
	Figure 6�9. Interrupt Acknowledge Cycles
	Figure 6�10. Halt Cycle
	Figure 6�11. Basic Refresh Cycle
	Figure 6�12. Refresh Cycle During HOLD/HLDA
	Figure 6�13. 16-bit Cycles to 8-bit Devices (Using...
	Figure 6�14. LOCK# Signal During Address Pipelinin...
	Figure 6�15. Intel386 EX Processor to Intel387 SX ...
	Figure 6�16. Intel386 EX Processor to SRAM/FLASH I...
	Figure 6�17. Intel386 EX Processor to PSRAM Interf...
	Figure 6�18. Intel386 EX Processor to Paged DRAM I...
	Figure 6�19. Intel386 EX Processor and Non-Paged D...
	Figure 7�1. Standard SMI#
	Figure 7�2. SMIACT# Latency
	Figure 7�3. SMI# During HALT
	Figure 7�4. SMI# During I/O Instruction
	Figure 7�5. SMI# Timing
	Figure 7�6. Interrupted SMI# Service
	Figure 7�7. HALT During SMM Handler
	Figure 8�1. Clock and Power Management Unit Connec...
	Figure 8�2. Clock Synchronization
	Figure 8�3. SMM Interaction with Idle and Powerdow...
	Figure 8�4. Clock Prescale Register (CLKPRS)
	Figure 8�5. Power Control Register (PWRCON)
	Figure 8�6. Timing Diagram, Entering and Leaving I...
	Figure 8�7. Timing Diagram, Entering and Leaving P...
	Figure 8�8. Reset Synchronization Circuit
	Figure 9�1. Interrupt Control Unit Configuration
	Figure 9�2. Methods for Changing the Default Inter...
	Figure 9�3. Interrupt Process – Master Request fro...
	Figure 9�4. Interrupt Process – Slave Request
	Figure 9�5. Interrupt Process – Master Request fro...
	Figure 9�6. Port 3 Configuration Register (P3CFG)
	Figure 9�7. Interrupt Configuration Register (INTC...
	Figure 9�8. Initialization Command Word 1 Register...
	Figure 9�9. Initialization Command Word 2 Register...
	Figure 9�10. Initialization Command Word 3 Registe...
	Figure 9�11. Initialization Command Word 3 Registe...
	Figure 9�12. Initialization Command Word 4 Registe...
	Figure 9�13. Operation Command Word 1 (OCW1)
	Figure 9�14. Operation Command Word 2 (OCW2)
	Figure 9�15. Operation Command Word 3 (OCW3)
	Figure 9�16. Poll Status Byte (POLL)
	Figure 9�17. Interrupt Acknowledge Cycle
	Figure 9�18. Spurious Interrupts
	Figure 9�19. Cascading External 82C59A Interrupt C...
	Figure 10�1. Timer/Counter Unit Signal Connections...
	Figure 10�2. Mode 0 – Basic Operation
	Figure 10�3. Mode 0 – Disabling the Count
	Figure 10�4. Mode 0 – Writing a New Count
	Figure 10�5. Mode 1 – Basic Operation
	Figure 10�6. Mode 1 – Retriggering the One-shot
	Figure 10�7. Mode 1 – Writing a New Count
	Figure 10�8. Mode 2 – Basic Operation
	Figure 10�9. Mode 2 – Disabling the Count
	Figure 10�10. Mode 2 – Writing a New Count
	Figure 10�11. Mode 3 – Basic Operation (Even Count...
	Figure 10�12. Mode 3 – Basic Operation (Odd Count)...
	Figure 10�13. Mode 3 – Disabling the Count
	Figure 10�14. Mode 3 – Writing a New Count (With a...
	Figure 10�15. Mode 3 – Writing a New Count (Withou...
	Figure 10�16. Mode 4 – Basic Operation
	Figure 10�17. Mode 4 – Disabling the Count
	Figure 10�18. Mode 4 – Writing a New Count
	Figure 10�19. Mode 5 – Basic Operation
	Figure 10�20. Mode 5 – Retriggering the Strobe
	Figure 10�21. Mode 5 – Writing a New Count Value
	Figure 10�22. Timer Configuration Register (TMRCFG...
	Figure 10�23. Port 3 Configuration Register (P3CFG...
	Figure 10�24. Pin Configuration Register (PINCFG)
	Figure 10�25. Timer Control Register (TMRCON – Con...
	Figure 10�26. Timer n Register (TMRn – Write Forma...
	Figure 10�27. Timer Control Register (TMRCON – Cou...
	Figure 10�28. Timer n Register (TMRn – Read Format...
	Figure 10�29. Timer Control Register (TMRCON – Rea...
	Figure 10�30. Timer n Register (TMRn – Status Form...
	Figure 11�1. Serial I/O Unit 1 Configuration
	Figure 11�2. SIOn Baud-rate Generator Clock Source...
	Figure 11�3. SIOn Transmitter
	Figure 11�4. SIOn Data Transmission Process Flow
	Figure 11�5. SIOn Receiver
	Figure 11�6. SIOn Data Reception Process Flow
	Figure 11�7. Pin Configuration Register (PINCFG)
	Figure 11�8. Port 1 Configuration Register (P1CFG)...
	Figure 11�9. Port 2 Configuration Register (P2CFG)...
	Figure 11�10. Port 3 Configuration Register (P3CFG...
	Figure 11�11. SIO and SSIO Configuration Register ...
	Figure 11�12. Divisor Latch Registers (DLLn and DL...
	Figure 11�13. Transmit Buffer Register (TBRn)
	Figure 11�14. Receive Buffer Register (RBRn)
	Figure 11�15. Serial Line Control Register (LCRn)
	Figure 11�16. Serial Line Status Register (LSRn)
	Figure 11�17. Interrupt Enable Register (IERn)
	Figure 11�18. Interrupt ID Register (IIRn)
	Figure 11�19. Modem Control Signals – Diagnostic M...
	Figure 11�20. Modem Control Signals – Internal Con...
	Figure 11�21. Modem Control Register (MCRn)
	Figure 11�22. Modem Status Register (MSRn)
	Figure 11�23. Scratch Pad Register (SCRn)
	Figure 12�1. DMA Unit Block Diagram
	Figure 12�2. DMA Temporary Buffer Operation for a ...
	Figure 12�3. DMA Temporary Buffer Operation for A ...
	Figure 12�4. Start of a Two-cycle DMA Transfer Ini...
	Figure 12�5. Changing the Priority of the DMA Chan...
	Figure 12�6. Buffer Transfer Ended by an Expired B...
	Figure 12�7. Buffer Transfer Ended by the EOP# Inp...
	Figure 12�8. Single Data-transfer Mode with Single...
	Figure 12�9. Single Data-transfer Mode with Autoin...
	Figure 12�10. Single Data-transfer Mode with Chain...
	Figure 12�11. Block Data-transfer Mode with Single...
	Figure 12�12. Block Data-transfer Mode with Autoin...
	Figure 12�13. Buffer Transfer Suspended by the Dea...
	Figure 12�14. Demand Data-transfer Mode with Singl...
	Figure 12�15. Demand Data-transfer Mode with Autoi...
	Figure 12�16. Demand Data-transfer Mode with Chain...
	Figure 12�17. Cascade Mode
	Figure 12�18. Pin Configuration Register (PINCFG)
	Figure 12�19. DMA Configuration Register (DMACFG)
	Figure 12�20. DMA Channel Address and Byte Count R...
	Figure 12�21. DMA Overflow Enable Register (DMAOVF...
	Figure 12�22. DMA Command 1 Register (DMACMD1)
	Figure 12�23. DMA Status Register (DMASTS)
	Figure 12�24. DMA Command 2 Register (DMACMD2)
	Figure 12�25. DMA Mode 1 Register (DMAMOD1)
	Figure 12�26. DMA Mode 2 Register (DMAMOD2)
	Figure 12�27. DMA Software Request Register (DMASR...
	Figure 12�28. DMA Software Request Register (DMASR...
	Figure 12�29. DMA Channel Mask Register (DMAMSK)
	Figure 12�30. DMA Group Channel Mask Register (DMA...
	Figure 12�31. DMA Bus Size Register (DMABSR)
	Figure 12�32. DMA Chaining Register (DMACHR)
	Figure 12�33. DMA Interrupt Enable Register (DMAIE...
	Figure 12�34. DMA Interrupt Status Register (DMAIS...
	Figure 13�1. Transmitter and Receiver in Master Mo...
	Figure 13�2. Transmitter in Master Mode, Receiver ...
	Figure 13�3. Transmitter in Slave Mode, Receiver i...
	Figure 13�4. Transmitter and Receiver in Slave Mod...
	Figure 13�5. Clock Sources for the Baud-rate Gener...
	Figure 13�6. SSIO Transmitter with Autotransmit Mo...
	Figure 13�7. SSIO Transmitter with Autotransmit Mo...
	Figure 13�8. Transmit Data by Polling
	Figure 13�9. Interrupt Service Routine for Transmi...
	Figure 13�10. Transmitter Master Mode, Single Word...
	Figure 13�11. Transmitter Master Mode, Single Word...
	Figure 13�12. Receive Data by Polling
	Figure 13�13. Interrupt Service Routine for Receiv...
	Figure 13�14. Receiver Master Mode, Single Word Tr...
	Figure 13�15. Pin Configuration Register (PINCFG)
	Figure 13�16. SIO and SSIO Configuration Register ...
	Figure 13�17. Clock Prescale Register (CLKPRS)
	Figure 13�18. SSIO Baud-rate Control Register (SSI...
	Figure 13�19. SSIO Baud-rate Count Down Register (...
	Figure 13�20. SSIO Control 1 Register (SSIOCON1)
	Figure 13�21. SSIO Control 2 Register (SSIOCON2)
	Figure 13�22. SSIO Transmit Holding Buffer (SSIOTB...
	Figure 13�23. SSIO Receive Holding Buffer (SSIORBU...
	Figure 14�1. Channel Address Comparison Logic
	Figure 14�2. Determining a Channel’s Address Block...
	Figure 14�3. Bus Cycle Length Adjustments for Over...
	Figure 14�4. Pin Configuration Register (PINCFG)
	Figure 14�5. Port 2 Configuration Register (P2CFG)...
	Figure 14�6. Chip-select High Address Register (CS...
	Figure 14�7. Chip-select Low Address Register (CSn...
	Figure 14�8. Chip-select High Mask Registers (CSnM...
	Figure 14�9. Chip-select Low Mask Registers (CSnMS...
	Figure 15�1. Refresh Control Unit Connections
	Figure 15�2. Refresh Clock Interval Register (RFSC...
	Figure 15�3. Refresh Control Register (RFSCON)
	Figure 15�4. Refresh Base Address Register (RFSBAD...
	Figure 15�5. Refresh Address Register (RFSADD)
	Figure 15�6. Connections to Ensure Refresh of All ...
	Figure 15�7. RAS# Only Refresh Logic: Paged Mode
	Figure 15�8. RAS# Only Refresh Logic: Non-Paged Mo...
	Figure 16�1. I/O Port Block Diagram
	Figure 16�2. Logic Diagram of a Bi-directional Por...
	Figure 16�3. Port n Configuration Register (PnCFG)...
	Figure 16�4. Port Direction Register (PnDIR)
	Figure 16�5. Port Data Latch Register (PnLTC)
	Figure 16�6. Port Pin State Register (PnPIN)
	Figure 17�1. Watchdog Timer Unit Connections
	Figure 17�2. WDT Counter Value Registers (WDTCNTH ...
	Figure 17�3. WDT Status Register (WDTSTATUS)
	Figure 17�4. WDT Reload Value Registers (WDTRLDH a...
	Figure 17�5. Power Control Register (PWRCON)
	Figure 18�1. Test Logic Unit Connections
	Figure 18�2. TAP Controller (Finite-State Machine)...
	Figure 18�3. Instruction Register (IR)
	Figure 18�4. Identification Code Register (IDCODE)...
	Figure 18�5. Internal and External Timing for Load...
	Figure 18�6. Internal and External Timing for Load...
	Figure B�1. Derivation of AEN Signal in a Typical ...
	Figure B�2. Derivation of AEN Signal for Intel386™...
	Figure E�1. General Instruction Format

	Tables
	Table 2�1. PC-compatible Peripherals
	Table 2�2. Embedded Application-specific Periphera...
	Table 4�1. Peripheral Register I/O Address Map in ...
	Table 4�2. Peripheral Register Addresses (Sheet 6 ...
	Table 5�1. Master’s IR3 Connections
	Table 5�2. Master’s IR4 Connections
	Table 5�3. Signal Pairs on Pins without a Multiple...
	Table 5�4. Example Pin Configuration Registers
	Table 5�5. Example DMACFG Configuration Register
	Table 5�6. Example TMRCFG Configuration Register
	Table 5�7. Example INTCFG Configuration Register
	Table 5�8. Example SIOCFG Configuration Register
	Table 5�9. Pin Configuration Register Design Woksh...
	Table 5�10. DMACFG Register Design Worksheet
	Table 5�11. TMRCFG Register Design Worksheet
	Table 5�12. INTCFG Register Design Worksheet
	Table 5�13. SIOCFG Register Design Worksheet
	Table 6�1. Bus Interface Unit Signals (Sheet 2 of ...
	Table 6�2. Bus Status Definitions
	Table 6�3. Sequence of Nonaligned Bus Transfers
	Table 7�1. CR0 Bits Cleared Upon Entering SMM
	Table 7�2. SMM Processor State Initialization Valu...
	Table 7�3. Relative Priority of Exceptions and Int...
	Table 8�1. Clock and Power Management Registers �
	Table 8�2. Clock and Power Management Signals �
	Table 9�1. 82C59A Master and Slave Interrupt Sourc...
	Table 9�2. ICU Registers�(Sheet 2 of 2)
	Table 10�1. TCU Signals �
	Table 10�2. TCU Associated Registers �
	Table 10�3. Operations Caused by GATEn �
	Table 10�4. GATEn Connection Options
	Table 10�5. Minimum and Maximum Initial Counts
	Table 10�6. Results of Multiple Read-back Commands...
	Table 11�1. SIO Signals
	Table 11�2. Maximum and Minimum Output Bit Rates
	Table 11�3. Divisor Values for Common Bit Rates
	Table 11�4. Status Signal Priorities and Sources
	Table 11�5. SIO Registers�(Sheet 2 of 2)
	Table 11�6. Access to Multiplexed Registers
	Table 12�1. DMA Signals
	Table 12�2. Operations Performed During Transfer
	Table 12�3. DMA Registers (Sheet 3 of 3)
	Table 12�4. DMA Software Commands
	Table 13�1. SSIO Signals
	Table 13�2. Maximum and Minimum Baud-rate Output F...
	Table 13�3. SSIO Registers �
	Table 14�1. CSU Signals
	Table 14�2. CSU Registers �
	Table 15�1. RCU Signals �
	Table 15�2. RCU Registers �
	Table 16�1. Pin Multiplexing �
	Table 16�2. I/O Port Registers
	Table 16�3. Control Register Values for I/O Port P...
	Table 17�1. WDT Signals �
	Table 17�2. WDT Registers �
	Table 18�1. Test Access Port Dedicated Pins
	Table 18�2. TAP Controller State Descriptions (She...
	Table 18�3. Example TAP Controller State Selection...
	Table 18�4. Test-logic Unit Instructions �
	Table 18�5. Boundary-scan Register Bit Assignments...
	Table A�1. Signal Description Abbreviations �
	Table A�2. Description of Signals Available at the...
	Table A�3. Pin State Abbreviations
	Table A�4. Pin States After Reset and During Idle,...
	Table D�1. Peripheral Register Addresses (Sheet 6 ...
	Table E�1. Instruction Set Summary��(Sheet 19 of 1...
	Table E�2. Fields Within Instructions
	Table E�3. Encoding of Operand Length (w) Field
	Table E�4. Encoding of reg Field When w Field is n...
	Table E�5. Encoding of reg Field When w Field is P...
	Table E�6. Encoding of the Segment Register (sreg)...
	Table E�7. Encoding of 16-bit Address Mode with “m...
	Table E�8. Encoding of 32-bit Address Mode with “m...
	Table E�9. Encoding of 32-bit Address Mode (“mod r...
	Table E�10. Encoding of Operation Direction (d) Fi...
	Table E�11. Encoding of Sign-Extend (s) Field
	Table E�12. Encoding of Conditional Test (tttn) Fi...
	Table E�13. When Interpreted as Control Register F...
	Table E�14. When Interpreted as Debug Register Fie...
	Table E�15. When Interpreted as Test Register Fiel...

